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Alternative approach to the gradient expansion of Green's functions
of noninteracting particles
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We present a new technique for evaluating the gradient expansion of the one-particle Green's
function of a system of noninteracting particles. The method is based on the fundamental
differential equation for the Green's function and is applicable to relativistic systems as well as to
nonrelativistic ones. Explicitly we derive the gradient expansion of the relativistic Green's function
of a system of electrons in an arbitrary time-independent external four potential to second order.

The semiclassical expansion of Green's functions or
density matrices for systems of noninteracting particles is
used extensively for the derivation of explicit ground-
state energy density functionals. ' In this contribution
we present a method for the evaluation of the gradient
expansion of the one-particle propagator, which is more
easily applied than the standard Kirzhnits formalism.
We demonstrate the technique for a system characterized
by the relativistic Lagrangian (using units with c = 1 and
the Feynman convention A = A y ) describing fermions
in an external four-potential,

(2)

X =i'(x)[i AB rn ——V(x)]f(x), (l)
The one-particle Green's function of a system charac-

terized by this Lagrangian is defined by the di6'erential
equation

[itic)„—m —V(x)]G(x,y) =i 5' '(x —y) .
The ansatz

G(x,y)= y G "(x,y),
n=0

where G " denotes the nth order gradient contribution to
G, leads to a recursion relation which allows the repre-
sentation of G " in terms of the semiclassical limit G

This quantity is most readily obtained in the standard
local-density approximation. For the case of stationary
systems,

V„(x)= V,(x),
to which we restrict further discussion, one calculates the
Green's function of a homogeneous relativistic electron
gas in a constant four-potential A„and uses this expres-
sion with the replacement

&„~V„(x) .

The result is

—( /A)( ' — 'V
G( l(x y)=e ~ f P e

—(i/A)pIx —y) [0]( )
(2vrh)

g( l(p, x)=(p+m)
p —P2 +E6

e(s —v'(x) —p')5(p —E)
2E

(4)

where E =(p'+m')' '. The threshold energy S distinguishes between occupied and unoccupied states. The vacuum
part and the real electron gas part with energies between m and S —Ao for the homogeneous system and consequently
m and S —Vo(x) for the inhomogeneous system in local-density approximation have been separated. This propagator
satisfies Eq. (2) in lowest order,

[i trit) —m —V( x ) ]G (ol(x,y )

—(i/R)(x —y') V (x) d p , e ""'&"-&' isa, +p —m —ir[KV.(x)]

( /fl)(x y )V (x) d p=e e
(2srih)

t riK„—t r[$v, (x)]
Bp

5( E)—+i —2'(p —m ) B(S—V (x) —p )2E

=ie ' 5I '(x —y)+O(fi) .

In order to derive a recursion relation for G~" we use the ansatz
—('/4)( — )V ( )

G "(x,y)=e " g(")(x,y),
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which does not affect the ordering of the gradient corrections. Inserting this ansatz into Eq. (2) one obtains

—(/A( '— ')V( )
oo

I(x —y )[8V (x)]+iAr}„—m ] g g["](x,y)=i5' '(x —y),
n=0

which is most readily resolved in momentum space. The partial Fourier transformation

[n]( )
p —(i lh)p(x —y) [n]( )

d4

(2m.A')

leads directly to

g["](p,x)=i@', [(}V (x)] —8 g[" '](p, x), n &0 .(p+m) — (}

p —m ~p

The final resolution of the recursion relation (8) is
n

g[ "](p,x)=(iiri)" [(}V,(x)] —cT g[ ](p, x) .(P+ m ) — (}

p2 —m2 Qp

We note that the pole structure in g ](p,x) and the prefactor (p+m)/(p —m i) has to be the same, as the separation of
the states indicated by the alternative form

g['](p, x) =i (p+m) 6( 0 o (p+m) (p+m)
p —m +is p —m —ie (p +ie) E— (10)

[which is equivalent to Eq. (4) but avoids mathematical ambiguities] is not changed in higher-order gradient terms.
This leads to

g["](p, x) = i (i')" [(}V„(x)] —8
p —m +i@ (}p,

(p+m)
p —m +i&

+i(i )i"ri6(S —V (x)—p )

n

(p+, ) [a „)]a —a,(p+
p —m —i@ ~p p —m —ie

—i(i')"6(S —V (x) —p ) [(}V (x)]
(p +ie) E — (}p„

(p+m)
(p +ic) E—

An alternative but more cumbersome derivation of this result can be carried out by expanding the Green's function in
powers of V (x), then in powers of A, and finally resumming the series in the field strength.

On the basis of Eq. (11) one can readily evaluate the low-order gradient terms, as demonstrated by the first- and
second-order terms given below. Using standard Dirac matrix algebra and Lorentz gauge (a discussion of gauge ques-
tions is given in the appendix),

a V„(x)=0,
one finds

g['](p, x)=~[a„V,(x)] (p+m) —,]'"];,+4
(p —m +i@) (p —m +i@) (p —m +i@)

+2~i'6(S —Vo(x) —po) (P +m) P P S"(po—E)+ ~ ~ S'(po —E)
E[3(p ) +E ] 4p E

and the more involved expression

+'YP g( 0 E)
2pOE

(12)

g[ ](p, x)=iri I [8 Vi3(x)][8„V„(x)][ig~" (p)+2irB(S —V (x)—p )R ~""(p,x)]

+ [I3 B„v,(x)][iS "'(p)+2irB(S —V (x) p)T ""(p,x)]I—
with

(13a)
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a P p v

g PP(p') (p +m ) 48 P P P P
(p —m +i@)'

a P p v

R ~"'(p, x)=(p+m) PPPP g (
0 E)

E[5(p )'+10(p )'E'+E ]

+ 3p p I y+y++ 2p pPg ~++ 2p p gPP+ 2pPp &g aP
5"'(p —E)

12p E[(p ) +E ]

X 'V 7 3' +2g "g o

4E[3( ) +E j

& P V")' +''Y P"g +1' p "g "
2p E[(p ) +E ] E[3(p ) +E2]

(p —m +is) (p m+—ie)
S "( )=( +m) 8 —2P ~~

(p —m +i@) (p —m +iE)
a p v a p v+ v ap

T ""(p,x ) = (p + m), , 5'"(p E)+ —0, , 6"(p —E)
6p E[(p ) +E ] 2E[3(p ) +E ]

a p v ap,
y P P $ I I

(p
0 E ) + 7 g $ (p

0 E )
E[3(p ) +E ] 4p E

y y~y"y +2g "g~ 12p p~y"y +8p p"g~ +8p p g~"+8p~p g "
(p —m + i6) (p —m +i@)

+24 r ppp 4y pyy+y pg +y pg
(p —m +is)" (p —m +i@)

(13b)

(13c)

(13d)

(13e)

For this propagator one can directly prove gauge invari-
ance (up to the order of the gradient expansion). A dis-
cussion of a manifestly gauge invariant scheme is given in
the appendix. This propagator reduces to the Green's
function, evaluated with the Kirzhnits formalism in Ref.
6, for the case of a pure electrostatic potential,

time-dependent potentials. An extension in this direction
is in progress.

The authors acknowledge support by the Deutsche
Forschungsgemeinschaft.

V„(x)=(V(x),0) . APPENDIX

With the representation of the electron propagator given
above one can, e.g. , readily extend the relativstic
Thomas-Fermi-Dirac-Weizsacker model to the case of
arbitrary four potentials. '

Two additional remarks are in order. We have, by bas-
ing the discussion on the form (2), obtained a gradient ex-
pansion of the Green's function which, in accordance
with the standard practice, does not exhibit the usual
symmetry properties with respect to the coordinates x
and y. It is possible to remedy this situation at least par-
tially. Secondly, one might imagine applying the same
technique to the case of time-dependent potentials, with
the aim of providing a hydrodynamical description of the
noninteracting relativistic many particle system. In fact
the only restriction to stationary systems is due to the ex-
plicit form of g . The recursion relation is also valid for

V (x) V„(x)+a A(x), (Al)

the propagator of an abelian gauge theory transforms as

G ( ) e
—(i/fi)[A(x) —A(y))G ( (A2)

This suggests that one separate a different phase from
G (x,y) than the one used in Eq. (5), namely,

The recursion relation, Eq. (8), as well as the explicit
results for the Green's function, Eqs. (12) and (13), are
not manifestly gauge invariant. Although one can im-
mediately show that these expressions are in fact invari-
ant it would be more satisfying to have a manifestly
gauge invariant formalism. The corresponding treatment
of the recursion scheme is given below.

Under a general gauge transformation,

G(x,y) =exp ——g [a„.. .a. V (x)](x —y) '. . . (x —y) "(x —y)" g(x,y) .i "
( —1)" vl vk

fi „0(k+1)! (A3)

The phase factor in Eq. (A3) transforms under the gauge transformation (Al) exactly as the full Green's function
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exp ——g [8 . . .B„V (x)](x —y) '. . .(x —y) "(x —y)"i "
( —1) v

A'
k 0 (k+1)!

oo
( 1)k~ exp ——g [8 . . .8, V (x)](x —y) '. . .(x —y) "(x —y)"

A'
k o (k+1)!

Xexp —g [B„.. .B„A(x)](x—y) '. . .(x —y)"i "
( —1)

k=1

=exp ——g [i) . . . i) V (x)](x —y) '. . . (x —y) '(x —y)" exp ——[A(x) —A(y)]
i "

( —1)"

, (k+1)!

Therefore g must be gauge invariant. Of course the phase chosen contains all orders of A. It thus leads to a reordering
of the gradient corrections to the Green's function,

G(x,y)=exp ——g [B . . .B„V (x)](x —y) '. . .(x —y) "(x —y)" g g!"1(x,y),
co

( 1)k

o (k+1)!

g'"'(x, y)&g'"'(x, y) .
The gauge invariance of g (x,y) becomes apparent if one evaluates the recursion formula corresponding to Eq. (8),

(A4)

(A5)

(A6)

where the gauge invariant field tensor Fk (x) has been
used. If

V (x) V (x)+a"A(x)

g(')(p x)=g(')(p x) (A7)
=(V (x}+a,V(x) —VA(x)) .

is gauge invariant, all higher orders are also gauge invari-
ant. For stationary problems where g! !(p,x) is given by
Eq. (10) only a very restricted class of gauge transforma-
tions is permitted, namely,

A(x)=ax +A,(x), a =const, EA.(x)=0 .

In order to describe the same physical system after the
gauge transformation the integration contour of the
Feynman propagator has to be changed. This corre-
sponds to a shift of the threshold S to S +a in Eq. (10) to-
gether with the gauge transformation

8„—2F„,(x)
Bp

e(S —V (x)—p )&0,

which even makes the evaluation of low-order terms
much more dificult.

Thus the difference S —V (x} which occurs in g! !(p,x)
remains unchanged.

The price of gauge covariance is a recursion formula
which cannot be resolved as simply as Eq. (8). Further-
more, one has
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