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By using an approximate analytical trial density and the consideration of an energy density func-
tional which includes a modified gradient correction, the relationship between the zeroth-order and
the first gradient correction is tested and the results compared with those obtained through the use
of Hartree-Fock-Roothaan-Clementi densities.

I. INTRODUCTION

Single-particle density is a physical observable which
plays a basic role in the quantum description of many-
electron systems. There are many physical properties of
atomic, molecular, and nuclear systems which can be in-
terpreted in terms of the electron density of the system. '

Some years ago, Pathak and Gadre obtained lower
bounds for the first gradient-expansion correction to the
kinetic and exchange-energy terms of the atom. The spir-
it of this work was to establish a relationship between the
zeroth-order and the first gradient corrections for all
well-behaved densities. This is important because it
would be possible to make variational calculations em-
ploying the bounds as gradient-free expansions of the
corrections.

One way of testing these relationships is to use known
well-behaved densities for the calculation of the bounds.
Pathak and Gadre have carried out a numerical investi-
gation of these lower bounds using electron densities con-
structed from Hartree-Fock wave functions. Notwith-
standing, in a fully variational calculation, it is necessary
to resort to approximate trial electron densities. So, it
would be interesting to verify whether these bounds are
still valid for variational densities. A similar calculation
has been done recently by Csavinszky using a trial elec-
tron density constructed from hydrogenlike one-electron
wave functions in order to make a comparison of the

Perdew-Wang expression for the exchange energy of a
many-electron system with the corresponding expression
given by Dirac.

Recently, Glossman and Castro have presented an
analytical approximation to the solution of the Thomas-
Fermi-Dirac-Weizsacker (TFDW) model ' in the form
of a superposition of exponentials. This analytical ansatz
has given remarkably accurate atomic energies. Some
physical quantities and related properties calculated
through this model show an improvement over previous
investigations.

The purpose of this paper is to test the kinetic energy
bound obtained by Pathak and Gadre by means of the
analytical approximation of Glossman and Castro.

II. DISCUSSION

The lowest energy of an atomic system in the TFDW
model is given by the functional

E(p) =Fk(p)+&„,(p)+E„(p)+&,„(p),
where p is the electron number density, E& is the kinetic
energy of the electrons, E„, is the attractive interaction
energy between the nucleus of atomic number Z and the
N electrons, E„ is the repulsive interaction energy among
the N electrons, and E, is the homogeneous electron gas
approximation of Dirac for the exchange energy. The
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quantities E„„E„,and E, have been defined be-
fore 8, I 1 —

1 8

In Eq. (1), Ek is the kinetic energy term, and this quan-
tity can be written as

Z Atom To(p) R,

TABLE I. Values of To, T„,and the ratio R, = T~, N '/To
for several atoms (in a.u. ).

E„(P)= Tp(p)+ T2, (P),

where Tp(p) is the zeroth-order kinetic energy term, usu-
ally called the "Thomas-Fermi kinetic energy term, "'
and T2, (p) is the first gradient expansion correction to
Tp(p), usually known as Weizsacker correction term,
multiplied by the Yonei and Tomishima ' correction fac-
tor c =

—,'. Thus

Tp(p)= —'(31T ) fp dr

and

T2, (p)= —f dr .
c (Vp)
8 p

Pathak and Gadre have derived the following lower
bound for the first gradient-expansion correction to the
kinetic energy functional
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He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
Kr
Xe
Rn

2.0718
5.5958

11.3526
19.6645
30.7798
44.9656
62.4372
83.4305

108.2540
137.0282
169.9008
207.0242
248.5453
294.6039
345.3344
400.8648
461.3184

2509.6138
6703.7726

20 547.2195

0.7463
1.7245
3.1277
4.9641
7.2347
9.9754

13.2835
17.6047
22. 1530
26.9676
32.1786
37.8057
43.8537
50.3227
57.2116
64.5180
72.2396

278.9105
602.2390

1419.4496

0.572
0.641
0.694
0.738
0.776
0.812
0.851
0.913
0.950
0.973
0.993
1.010
1.025
1.039
1.052
1.064
1.076
1.212
1.283
1.346

Tp(p) 0. 19079Tp(p)
T2, (p) ~

—,",(2/3)' ' (5)

where N denotes the number of electrons.
It should be noted that in the original derivation of Eq.

(5), Pathak and Gadre considered a correction factor
c =

—,
' and the numerical factor in Eq. (5) is 0.105 99. This

correction factor was first proposed in two related papers
by Kompaneets and Pavlovskii and by Kirzhnits and
there are several other correction factors already pub-
lished, and some of them have been tested in the
mentioned article by Csavinszky. We have adapted the
bound in order to be able to use our proposed functional.
Of course, the validity of the bound does not depend on
the value of the constant c, but it has been found by
several authors ' that the TFD-cR, with c =

—,', is the
method that best reproduces the total energy and binding
energy of Nz molecule by solving the Euler equation and
the same is true for all atoms in the whole Periodic Table.
It has been also found that the Scott conjecture can be
derived using a value quite close to c =

—,'.
As have Pathak and Gadre, we have calculated the ra-

tio

T ( )~2/3
R)=

Tp(p)

for several atoms, using our analytical ansatz. For sys-
tems with spherical symmetry the relation between the
density and the so-called screening function is

(9)

We have constructed the screening function P as a super-
position of exponential functions

P(r)= —g a, e
K

(10)

where a, and P, are variational parameters whose values
have been given elsewhere and K is a normalization con-
stant.

Table I shows the R, values for elements from
Z =2—18 and for Z =36, 54, and 86, together with cor-
responding Tp(p) and T~, (p) values. For the sake of
comparison, we have recalculated the ratio R, for some
atoms, but using Hartree-Pock-Roothaan-Clementi
(HFRC) densities and considering the same functional,
that is, TFDW with c =

—,'. Table II shows these values

together with those calculated with our analytical ansatz.
A glance at Table I shows that the bound is not very

tight, and that the ratio T2, N /To gradually increases
as one goes from He to Ar and then Kr, Xe, and Rn, but

TABLE II. Values of the bound R, calculated with the ap-
proximate analytical electron density (Ref. 5) and with HFRC
densities.

Atom ~ Present R HFRc
1

where P(r) is defined by

and

2
10
18
36
54

He
Ne
Ar
Kr
Xe

0.572
0.950
1.076
1.212
1.283

0.318
0.654
0.804
1.012
1.158
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in considering the dependence of the bound on the atom-
ic number Z, we can see that the differences in the bound
between an atom and the subsequent one are greater for
atoms of low atomic number and decreases at the same
time that the atomic number grows. Inspection of Table
II shows that the bound obtained through the HFRC
densities by using the TFDW model with c =

—,
' are lower

than those obtained by means of the analytical ansatz. In

the light of the above results, it would be worthwhile to
investigate the use of this bound in a variational context.
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