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Statistical theory for the entropy of a liquid
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A correlation expansion for the entropy of a classical monatomic liquid has been found to give an
accurate account of the entropy for liquid sodium and for liquid argon. Here, this correlation ex-
pansion is given a conceptually simple derivation in the grand-canonical ensemble. The one- and
two-particle terms together are shown to accurately represent the entropy of the hard-sphere liquid.
The simplicity of the theory suggests a model for an "ideal liquid, " whose free energy takes on an
especially simple form. The correlation expansion for the entropy is compared in detail with previ-
ous related work.

I. INTRODUCTION

pk, r
BT

where p is particle density, T is temperature, and BT is
the isothermal bulk modulus. We characterize a liquid
by the condition a «1. This condition delineates a re-
gion in phase space near the solid-liquid boundary; in
contrast, 0.=1 for the gas region, and a )) 1 for the criti-
cal region.

Based on this characterization, we have recently con-
structed a statistical expression for the entropy of a
monatomic liquid. This expression is in the form of a
multiparticle correlation series,

g(1)+g(2)+g(3)+ (2)

which we assume to converge rapidly for a liquid. In
units of k~ per particle, the one-particle term S"' is the
ideal-gas entropy minus 1. For liquid sodium, the first
two terms alone, S'''+S' ', reproduce the experimental
entropy to an accuracy of 1% over a wide range of tem-
peratures. For liquid argon at 85 K, S'"+S' ' is less
than the experimental entropy by 6%%uo, one expects that
this small difference represents three-particle correla-
tions, as expressed by the term 5' '. So far, then, the test
of expression (2) for liquids is quite satisfactory.

The construction of the formula (2) proceeded by the

A liquid can be characterized by two conditions: there
is no long-range order, and density Auctuations are small.
More precisely, the first condition means there exists a
correlation length I„ofmicroscopic dimension, such that
configurational correlations vanish among particles
separated by distances greater than I, . In the present
work we assume this property holds for an equilibrium
liquid; Lebowitz and Percus' have noted that the
justification represents a fundamental problem in the
theory of liquids. The second condition is made precise
by introducing a, the measure of density Auctuations in a
homogeneous Auid,

following logical process. First the correlational series
was derived for the canonical ensemble. It was then ob-
served that the multiparticle terms are nonlocal, since the
configuration integrals have significant contributions
from the entire volume of the liquid, and that this nonlo-
cality can be eliminated by transforming to the grand-
canonical ensemble. This transformation was effected by
neglecting density Auctuations. We are now able to pro-
vide a conceptually simpler derivation, entirely within
the grand-canonical ensemble. This derivation is given in
Sec. II. In Sec. III we compare S"'+S' ' with the total
entropy for the hard-sphere Auid, in both gas and liquid
regimes. Some properties of our liquid entropy theory
are discussed in Sec. IV, and a detailed comparison is
made with a previous formulation which was designed to
apply to gas and liquid regimes alike.

II. MULTIPARTICLE CORRELATION EXPANSION
OF THE ENTROPY

We first consider a canonical ensemble of mechanical
systems. Each system contains N particles in a volume V,
with Hamiltonian HN given by

N pHx= & +C'w .
2m

1 —PH~ZN= » . . e drdp, . drNdpN,
P 3NNt (4)

where P=(ksT)
that phase point
~(n)yiN (r) P) . - rn~Pn
ty is

—PH N
p(N)J N g3NZ

The ensemble probability density
r, , p, , . . . , r, , p„ is occupied is

). For n =N, the probability densi-

For n &N, it follows that

The particles have mass rn, momenta p„positions r, and
the total system potential is N~(r, , . . . , r~). The parti-
tion function is ZN,
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(~) l (N)
fN (rl»pl»» rn»pn )—

(N —n)! fN (ri p~ . . rN pN)dr„+idp„+i ''drNdpN

For n )N, fN" =0. The expression (5) can be factored as

fN (ri, pi, , rN, pN)=fN (pi). fN (pN)gN (ri, . . . , rN),(N) (1) . . . (1) (N)

where fz.' ' is the one-particle probability density,

fN''(p)=pN(f3/2Irm) exp( /3—p /2m),

(7)

(8)

and PN=N/Vis the number density of particles. The N-particle correlation function gN
' is defined by Eq. (7), and has

the normalization

N. =PN I ' ' ' JgN (1i, . . . , IN)dI'i ' ' dlN

The n-particle correlation function gN" I follows from (6), in the form

N
n (n) PN (N)

p gN (ri, . . . , r„)=
(N n)!— gN (r, , . . . , rN )dr„+, drN . (10)

We now want to describe a liquid in equilibrium at
density p and temperature T. In a small volume V in the
interior of the liquid, the number of particles N will fluc-
tuate about the mean number (N) =PV. This density
fluctuation is accounted for in the grand-canonical en-
semble. Following Gibbs, ' this ensemble may be viewed
as a collection of canonical ensembles, weighted with fac-
tors exp(PpN), where p is the chemical potential. The
grand-canonical partition function is

sure of density fiuctuations a of Eq. (1) satisfies

(14)

f "(p)=p(P/21rm) ~ exp( —Pp /2m),

and the n-particle correlation function is given by

(15)

In the grand-canonical ensemble, the one-particle proba-
bility density is

Z=ge~" Z
N

n (n) n (n)
P g (rl» ' ' ' rn ) r yNPNgN (ri rn )

N

(16)

(w)= yy„w (12)

where

For a dynamical variable 3, with canonical average AN,
the grand-canonical average is

Let us refer to the correlation which is present in an n-

particle cluster, and which is not present in any smaller
cluster, as the irreducible part of the n-particle correla-
tion. Accordingly, the irreducible part of g ' is g' '. The
irreducible part of g' ' is 6g ' ', defined by the expression

g"'(r, , r2, r3)=g '(r, , r2)g' '(r, , r3)

7N
PRINZ N

(13) Xg (rz, r3)5g (ri, r2, r3) . (17)

We have QNyN=1, and QNNyN=(N), and the mea-
The irreducible parts 6g'"' are then defined sequentially,
for n ~ 4; for example, 6g' ' is defined by

g"'(r, , . . . , r, )=g "(r,, r, ) g" (r3 14)5g' (r, , r2, r3) 5g' '(ri, r3, r4)5g' '(r, , . . . , r4) (18)

Feenberg'' has shown that g &(r, , rz) —1 is a local function, i.e. , when r, and r2 are separated by a large distance,
g' '(r, , r2) —1=0. By assumption, we extend this locality property to the higher-order functions 6g'"', in the following
way. For two sets of particles, m and n, separated by a distance larger than the correlation length l„6g' +"=l. Un-
der the same condition, the complete correlation function satisfies g' +"'=g' 'g'"'

~ This is the precise statement of
our assumption that correlations vanish for particles separated by distances greater than l„as mentioned in the Intro-
duction.

The nonlocal properties of correlation functions in the canonical ensemble can be demonstrated by means of (16).
The summand is expanded about the mean number (N ), derivatives with respect to (N ) are converted to derivatives
with respect to p (since V is constant), and the expansion is inverted, to yield

2 2

p"gIN&(ri, . . . , r„)=p"g'" (r, , . . . , r„)—,, p [p"g'"'(r, , . . . , r„)]+02(N) gp'
' ' " (N)2
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The limiting behavior of g '&"N ~, when particles are
separated by distances larger than l„now follows from
the corresponding behavior of g'"'. For example, when

g I)v) (r), rz) —1 =—
&N)

The general result for g'&N& "', when the sets m and n are
separated by a distance greater than I„ is the same as
that expressed in Eq. (2.22), or (3.23), of Lebowitz and
Percus. ' The important point is that certain
configuration integrals in the canonical ensemble, such as

f [g '& )v ) ( l r, —r21) —1]dr2,

or

f in[g'&)v&(lr, —
r2I ))dry,

are "nonlocal, " in that they contain a significant contri-
bution from the entire volume of the system, by virtue of
the large-separation property (20). This situation results
from the failure of the canonical ensemble to account for
density fluctuations, and under normal conditions (away
from the critical point), such a nonlocal contribution to a
thermodynamic function is physically incorrect. Hence
in constructing a statistical expression for the entropy of
a liquid, we must ensure that nonlocal terms are not
present. We also note the expansion (19) is appropriate
only for small n; the term linear in a, for example, con-

(21)

where

f f f)v ln(h fP )drldpl dr&d PN

(22)

fP' is factored, according to (7), and S)v becomes

S)v= —ka V f f)t)"(p)ln[h f~"(p)]dp

PN f g)'v 'ln(g)'v ')dr) dr~ . (23)

The important terms in (21) are at N = ( N ), where to or-
der (N ), gp'=g' '. We use this in (23) to replace
lngN

' by lng' ', and we use the factorization of g'
defined by the continuation of (17) and (18) to n =N, to
write lng' ' in the integrand in the form

tains a contribution proportional to n(n —I)/(N).
When n is large, of the order of (N ), the canonical and
grand-canonical correlation functions presumably differ
by something still of order (N )

It is now straightforward to construct the correlation
expansion for the entropy of a liquid. The grand-
canonical entropy S is expressible as a sum of canonical
contributions:

ln[g' '(ri, . . . , rz)]= ,'N(N —1)ln[g'—'(r),ri)]+ N(N —l)(—N —2)»[5g (r), ri r3)]+ '1 (24)

The configuration integrals over N nparti—cles are carried out with the aid of (10), the sum over N is evaluated with
the aid of (16), and S is transformed to the series shown in (2). In units of k~ per particle, and correct to relative order
(N ) ', the terms are

S( 1 )
p

i ff & i )
( p )1n [h 3f & 1 )

( p ) ]d p

S' '= —+fg' '(r„rz)ln[g' '(r„r2)]dr&,

n —I

f fg'"'(r„. . . , r„)ln[5g'"'(r, , . . . , r„)]dr2 dr„.n.

(26)

(27)

Neglecting surface effects, the integrals in S'"' for n «2
are independent of r&. Further, these integrals are local,
since lng' ', and ln5g "' for n ~ 3, are all local functions.
Our basic assumption for the liquid state, i.e., for a ((1,
is that the n-particle irreducible correlations quickly be-
come less important as n increases, so that the series
S'"+S' '+ . - converges rapidly.

where o is the hard-sphere diameter. The results are list-
ed in Table I, for values of po. up to 0.9, which is close to
the solid-liquid phase boundary. Our estimated error in
the tabulated values of S —S"' is ~0.01.

Since g' '(r„r2)=g' (lr, —rzl) for an equilibrium
fluid, the two-particle correlation entropy is

1

p g s ln g $ ds (28)

III. EVALUATION FOR THE HARD-SPHERE
FLUID

Also, g' '( lsl ) satisfies the normalization integral

p g' ' s —1 ds= —1++. (29)
An accurate equation of state for the hard-sphere fluid

has recently been published by Erpenbeck and Wood. '

From this equation of state, we calculated S —S'" as a
function of the dimensionless density parameter po,

In these integrals, g' '(lsl) may be taken from experi-
ment, say, from neutron scattering measurements in the
case of a real liquid, or else from calculations in the
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TABLE I. Contributions to the entropy for the hard-sphere
fluid, as functions of the density. All entropy contributions are
in units of k& per particle. The liquid regime is specified by the
condition a ((1.

0.1

0.2
0.4
0.5
0.6
0.7
0.8
0.86
0.90

0.66
0.44
0.20
0.13
0.087
0.057
0.037
0.028
0.023

S —S''

0.78
0.52

—0.13
—0.55
—1.05
—1.66
—2.41
—2.96
—3.37

S(2)

—0.04
—0.15
—0.55
—0.85
—1.24
—1.77
—2.52
—3.12
—3.62

S(l ) S(2)

0.82
0.67
0.42
0.30
0.19
0.11
0. 1 1

0.16
0.25

grand-canonical ensemble, and the integrands are local.
However, from (19), the canonical and grand-canonical
correlation functions di(Fer locally by order (N ) ', so to
this order of accuracy, the canonical function g'&~&( ~s~ )

can be used, provided the integrals are cut off at an upper
value of ~s~ =1,. The best available values of the correla-
tion function for hard spheres are those of Verlet and
Weis, ' which are based on an analytic solution of the
Percus-Yevick equation (grand canonical), plus correc-
tions at high densities from Monte Carlo calculations for
systems of 864 hard spheres (canonical). The Verlet-Weis
prescription is expressed in a program by Henderson,
which is listed in Appendix D of McQuarrie. ' At the
highest densities, po ~0.8, the integrals in (28) and (29)
are poorly converged at the upper limit ~s~ =5o, which is
the limit of the Verlet-leis data; hence at high densities
we used (29) to estimate a remainder for (28). The results
for S' ' are listed in Table I.

Let us examine the results in Table I. As po. ~0,
+~1, S —S'"~1, and S' '~0: all these functions for
the hard-sphere Quid approach the correct limits for an
ideal gas. The present entropy theory is obviously not
valid for a gas. On the other hand, at high densities, a
becomes small compared to 1, and our liquid entropy
theory is valid. For po. =0.6—0.9, the first two terms
S"'+S' ' express the total entropy of the hard-sphere
liquid to 0.17 rms deviation. The error in S' ', ultimately
due to finite-system limitations of the Monte Carlo calcu-
lations, ' is possibly of the same order. Hence we can
only say that S' ' is probably of the order 0. 1 —0.2 for the
hard-sphere liquid.

Because we lost it by dropping the high-order
configuration terms. This can be seen by using the ideal-
gas value N!N for gz in (23), and (21), to find the
configuration contribution (N )k~, or 1 in units of kz per
particle. Hence our correlation expansion is not ap-
propriate for a gas, because in this expansion the ideal-
gas configuration entropy of 1 appears in the orders
n =(N).

The correlation expansion of the canonical entropy was
first given by H. S. Green. The nonlocality of the canon-
ical entropy was recognized by Nettleton and M. S.
Green, who transformed the theory to the grand-
canonical ensemble. A curn ulant expansion of the
Nettleton and Green theory was written out, through
four-particle terms, by Yvon. An alternate derivation
was given by Raveche, who expressed the entropy as a
power series in p, which he showed to be identical to
Net tleton and Green to fourth order, and which he
presumed to be identical to Nettleton and Green to all or-
ders. In a companion paper, Mountain and Raveche
evaluated contributions for the hard-sphere Quid. Be-
cause the latter authors were able to include part, but not
all, of the third-order terms for hard spheres, it is not
meaningful to compare their numbers with the numbers
in Table I. Instead, we will compare the present correla-
tion expansion with the theory of Refs. 5 —9, order by or-
der.

Equation (V. 1) of Raveche expresses the entropy rela-
tive to the ideal-gas value of S'"+1;the first two correla-
tional terms are written out explicitly in (V.3). Each
correlation term contains the irreducible part S'"', given
by (27), plus a cumulant expression. The cumulant in the
second-order term is

—,p g —1 ds,

which can be evaluated with the aid of (29). Likewise,
the cumulant contribution to each order can be evalu-
ated, and in each order the entropy of Raveche has the
following value: first order,

S"'+1,

second order,

(31)

IV. DISCUSSION third order,

The integral in (25) is evaluated to give S ——'+ —,'a+0 (a ),

S" =-,' —1 (pA'), (30)

where A=Pi(2vrP/m)'~ is the de Broglie wavelength. In
the limit p~O, or P~O, each correlation contributionS"approaches zero, for small n. However, the entropy
of an ideal gas is not S' ", but S"'+ 1. Why does this 1

not appear in our correlation expansion of the entropy?

and so on. When p~O, or p~O, then a~ 1, and the
series (31) has the correct ideal-gas limit. In the liquid re-
gime, if we neglect the small terms in a, then partial sums
of the series (31) difFer from partial sums of the present
theory by the sequence of numbers 1,—,', —,', . . . . For the
hard-sphere liquid, according to Table I, the present
theory at the second order is considerably more accurate
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than —,. However, it is still possible that this accuracy is

fortuitous, hence further tests of the theory would be use-
ful. An extension to molecular liquids, where angular
correlations are present, would also be interesting.

It is of interest to note that our correlation expansion is

not equivalent to the Boltzmann form,

extended to higher order f'"'. For example, let us write
the entropy per particle in the form

1

2 N , f ff"'(rt pi rzI 2)»[h'f" (ri p r2p2)] i 2 pi p~.

lV

tt)( ~r —
rq~ )+ (32)

where + - represents n-particle potentials for n ~ 3.
To the extent that an n-particle potential is important in
4~, one would expect the corresponding S'"' to be im-
portant in the entropy. The simplest model, which cap-
tures much of the nature of real monatomic liquids, is to
neglect n-particle potentials for n ~ 3; in this case the
mean potential energy per particle becomes

=
—,'p f tt(~s~)g"'(~s~)ds . (33)

Let us add the further approximation of neglecting irre-
ducible n-particle correlations, for n ~3, so that the en-

By factoring f' ' and carrying out the integrals, this be-
comes

SI'I+ (,N &
'S"'+ T-,

where 'T represents other terms of order (N ) '. Hence
the above form based on f ' ' does not contain the corre-
lation entropy S' '.

In discussing the entropy of a classical monatomic
liquid, we have not specified the form of the total poten-
tial @~,which appears in (3) for the Hamiltonian. Let us
write the total potential as a multiparticle series,

(34)

where wI I(~s~) is the two-particle potential of mean
force, defined by

ln[g' '()s()]=—Pto' '((s() . (35)

In summary, the correlation expansion (2) for the en-
tropy of a classical monatomic liquid is conceptually sim-
ple, and the first two terms accurately represent the en-
tropy for liquid sodium, for liquid argon, and as shown
here, for the hard-sphere liquid as well ~
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tropy is simply S'"+S' ', and refer to the resulting mod-
el as an ideal liquid. The Helmholtz free energy F, for an
ideal liquid, takes on the particularly simple form

F =k, »n(pA')+ ,'p f-[y(lsl )
—~"'(lsl)]g"'(lsl)ds,
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