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Theory of stochastic resonance
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(Received 19 October 1988)

The concept of stochastic resonance has been introduced previously to describe a curious
phenomenon in bistable systems subject to both periodic and random forcing: an increase in the in-

put noise can result in an improvement in the output signal-to-noise ratio. In this paper we present a
detailed theoretical and numerical study of stochastic resonance, based on a rate equation approach.
The main result is an equation for the output signal-to-noise ratio as a function of the rate at which
noise induces hopping between the two states. The manner in which the input noise strength deter-
mines this hopping rate depends on the precise nature of the bistable system. For this reason, the
theory is applied to two classes of bistable systems, the double-well (continuous) system and the
two-state (discrete) system. The theory is tested in detail against digital simulations.

I. INTRODUCTION

The original work on stochastic resonance by Benzi
et al. , in which the term was coined, was in the context
of modeling the switching of the Earth's climate between
ice ages and periods of relative warmth with a period of
about 100000 years. ' ' The eccentricity of the Earth' s
orbit varies with that period, but according to current
theories the variation is not strong enough to cause such
a dramatic climate change. By introducing a bistable
"climatic potential" they suggested that a cooperative
phenomenon between the weak periodic variation in the
eccentricity (the "signal" ) and the other random fluctua-
tions might account for the strong periodicity observed.
While calling this mechanism stochastic resonance, they
correctly pointed out that this is not strictly a resonance
in the sense of an increased response when a driving fre-
quency is tuned to a "natural frequency" of the system.
There is, however, a useful analogy to resonance in that
the signal-to-noise ratio (the "response") is maximized
when some parameter —in this case the input noise —is
tuned near a certain value.

The essential ingredients for stochastic resonance con-
sist of a bistable system, with two inputs —a coherent sig-
nal and random noise —and with an output which is
some function of the inputs and the internal dynamics of
the system. For the moment we may view the system as a
"black box" and look at how the output power changes
as the input signal and noise are varied. For a system
well characterized by linear-response theory (that is, with
linear or "mildly" nonlinear internal dynamics) the
signal-to-noise ratio (SNR) at the output must equal the
SNR at the input, and any increase in the input noise will
result in a decrease in the output SNR. In contrast, the
signature of stochastic resonance is an increase in the out-
put SNR with increased input noise. Thus the nonlinear
nature of the problem is crucial.

In fact, the first papers on stochastic resonance focused
on the behavior of the signal output and not the SNR.
However, this focus has subsequently shifted: It is more
interesting both theoretically and experimentally to

define stochastic resonance in terms of the SNR.
Of the two experimental papers that have reported ob-

servation of stochastic resonance, one involved a Schmitt
trigger electronic circuit and the other a bidirectional
ring laser. The Schmitt trigger circuit is particularly in-
teresting because it is nicely modeled as a discrete two-
state system with hysteresis. Though it is not obvious
how to compare the results to the two-well theories, '

the basic phenomenon was clearly demonstrated. The
authors also report that "the noise is almost suppressed"
when the output at the signal frequency is most
enhanced. We interpret this to mean they observed a
dramatic example of a secondary effect predicted by the
theory of Sec. III: Power fed into the signal is balanced
by an equal amount of power subtracted from the noise
output integrated over all frequencies.

The other existing experiment used a bidirectional ring
laser, which can be made to switch between clockwise
and counterclockwise modes like the switching of an
overdamped particle in a double-well potential. With a
signal and noise input affecting the laser's preference for
one or the other mode, the output light intensity was
shown to have a signal-to-noise ratio displaying stochas-
tic resonance, as shown in Fig. 1. The theory presented
below was briefly sketched there. Though the effect was
clearly demonstrated experimentally, there were too
many free parameters in fitting the data to provide a con-
vincing check on the theory.

A complete theory of stochastic resonance should ad-
dress several issues. Ideally one would like to have an ex-
pression for the output power spectrum as a function of
all of the system's parameters. In particular, expressions
for the output signal amplitude S and noise level X would
allow one to find the value of input noise for which the
SNR is a maximum, and the important dependence on
the signal frequency ~, could be studied. Also important
is the matter of generality —what are the essential
features common to all systems which can show stochas-
tic resonance, and can the theory be applied to a wide
variety of such systems? Especially useful would be a
theory which divides cleanly into a generic part, depend-
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FIG. 1. Signal-to-noise ratio as a function of input noise from
the ring laser system of Ref. 5.

ing only on the broad features of all such systems, and a
part which depends on the particulars of the system being
studied.

In order to put the present work in context, we turn to
a brief review of the literature on this topic. In the pa-
pers by Benzi et al. ' and the paper by Nicolis, the
emphasis was on understanding a particular problem:
the mechanism behind the large, nearly periodic varia-
tions in the Earth's climate. These papers have in com-
mon a Kramers rate approach to hopping between a
warm well and a cold well of a one-dimensional climatic
potential. Using a heuristic argument they propose a
loose range of input noise variance D within which the
effect is predicted to take place and show suggestive
simulation data to support their claim. The range of D
proposed corresponds to the location of the maximum
value for S, not SNR, in the low-frequency regime. These
arguments hinge on the relative sizes of the two relevant
time scales in the problem, namely, the hopping time and
the modulation period. Eckmann and Thomas focused
on two issues not addressed before. One was to analyze
a somewhat simpler two-state system in which the
dynamical variable may only take on one of two discrete
values, x =+c. For reasons addressed in Sec. VI, the
two-state system has important differences from the dou-
ble well which make the effect of varying the input noise
D more difficult to analyze. Eckmann and Thomas also
emphasized the effect of varying the signal frequency,
with D held fixed.

In a later work, the same basic approach of Benzi
et al. was applied to the real-valued Landau-Ginzburg
equation. This seems to be the only attempt thus far to
look for stochastic resonance in a spatially extended sys-
tem. No attempt is made here to study such systems.

In a very recent work, Fox has studied the problem of
stochastic resonance using an eigenfunction approach. '

The strength of this approach rests in its generality, gen-
erating a formal expression for the power spectrum for an
arbitrary one-dimensional potential. However, to deter-

mine whether stochastic resonance is present requires
evaluation of specific eigenfunctions and eigenvalues for
the particular problem at hand, which can only be done
analytically in rare instances. The formal perturbation
expansions have been evaluated for a specific potential,
namely, the "double square well", ' '" and the resulting
features reproduce the basic phenomenon quite well. Fox
and co-workers have also discussed stochastic resonance
in a nonhysteretic, two-state switch. '

Finally, though not specifically concerned with sto-
chastic resonance, there are other relevant works which
discuss periodically and stochastically forced bistable sys-
tems. Among these, Caroli et al. ' use an adiabatic
eigenfunction expansion to study the periodically modu-
lated double well. This may be viewed as an alternative
approach to the less formal derivation presented in Sec.
III for the evolution of the probability density for the
bistable system to lie somewhere in one of the two states.
Finally, Bryant et al. ' derive the signal and noise gains
for a particle in a modulated quartic potential, that is, the
ratio of the output signal to the input signal power and
the output noise to the input noise. However, in this
work the effect of varying D was not studied.

The goal of the present work is to provide a detailed
study of stochastic resonance, including a comparison of
theory with digital simulations. We present results for
both continuous and discrete systems, and the expres-
sions for S and N allow detailed examination of the effects
of both D and co„as well as any other parameters of in-
terest. Despite the difference in definition, the earlier
double-well results' agree with our general rate equa-
tion approach, when the latter is applied to the low-
frequency regime.

Throughout, we emphasize the relationship between
the theoretical results and the experimental determina-
tion of the relevant quantities. We stress that there is
some subtlety involved: For example, the choice of band-
width in determining the output power can greatly affect
the numerical value of the signal-to-noise ratio (though
not the existence of stochastic resonance) as the noise
strength is varied.

The central feature of the theory for stochastic reso-
nance developed below is a rate equation relating the
change in the probability n + ( t) of a particle being in one
of the two states to the rates at which particles flow into
and out of that state. The rate equation is a simple first-
order differential equation, but to write down an expres-
sion for its solution in general requires using a Taylor ex-
pansion for the transition rates W+(t). Having solved for
the probability n (t)+, it is a straightforward matter to
derive the power spectrum of the discrete-state variable
x. This much of the analysis is sufficiently general to be
applicable to a wide range of bistable systems driven by
signal and noise. However, the precise expression for
W+(t) will depend on the particular system under study,
and stochastic resonance is not manifest in the equations
without this.

We begin the body of this paper with a more detailed
background of the phenomenon. In Sec. III we derive
approximate expressions for the output signal and noise
power in the general manner described above. A careful
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than N. The SNR then falls off gradually as D~~.
Later we will discuss another regime, in which the signal
frequency is relatively high, which is quite similar in
many respects. There is a slight difference in the
cooperative mechanism, but the value of D at which the
SNR is a maximum is very nearly independent of the sig-
nal frequency in both regimes.

A natural simplification of the double-well problem is
the discrete two-state system. (As a model for quantum
systems, it is of interest in its own right. ) The two-state
system with random hopping between states but no
periodic modulation gives rise to so-called telegraph
noise. It is a straightforward calculation to find that the
power spectrum of such a system is a simple Lorentzian.
The analysis assumes two hopping rates, one in each
direction, but how in a real physical system the external
noise actually determines these rates is left unspecified.
Eckmann and Thomas studied a two-state system for
which the hopping rates had a small periodic modulation
added, one rate 180' out of phase with the other. Their
conclusion was that sweeping through different cu, did
not give rise to a peak in the output signal. We confirm
here that there is only a monotonic decrease in the signal
and SNR ratio with increasing cu, . Because they made no
attempt to present a relationship between input noise D
and the hopping rates 8 +, they could not study the more
central issue of output power as a function of D. In Sec.
VI the rates W+(D) are derived for the Schmitt trigger
circuit which is very nearly a two-state system, and we
show how their behavior yields stochastic resonance.

We conclude this section with a short list of the main
issues to be addressed. Foremost is to find expressions
for signal and noise output from bistable systems which
agree with simulations and give added insight into the
physical source of this phenomenon. From these expres-
sions we can also make some helpful predictions regard-
ing stochastic resonance. The primary prediction is the
value of input noise at which the SNR will be enhanced.
In addition, one can use equations for S and N to help ad-
just the other system parameters to make the effect more
pronounced or to make it occur within the constraints of
a physically realizable experiment. In particular, the
effect of the choice of signal frequency can be examined.
Finally, by breaking the problem into a general theory
and a specific calculation of the transition rate for a par-
ticular system of interest, one can better see the necessary
features present in all systems displaying stochastic reso-
nance as well as the differences between individual sys-
tems.

will be Ualid only in the adiabatic limit, when the signal
frequency is much slower than some relaxation time ~, '.
For the double-well system, for example, w, is the time
for probability within one well to equilibrate.

In the approach used below the dynamical variable is
taken to be discrete: either x or x + with probabilities
n+ =prob(x =x+ ). If the true dynamics are continuous,
as with the double well, then we define

n = I n—+ = f p(x)dx, (3.l)

I'll +
dt

8n = W (t)n —W+ (t)n+

= W (t) —[ W (t)+ W+ (t) jn+, (3.2)

where W+(t) is the transition rate out of the + state.
Note that W+(t) is time periodic due to the periodic sig-
nal.

The reduction from a continuous bistable system
whose probability evolves according to a Fokker-Planck
equation to a discrete system governed by a rate equation
has been carried out formally, ' and the extension to a
periodically modulated system is straightforward. ' For
the purpose of computing moments, the probability den-
sity is effectively

p(x, t)=n+(t)5(x —x+ )+n (t)5(x —x ) . (3.3)

Values for x+ can be chosen to minimize the error in this
reduction. For simplicity it will be assumed that the sys-
tern is symmetrical about x =0 so that x+ = —x =c
and the value for c is chosen to minimize the error in the
variance of x. The variance for an unmodulated two-
state system in its steady state (n+ =n =

—,
'

) is just

(x ) = f x p (x)dx =x+n+ +x n =c . (3 4)

The solution to the linear first-order differential equation
with periodic coefficients Eq. (3.2) is given by

where x ' is the location of the potential maximum
separating the two wells. In general, the modulation of
the potential will cause the positions of the potential
minima and maximum to oscillate, and depending on the
level of approximation used, it may be necessary to take
this into account. The governing rate equation, then, is
just

III. GENERAL THEORY
n+(t)=g '(t) n+(t, )g(t, )+f W (t')g(t')dt'

(3.&)

In this section we derive expressions for the signal and
noise power from a bistable system, in a way which is in-
dependent of the precise dynamics of the system. To
make these results useful for a particular system, one
must have an expression for the transition rate or hop-
ping rate as a function of the input noise and other pa-
rameters. Such rates are derived from the details of the
system dynamics; in this section the rate is assumed
known. Typically, this expression for the transition rate

g (t) =exp f [ W+ (t')+ W (t')]dt'

W+(t) =f (p+rtocosto, t), (3.6)

where p is a dimensionless parameter formed from the ra-

In general, the form of W'+ will be such that Eq. (3.5)
cannot be integrated in terms of known functions. We
assume, though, that the rate is of the form
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W+(t) =
—,'(ao+ a, gocosco, t

+a2rt()cos co t + ' '
)

W+(t)+ W (t)=ao+a2gocos co, t+
(3.7)

tio of a "potential barrier" to the noise, and 7IO is the di-
mensionless strength of the modulation of p by the signal.
(The standard Kramers formula is of this form with
go=0. ) Under these assumptions, we can use the follow-
ing expansion in the small parameter g =qocosco, t:

where

—,'ao= f (p),
(
—1)" d"f

—,'a„= „(p) .
nt

(3.8)

The factor of (
—1)" is included to keep a, positive (since

f must be a decreasing function of its argument), and the
—,
' is added for later convenience. Equation (3.5) may now

be integrated to give the time-dependent probability, to
first order in g,

—ao(» —)z) a)'cocos(~»to ocos( to, t —
)))) )

( 2+ 2
)

1 /2
( 2+ 2 )1/2

(3.9)

where /=tan (co, /ao). Here the Kronecker 6 function 6, is 1 if the particle was initially in the + state and 0 if it
0

was in the —state at t =to The qu. antity n+ (t~x~, to) is the conditional probability that x (t) is in the + state at time t,
given that the state at time to was xo (which may be +c or —c). Retaining higher powers of g in Eq. (3.5) leads to
higher harmonics in Eq. (3.9), which in turn generates higher harmonics in the observed power spectrum.

From Eq. (3.9), any desired statistical information can be computed. Of particular interest is the autocorrelation
function, which is given by the four terms

&x(t)x(t +r)~ xo, t o& =+c n+ (t +r~ +c, t)n +(t~ xot o)
—c n+(t+r~ —c, t)n (t~xo, to)

c'n —(t +r~+c, t)n+ (t~xo, to)+c n (t +r~ c, t)n (t~xo, t—o)

=c
I [2n+ (t + )r+ tc)

—1+2n+ (t +r) —c, t) —1]n+ (t)xo, to) —[2n+ (t +r( —c, t) —1]I

(3.10)

For example, the term +c n+(t+r~ —c, t)n (t~x ot )0represents the case that at to the particle is at xo, at t it is at —c,
and at t +~ it is at +C. This greatly simplifies in the limit t0~ —~; the autocorrelation function is then just

&x (t)x (t +r) &
= lim &x (t)x (t +r) ~x(), to &

t ~ —cr.0

a, g()cos (co, t —P) +
+0+ CO

c a)goIcosco, r+cos[ (co2t +r)+2/] j

2(a()+ co, )
(3.1 1)

Notice that the power spectrum, which is the Fourier transform of the autocorrelation function, is a function of t as
well as 0, . In an experiment t represents the time at which one begins to take data. Typically one takes an ensemble of
many time series at times t, , t2, . . . , computes the power spectrum for each one, and averages them together. Unless
for some reason the experimenter has taken care to synchronize the phases (to, t, —

»t)), (ro, t~ —P), . . . , the values of t

must properly be treated as a random variable, uniformly distributed over 0 to 2~/~, . To account for this averaging of
power spectra taken at random times, one must average the power spectrum over t:

217/CO

&S(Q) &,
= f S(Sl, t)dt .

2% 0

Because this averaging and the Fourier transform commute, we choose to perform the averaging first, on the autocorre-
lation function:

Q7 2 TT/AP

«x(t)x(t+r)», = ' f '&x(t)x(t+r)&dt=c'e
277 0

2
CX 1'g0 C CX ] 'gOCOSCOs 'T

2(a()+to,. ) 2(a()+to, )
(3.12)

Finally, the po~er spectrum is given by

& S(A) &, = f « x (t)x (t +r) » , e '"'dr

O']'9o1—
2(a()+ co, }

2C CZO
2

+02+ &2

VTC CX i'g0+ [5(Q —co, )+5(A+to, )] .
2(ao+o), }

(3.13)

From this point on we will use S(Q) to denote the one sided t-averag-ed power spectrum [S(B)defined for Q positive
only" ],
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Q2g2

2(ao+ cu, )

4ca ~cay+ 5(A —co, ) .
A +Q CX +6)

(3.14)

This is the basic result of this section. Notice that the
spectrum divides naturally into two parts: the signal out-
put which is a 6 function at the signal frequency, and the
broadband noise output, which is a Lorentzian bump cen-
tered at Q=O. The noise spectrum is the product of the
Lorentzian obtained with no signal go =0 and a correc-
tion factor which represents the effect of the signa1 on the
noise. For sufficiently small-signal amplitude, this factor
is nearly unity. The correction factor has the effect of an
overall reduction of the noise power, and this reduction
of the noise is most pronounced when the signal is of low
frequency co, &(ao and large amplitude. The effect of the
signal is to transfer power from the broadband into the 5
function spike. The total output power, signal plus noise,
is independent of the signal amplitude and frequency.
This can be understood as a consequence of Parseval's
relation —the time integral of the square of the signal is
equal to the integral of the power spectrum over a11

frequencies —and the fact that the system takes on the
discrete values +c at all times. Since the integral over a
time T of the square of the signal must always be the con-
stant Tc, the total power must be a constant as well.
For continuous systems, such as the double well, the
two-state model used here is only an approximation, and
as such it may be expected that the total power for these
systems will not be conserved exactly.

IV. ON THE COMPARISON OF THE THEORY
WITH EXPERIMENTS

In this section we take time out to make a few remarks
concerning the comparison of the general theory with
both numerical simulations and laboratory experiments.
To demonstrate that Eq. (3.14) correctly predicts the sig-
nal and noise power we can create a simple system for
which the transition rate between two states is given pre-
cisely by

W+ =
—,'(ao+a, r)ocosco, t) .

That is, we let ao and a~go be parameters of the system,
directly rather than as terms in an expansion of a func-
tion which is already an approximation. On a digital
computer, at each timestep a random number g is chosen
uniformly on the interval 0 to 1. If the system is current-
ly in the + state (x =+c), g is compared with

less than q by making

At &2&2q /(ac+a, go) .

In practice, the timestep can be systematically decreased
until further reduction no longer has an appreciable effect
on the spectrum.

Typically, the time series data must be windowed in or-
der to reduce the effects of having a time series of finite
length. That is, the elements of the time series are
weighted by coefficients chosen to deemphasize the start
and end of the series, while keeping the total power a
constant. From the windowed data the power spectrum
is computed with a fast Fourier transform. To reduce the
variance within each frequency bin, a large ensemble of
such spectra should be averaged together. In this work
we plot the power spectral density (PSD), the total power
in each frequency bin divided by the size of one bin [the
bandwidth (b, )], because the plot is then independent of
the choice of the total sampling time (the reciprocal of
the bandwidth).

Figure 3 is a plot of the power spectral density as a
function of frequency from a simulation of Eq. (3.2) with
the transition rate computed according to Eq. (4.1).
There is excellent agreement with the theory of Eq.
(3.14). For N, the noise at the signal frequency, we use an
interpolated average of the PSD from neighboring fre-
quency bins. The natural measure for the signal from
such a spectrum is the PSD in the bin corresponding to
the signal frequency. There are several complications in
comparing this "experimental signal, " S„„with the
theoretical expression for the signal in Eq. (3.14). First,
the process of windowing before Fourier analyzing the
time series has an effect on coherent signals which does
not apply to random noise: Signal peaks are reduced by a
factor called the processing gain. ' The processing gain
G is given by

-10

V)

btp+(t)=btW+(t)= (ac+a, qocoscu, t), (4.1) - 20—

where b, t is the timestep. If g &p+, the system is changed
to the other state. During any finite timestep, the con-
tinuous time system of Eq. (3.2) is capable of making two
or more transitions, a situation not accounted for by this
discrete time scheme. Since the probability of making n

transitions in a time b t is ( I /n!)p+e —,the probability
that such multiple transitions will occur can be held to

I I I

f (Hz)

10

FIG. 3. Typical power spectrum S(f) from the simple system
of Sec. IV with f, =3.125, ao=10, a, go=5, and bt =0.005.
The cross indicates the location of the signal power S, pt given
by the theory.
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0.6

G=
(w;)

(4.2)
0.5

where w, - is the window coefficient multiplying the ith
sample in the time series. G is typically between 1 (for no
windowing) and 0.5. Next, one must take into account
the fact that the total power in the frequency bin includes
the integrated PSD of the noise which is also present in
that bin. A third complication arises from the fact that
while the units for the noise term in Eq. (3.14) are power
spectral density (power per unit bandwidth), the signal
term is the product of a 5 function (with units of band-
width ') and the total power under the 5 function. Be-
cause the experimentally measured signal S,„, is a PSD,
the total theoretical signal power must be divided by the
bandwidth h. (Still another complication —"scalloping
loss, " causing signal power to be divided among several
bins —can be avoided in simulations by setting the signal
frequency to be centered on one of the bins. ) Thus we
have the expression

X
N 04

I-
D
I- 0.3—

0
0.2—

0.1
0

40—

10 20

(Xo (Hz)

30

(b)

S,„,=(SG+Nb, )/b, , (4.3)

where S and N are taken from Eq. (3.14). In general, in
experiments it is more convenient to compute the power
spectrum in terms of the frequency f rather than the
circular frequency II so the 5 function 6(co, —0)
=o(f, f)/2n introd—uces a factor of (27r) ' into the ex-
pression for S. Notice from Eq. (4.3) that the smallest
possible value for the experimental signal-to-noise ratio
(R,„ t)

3.0
Ch.

4P
lK

2.0—

R,„,=(SG/b, +X)/X (4.4)
1.0

0
I

10
l

20 30

is one, not zero.
By varying one parameter while holding the others

fixed, one may take a series of power spectra like Fig. 3,
measure the signal and noise power at each parameter
setting, and then plot the results. In Figs. 4—6 the experi-
mental signal, noise, and signal-to-noise ratio are plotted
as a function of three parameters. Holding the input sig-
nal fixed and varying ao (which may be though of as a re-
ciprocal "barrier height"), from Eq. (3.14) the noise may
be expected to peak at roughly o.o=co„and the signal
should have a nearly Lorentzian profile with a "knee"
(that is, its 3-dB point) at cg, . In Fig. 4(a) the signal and
noise are shown as a function of o.o, with co, held fixed,
and there is good agreement with the theory. Figure 4(b)
presents R„, as a function of ao, also with good agree-
ment. The effect of varying the signal amplitude,
represented by the a, go term, is shown in Fig. 5. From
Eq. (3.14), one may expect the output signal power to in-
crease with (a, rlo) and the noise to similarly decrease,
and these predictions are confirmed. The signal has a
Lorentzian profile in the signal frequency co„with a knee
at co, =ao. The noise has approximately the same ~,
dependence, but also has the small correction factor dis-
cussed in Sec. III. Figure 6(a) shows the effect of co, on
signal and noise and their 3-dB points agree nicely with
f3 dB cxo /2 ir = 1 .6. The signal-to-noise ratio is nearly
independent of co, [Fig. 6(b)].

(Xo (Hz)

FIG. 4. (a) Output power spectral density for signal (squares)
and noise (circles) as a function of reciprocal "barrier height" ao
(co,. =9.8, a, go=3, and At =0.005). (b) Signal-to-noise ratio
R

pl as a function of no with the same parameters.

V. THE DOUBLE-WELL SYSTEM

U(x, 1)= x + x Ex cosco~t
a 2 b 4

2 4

where e and cu, are the signal amplitude and frequency.
This may also be written

2
X XU(x, t)= Uo —2 — +
c C

X—U, —cosco, t, (&.2)

The quartic potential system (Fig. 2) is of particular in-
terest because it represents the simplest bistable system in
a continuous variable. In the presence of a modulating
signal, this potential has the form
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FIG. 5. (a) Output power spectral density for signal (squares)
and noise (circles) as a function of signal amplitude a l go
(f, =3.125, a0=10, and bt =0.005). (b) Signal-to-noise ratio
R,„~, as a function of a&go with the same parameters.

FIG. 6. (a) Output power spectral density for signal (squares)
and noise (circles) as a function of signal frequency f, (ao= 10,
a)go=5, and ht =0.005). (b) Signal-to-noise ratio R„„,(linear
scale) as a function of f, with the same parameters.

a„U(x, &)+v'D —g(r) . (5.3)

Here g(t) represents Csaussian distributed white noise,
such that (g'(t)) =0 and (g(t)g(t +r)) =5(r), and D is
the variance of the noise.

In the absence of modulation (@=0)the mean first pas-
sage time is given by the Kramers time

2 UG /D
277e

[I U"(0)
I
U"(c)]'"

V 2~ 2UoiD
e (5.4)

Because the expression for the Kramers transition rate
depends only on the potential barrier height and the cur-

where the potential minima are at +c =+V'a/b when
E'=0 Up =Q /46 is the E'=0 barrier height and U] =Ec
is the amplitude of modulation in the barrier height. In
the limit of large damping, the equation of motion for a
randomly forced particle is

vature of the potential at the maximum and minima, it is
not especially important that the potential is precisely
Eq. (5.1), i.e. , the results carry over directly to a wide
variety of similar systems. The Kramers rate formula is
derived under the assumption that the probability density
within a well is roughly at equilibrium, a Gaussian distri-
bution centered about the minimum. Thus in order to
use the modified Kramers rate,

W+ ( t ) = — exp [ —2( Uo+ U, cos~, t ) /D],&2' (5.5)

the signal frequency must be much slower than the
characteristic rate for probability to equilibrate within a
well. This rate is just the curvature at the well minimum
U"(+c). Thus the adiabatic approximation is valid only
for co, (& U"(+c)=2a.

For the purpose of applying the results of Sec. III to
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the double-well problem, the coeScients ap and o. , in the
expansion for W+(t) must be computed from Eq. (3.8).
Comparing Eqs. (3.6) and (5.5) we have Icc

= Uo /D,
gp: U] /D: ec /D, so that

a —2(p+ g0coscu, t)f (p+ gocosco, t) = — e
~27t

present the signal, noise, and SNR, as computed from
Eqs. (5.7) and (5.8), as a function of input noise at
different signal frequencies. For convenience, cu, is nor-
malized by the hopping rate at D = Up, near which sto-
chastic resonance is expected to peak,

&2vrco, e

+2a —2 Uo /Dao=2f (2)=0)= e
77

2V 2a —2UO/Da&= —2 (q=O)= e =2ao .
dg

(5.6)
W(D = Uo)

In Fig. 7(a) the dotted line represents the curve of max-
imum values for the signal power, and is given by the re-
lation

The expressions for ap and a, may be substituted into Eq.
(3.14) for the power spectrum,

S(A)= 1—
4a ec —4U/D

e
2D 2

2Q 4U0 /D
e + ct)~

4/2ac —2U /D
e

—4U /D
e

7T2

8a ec —4U/D0

AD

2a —4U0/D
, e ' +co,

7T

6(A —co, ), (5.7)

and the signal-to-noise ratio (R)

&2ae c —2U /D
e

D 2

X 1—
4a 6 c —4U /D)0

2D 2

2a —4U0/D
e +co

(5.8)

Notice that the second factor in Eq. (5.8) represents the
fraction of the total power that is in the broadband noisy
part of the spectrum. The part which is subtracted from
1 is the fraction which is in the coherent signal output.
In general, the signal has only a small fraction of the total
power, so the signal-to-noise ratio is approximately

&2ae c —2UO/DR= e (5.9)
D 2

—2U0/DFor D very small compared to Up, e ' falls to zero
more rapidly than D in the denominator so R ~0. At
very large values of D (for which the approximations—2U0/D
yielding the Kramers rate are no longer valid), e
approaches 1 but the D in the denominator again forces
R ~0. In between there is a maximum value for the
SNR which, from the approximate expression (5.9), may
be expected at D,„=Up.

The effect of increasing the input signal power e /2 is
straightforward: The signal output power increases in
direct proportion and the output noise decreases very
slightly. The implications of varying the signal frequency
are more complicated. To examine this, in Fig. 7 we

—4( U0 —D)/D
De

2Up —D

2Up —DS=c gp
Up

obtained by maximizing the expression for S, the factor
multiplying the 5 function in Eq. (5.7), with respect to D.
The dashed curve represents the values of S when the sig-
nal frequency precisely matches the rate coefficient,—2( U0 —D) /D
co, =ao(D)=2W(D), i.e., co=2e ' . This match-
ing was the condition for stochastic resonance heuristi-
cally derived by Benzi et al. It is clear that in the low-
frequency regime, for which co & 1, their condition agrees
reasonably well with the theory presented here for the
maximum in the signal power. In the high-frequency re-
gime, co) 1, the signal power shows only a broad max-
imum independent of 6 at the value of D for which the
signal's numerator is maximum, at D =2Up. For all fre-
quencies the signal output falls off as co is increased.

The clear distinction between a low-frequency and a
high-frequency regime begs the question of whether one
should associate a different physical picture of stochastic
resonance in these two regimes. When the signal fre-
quency is low, the probability p(x, t) has time to ap-
proach a global equilibrium only if ao(D) ~ co, —the par-
ticle has a high likelihood of hopping from the upper well
to the lower well during the half cycle available to do so.
However with larger noise, ao(D) ))co„ there is a sub-
stantial probability of hopping back to the upper well for
a time, destroying the phasing of the transitions caused
by the signal. Therefore we can say that the word "reso-
nance" in the term stochastic resonance, while perhaps
somewhat misleading, probably derives from the match-
ing of the rates ap and co, to maximize signal power at
low frequencies. For S) 1, the principle feature is an
overall decline in the signal power because fewer and
fewer particles find the time to hop to the lower well dur-
ing each half cycle. Increasing D helps by increasing the
transition rate, but past D =2 Up the increased chances of
being kicked in the antiphase direction causes a gradual
decline in the signal output. Thus, in the high frequency
regime, the maximum in the SNR may be thought of
more as a compromise than a resonance.

The power spectrum of the noise output, when the in-
put signal is turned oft; is a Lorentzian X—2ap/
(a2O+Q2), whose width ao depends on D. In Fig. 7(b),
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peak in the SNR, for co(1. For Q& 1, both signal and
noise are still increasing at D =D „, but in this case
there is a crossover in the rate of increase, with the noise
starting to grow faster than the signal.

For the Kramers formula to apply, it was assumed that
D ((Do so there is reason to suspect that the results of
Figs. 7(a) —7(d) may not be valid or may require
significant correction in this regime. We turn now to
simulations in order to check the range of validity of the
theory. In particular, we would like to check for (1) the
existence of stochastic resonance, (2) the location of
D,„, i.e. , the input noise for which the SNR is largest,
(3) the eff'ect of signal amplitude and frequency on the sig-
nal and noise power, and (4) the values of the parameters,
especially D, for which Eq. (5.7) reasonably predicts the
output power spectrum of the system. The simulations
shown below were generated by digitally integrating the
equation of motion Eqs. (5.2) and (5.3) with a timestep
small enough that further reducing the timestep did not
appreciably alter the results. Time series data were mul-
tiplied by a Hanning window' and the periodgram com-
puted using a fast Fourier transform. What is shown is
the result of a large ensemble of power spectra (typically
—1000) averaged to reduce the expected variance.

Figure 8 presents a typical power spectrum taken from
a system with D = Up. The theory consistently predicts a
somewhat higher output power for both noise and signal
than is obtained by simulation, indicating that the simple
two-state approximation used in Sec. III is not the final
word for computing the power spectrum for the double
well. Nevertheless, it does a reasonably good job for a
fairly wide range of parameters. In particular, in com-
paring the signal-to-noise ratio from the theory and simu-
lations, the overestimation tends to cancel, resulting in a
surprisingly good prediction for the SNR. Evidence of
this appears in Fig. 9(a), which plots the signal and noise
PSD as a function of D taken from a series of spectra like
those of Fig. 8. Over a substantial range of D, both S and
N are overestimated by several decibels. However, in
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FIG. 9. (a) Output power spectral density for signal (squares)
and noise (circles) as a function of input noise variance D

(f, =0.195, a =32, U~ =256, @=8, t5t =0.005). (b) Signal-to-
noise ratio R„„,as a function of D with the same parameters.
The dotted line represents R „„, , as described in the text."Ptl+2'
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FIG. 8. Typical power spectrum S(f) from the double well
with f, =0. 195, a =32, U~=256, a=8, D =256, and
At=0. 005. Note that both the theoretical signal (cross) and
noise diAer from the simulation by roughly 1 dB.

Fig. 9(b) the R,„, taken from the same data is off by far
less. Numerous simulations have been performed over a
wide range of the parameters co„e, and a with results
similar to those in Figs. 8 and 9. '

Notice that for very low input noise, the limit D~O,
the theory predicts that the signal-to-noise ratio should
go to zero and yet it is clear from Fig. 9 that for the dou-
ble well the SNR diverges. This effect can be readily un-

derstood, both on physical and theoretical levels. For
very low noise, the particle makes vanishingly few hops
over the barrier so that essentially all of its motion is
confined within a single well. Because the theory was de-
rived by first taking all particles within a well to be con-
centrated at a single point —explicitly ignoring intrawell
motion —the theory derived in Sec. III cannot account
for this behavior.

Instead, we can consider the motion of a particle in a
single quadratic potential which is being modulated
sinusoidally. Thus we expand the potential about
x =c =&a /b and drop terms which are independent of
x or of order greater than 2,
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U (y, t ) = ay e—y cosco, t,
where y =x —c. The equation

y = —2ay +&D g(t)+e cost@, t

(5.10)

(5.1 1)

V

V+
Vout

)R,

can readily be solved for the autocorrelation function,
one-sided power spectrum, and signal-to-noise ratio

Vn Rq

(y (r)y (r +'r) ) e + costs), 1
D —2a r
4Q 2 4Q +Q)

2

S(II)= + 5(Q —co, ),
4Q +0, 4Q +co

(5.12)

FIG. 10. Schematic diagram of the Schmitt trigger circuit
driven by signal and noise.

2KE

2D

The output SNR for the linear system is precisely equal
to the input SNR and is independent of the system pa-
rameter Q and the signal frequency.

There is no direct way to incorporate the expression
for the single well power spectrum into a low noise
theory for the double well. However, to get a rough idea,
we can introduce the following ratio:

Si +S2
R

N +N
1 2

y =sgn(z), (6.1)

( V+ —V ) is positive, the output V,„, is + V; jf
(V+ —V )(0, then V,„,= —V . For an ideal op amp,
the transfer curve of Fig. 11(a) has infinite slope at
( V+ —V )=0, and the time required to switch between
states is zero. The transfer characteristics for the ideal
op amp may be written

where S& 2 and N& 2 are the one- and two-well signal and
noise from Eqs. (5.12) and (5.7), respectively. In fact, this
gives a surprisingly good estimate for the low noise
signal-to-noise ratio [see the dotted line in Fig. 9(b)], ac-
curately predicting the values of D and SNR for the SNR
minimum at which stochastic resonance "turns on." We
have made no attempt to investigate further the very low
noise behavior of the double well.

Since both the general theory and the Kramers rate
were derived in the limit of low noise, simulations may
also show important deviations from the D fallofI in
the SNR predicted by Eq. (5.7). Indeed it seems some-
what fortuitous that the theory agrees so well with simu-
lations out to at least D -3UO.

0

- Vm

0 V~- V

VI. THE TWO-STATE SYSTEM

We now turn our attention to systems in which the
dynamical variable can take on only two discrete values,
+c. To fix ideas we focus on a particular system, the
Schmitt trigger, which is useful in digital electronics
largely because its dynamics are so well modeled as a
two-state system. Except during switching its output is
fixed to one of two voltages to within one part in 10 or
10 . Switching between states can be made to take place
at rates far faster than any signal frequency of interest;
this fast switching introduces complications which make
the analysis of stochastic resonance of interest quite in-
dependently from the continuous variable systems.
Another important feature of the Schmitt trigger is that
it has hysteresis —there is a range of the input for which
the circuit is bistable.

A schematic diagram of the Schmitt trigger system is
presented in Fig. 10. The operational amplifier ("op
amp") in the circuit behaves like a comparator: If

+Vm

0

-Vm-

I

-Pvm 0

V

I

7vm

FIG. 11. (a) V„„, as a function of ( V+ —V ) for an ideal
operational amplifier. A real operational amplifier has a finite
slope at the origin. (b) V„„, as a function of V for an ideal
Schmitt trigger.
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where y = V,„,/V, z =( V+ —V )/V, and
sgn(z) = + 1 if z )0 and sgn(z) = —1 if z (0. The posi-
tive feedback of a fraction y

=R, /(R
&
+R z ) of the out-

put into V+ serves to introduce hysteresis into the system
[see Fig. 11(b)].' Thus the ideal Schmitt trigger circuit
driven by a signal and noise obeys the equation

y =sgn(yy —e cos~, t —x),
x =o' (t),

(6.2)

where e= V, /V is the normalized signal amplitude and
o.'= V„/V is the square root of normalized noise vari-
ance.

The goal is to cast the problem in such a form that we
can use the general theory from Sec. III to compute the
signal and noise power. In particular, we need to com-
pute the rates IV+(r) at which the system exits the +
states. If we assume that g(t) represents white noise with
a correlation time of zero, there arises immediately a
problem. For white noise, in any finite time At the vari-
able x (t) will take on all possible values with finite proba-
bility. This implies that the ideal Schmitt trigger with
infinitesimal switching time will switch infinitely often in
any time At and the total output power will be infinite.
For this reason, we must allow either x (t) to represent
colored noise with a finite correlation time r„or use a
more realistic model for the behavior of the op amp, or
both. If the switching time of the system is long corn-
pared to ~„ it is necessary to drop the two-state model in
favor of a continuous variable system but the noise may
continue to be modeled as white. If the switching time is
short compared to ~„as is the case here, only the white-
noise approximation need be modified. For complete-
ness, in what follows we introduce both of these
refinements to the model but only the effect of a nonzero
~, is ultimately used in the calculation of the transition
rate and output power spectrum.

A closer approximation to the dynamics of the opera-
tional amplifier is given by

ly +1 until the random variable x becomes greater than
x+ =y —e cosset, t, at which time it relaxes exponentially
toy = —1 with a time constant P '. Similarly the system
switches from the —to the + state when x crosses below
x = —y —e cosa', t.

By changing over to a continuous variable for y it may
seem we have abandoned the two-state model to study
the Schmitt trigger. In fact, only the use of colored noise
for x was strictly necessary to make the problem tract-
able and give a good correspondence to a real circuit. A
continuous variable y serves here to give a fuller under-
standing of the circuit and the reasoning behind the
derivation of the transition rate.

There a number of possible routes one may take in
deriving an expression for the rate IV+(t) at which sys-
tems in one state make transitions to the other state. One
approach is to recast the y dynamics of Eq. (6.5) as
motion in the potential

1
U(y, &) =/3 —,'y — ln cosh[ A (yy —ecosco r —x)]

Ay

(6.6)

Notice here that x does not represent a simple additive
noise; rather, it enters in a more complicated parametric
form, randomly altering the shape of the double-well po-
tential. Were it possible to simply write down an effective
barrier height Uo and curvatures U"(+I ) and U"(0) one
could again use Kramers theory to derive the transition
rate. But the fact that the noise is not additive, nor sim-

ply multiplicative, makes this a fundamentally different
problem to solve, even though the observed phenomenon
may in fact be identical. It should be emphasized that
the Schmitt trigger system cannot be mapped onto the
double-well system in any simple way, so the transition
rate must be computed using a different approach.

Nevertheless, it is still possible to write down a
Fokker-Planck equation for the probability p (x,y, t):

y = —)33[y —tanh( Az) ], (6.3)
B,p = 8 (P[y —tanh[A (yy —ecosco, t —x)) jp)

where /3 is a relaxation rate, and A is a parameter
representing the slope of the transfer curve at z =0. In
the limit P, A ~ ~ we recover the equation for the ideal
op amp, Eq. (6.1). For colored noise, we may let x be
given by the output of an Ornstein-Uhlenbeck process,

x = —kx + erg( t), (6.4)

where g(t) is again 5 correlated white noise, k =r, ', and
o =&2k V„ / V so that the variance of x is
(x ) =cr /2k = V„/V . Hence a model for the Schmitt
trigger which avoids the problem of infinite power is the
two-dimensional system

y = —P[y —tanh[ 3 (yy —e costs, . t —x)]),
x = —k +erg(t) .

(6.5)

In the range —y —e cosco, t & x (y —e cosa', t the system
has two stable states, which for large 3 are at y =+1. If
the system is in the + state, y remains fixed at very near-

+B„(kxp)+—,
' o 8 xp . (6.7)

While there is drift in both the x and y directions there is
diffusion only in the x direction —transitions between
states are made not by hopping over the central barrier
but by diff'using out to the edge at x+. The parameters /3

and k are the rates of relaxation in the x and y directions.
In the range /3)) k, the system collapses quickly onto the
upper or lower branch, y = + 1, and the Schmitt trigger
behaves most nearly as a discrete two-state system. From
this point on this condition will be assumed, and we shall
reduce the continuous system of Eq. (6.5) to the problem
of solving for two variables p+ and p, the probability
that y is near +1 or —1. Of course, if the Schmitt
trigger were not sufficiently fast, the full two-dimensional
system of Eq. (6.5) could be studied as it stands.

In the regime P))k one may integrate over the y vari-
able to give the probability of being in the + or —state,
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p xy, tdy, x&x

p+(x, t)= f p(x, y, t)dy, x &x &x+
y'(x)

0, x +x+

8 +. We may expect that an initial probability distribu-
tion p (x, to ) =6(x —x ) will quickly spread out to
roughly the Gaussian distribution po(x) that would exist
in the limit x+, t~ ~, then slowly dissipate away at a
rate W+.

p (x, t)=1—p+(x, t),
(6.8)

—8'+ I

p+ (x, t) =po(x)e
' 1/2 (6.14)

where y'(x) is the curve of the unstable equilibrium
separating the two wells. The equation for p+(x, t) is
then

po(x) = e
—kx /a

This is a first approximation to the eigenfunction expan-
sion

c},p+ = c} (kxp+ )+ —,'cr c}„p+

+a,p (x )S(x —x ) (6.9)
p+(x, t)= g p„(x)e

n=0
(6.15)

I

T(x ~x+ ) =2f f, dx'
x P(x)

with

(6.10)

—kx'ta2
l((x) =exp — dx'

z
oo

Letting u =xv k /cr,
u + =x+ &k /o. , we obtain

u =x v'k /o, and

8'+ = T(x ~x+ )= f du e" P(u),
2V'm "+

u
(6.11)

for x & x+, and p+ =0 for x )x+. Thus p+ behaves ac-
cording to an Ornstein-Uhlenbeck process with a source
at x and an absorbing barrier at x+.

The rate at which probability will exit the + state may
be computed as the reciprocal of the mean time for tran-
sit from x to x+. There is an exact expression for the
mean first passage time, ' given by the integral

where Ao is not 0 because in the limit t ~ ~, p+ (x, t)~0.
Though the signal modulates the location of both x+ andx, one may assume that only variations in the position
of the absorbing boundary at x+ (for exit from the +
state) result in significant modulation of W+ because a
relatively fast relaxation k causes the system quickly to
"forget" its initial position. As with the computation for
the double-well system, it is useful to make the adiabatic
approximation that the signal frequency is slow com-
pared to the relaxation rate of the system, ~, &&k. Thus
8'+ can be calculated first for a fixed x+, and then
x+ =y —e cosco, t may be substituted into the result.

Given an initial trial function for the "ground-state"
probability distribution po(x), one may use the Rayleigh-
Ritz technique for estimating an upper bound for the de-
cay rate A.p and therefore 8'+. The trial function must
satisfy the boundary conditions, po( —~)=po(x+)=0,
and should possess finite first and second derivatives. '

An example of such a trial function is

where P(u } is the probability integral

P(u)= —f e "du . (6.12}

2 —(2u+ —u j
e "—e, u~u+

»(u} 0, u &u+ . (6.16)

To apply this result to the theory of Sec. III, the expan-
sion coefficients ao and a, must be extracted from the ex-
pression for W+. Using the notation of Sec. III, we let
lit =y~/k /cr and 7)0= —ev k /cr With .the function
f (p, +gocosco, t) given by the reciprocal of T(x ~x+ )

from Eq. (6.11) we have, finally,

ceo= — f du e" (j}(u)—rv k /rr

k y&&/'~
du e" P(u)v 'tr . —r&k /a

An expression for the upper bound for W+ is then

f [—,
'e" (c)„c}o) —e" (po) ]du—oo

e pp dQ

This may be integrated to give

8 2

8ku+e +P( —3u+ )8+=
P(u+ )

—2P( —u+ )+e +P( —3u+ )

(6.17)

(6.18)

X[/(yv'k /o ) —p( —yv k /o )] .

These can now be integrated numerically and compared
with simulations.

An alternative approach which may be used to find the
rate at which probability p+(x, t) "leaks out" of the +
state across the absorbing boundary at x+ is the
Rayleigh-Ritz variational method. Here one assumes
that the boundary at x+ is far enough from the origin
that the relaxation k is much faster than the exit rate

It is revealing to examine this result for large x+,
where it becomes

u
4ku+ e

W+ =
3&m-

= 4kx+
3

k
exp

—kx 2
+

0-2
(6.19)

Notice the strong similarity with the Kramers formula,



4868 BRUCE McNAMARA AND KURT WIESENFELD 39

3Q +e
v'7r

u +
2

(6.20)

8u—2u ~(1+8u+ )e +P( —3u+ )

16u
16u+e +P ( —3u+ )

where

Su +:-=P(u+ ) —2P( —u+ )+e +P( —3u+ ) .

To check the results of this section, we have digitally
simulated the two-state system

y = sgn( yy —e costs, t —x ),
x = —kx +&D g(t) .

(6.21)

Issues of choice of timestep, power spectrum estimation,
and so forth were handled in a manner similar to the
double-well simulations. In Fig. 12 the signal-to-noise ra-
tio is plotted as a function of D for a typical set of param-
eters. The theory expressing the rate coefficients ao and

a& as the integrals given in Eq. (6.13) shows fairly good
agreement. The theory derived via the Rayleigh-Ritz
method in Eq. (6.20) has the correct shape and location
for its maximum, but is substantially high in its estimate
of the SNR. [Presumably, the variational method will
lead to better results if one introduces one (or several) pa-
rameters to the trial function. We have not made any
systematic study along these lines; however, we point out
that if one halves both ao and a~ as given in Eq. (6.20),
the agreement with the simulations is dramatically im-
proved. This fact should be considered an empirical re-
sult at this stage. ]

VII. CONCLUSION

This paper has introduced a general theory for stochas-
tic resonance in bistable systems subject to both periodic
and random forcing. A more detailed account of the
theory can be found in Ref. 18. The theory is helpful in
understanding the physical mechanism behind the
phenomenon: Within a range of input noise strength,

with the notable difference that o also appears in the
denominator of the prefactor. This has the unphysical
effect of eventually reducing 8'+ in the large-noise limit,
but this is precisely the limit for which the approxima-
tions leading to Eq. (6.19) are not valid. Retaining the
full expression (6.18) avoids this problem at high o, and
we will not consider Eq. (6.19) further.

Simulations will indicate to what extent and in what
range of cr one can have confidence in expression (6.18).
While this is only an upper bound for W+, because of its
simplicity it may be preferred to the integral of Eq. (6.11).
Finally, the expansion coefficients for the rate given in
Eq. (6.18) are

2

16ku+e 'P( —3u+ )

15-
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k
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40
1
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FIG. 12. Signal-to-noise ratio o.,„„,as a function of D for the
two-state system f, =0.781, y=2, e=0.5, At =0.005. The solid
line represents the theory of Eq. (6.13) and the dotted line is the
theory of Eq. (6.20).
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there is a cooperative effect in which power in the broad-
band part of the spectrum is fed into the output power at
the signal frequency. In the low-frequency regime, the
signal power reaches a maximum when there is a match-
ing of the signal frequency and the rate of hopping be-
tween the two states, which in turn is a function of the
noise strength. Whereas the signal and noise power are
functions of the signal frequency, the signal-to-noise ratio
is only weakly dependent on it. However, the theory also
predicts the possibility of an additional peak in the SNR
at very low frequencies when there may be an extreme
suppression of the noise by the signal.

The theory has been applied to the two important cases
of the double-well and two-state systems. Detailed com-
puter simulations indicate that while there are discrepan-
cies between theory and experiment, the agreement is
reasonably good. Application of the theory to other sys-
tems is straightforward, requiring only that there be an
expression for the transition rate between states. Because
the general theory presented in Sec. III reduces the prob-
lem to a periodically modulated telegraph process, in-
trawell dynamics are not accounted for, though the ad
hoc inclusion of single-well dynamics into the theory for
the double well proves to be remarkably good. While the
agreement with simulation data is encouraging and there
is qualitative agreement with a ring laser system, there
much room for careful experiments to quantitatively veri-
fy the theory in real physical systems.
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