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Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators
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A one-dimensional chain of forced nonlinear oscillators is investigated. This model exhibits typi-
cal behavior in periodically forced, spatially extended, nonlinear systems. At low driving ampli-
tudes characteristic domainlike structure appears accompanied by simple asymptotic time depen-
dence. Before reaching its final state, however, the chain behaves chaotically. The chaotic tran-
sients appear as intermittent bursts mainly concentrated at the domain walls. At higher driving, the
chaotic transient becomes longer and longer until the time dependence apparently corresponds to
sustained chaos with the chain state characterized by the absence of domainlike spatial structure.

I. INTRODUCTION

In the past, most of the work on chaotic dynamics has
been concentrated on the temporal behavior of low-
dimensional systems. Many physical systems of interest,
however, as fluid flows, require the study of very high-
dimensional systems which have intricate spatial and
temporal evolution properties. Models which might re-
veal, therefore, some of the fundamental properties of
spatially extended nonlinear systems are of great interest.
One such model is proposed and studied in this work.

For low-dimensional systems, the Poincare surface of
section technique transforms continuous time systems
(Qows) into discrete time systems (maps). Furthermore,
simple maps not necessarily derived from Poincare sur-
faces of section (e.g. , the quadratic map, the Henon map,
etc.) have served as useful models displaying typical tem-
poral behavior of low-dimensional dynamical systems.
This has motivated the suggestion that spatiotemporal
phenomena, characteristic of continuous space-time sys-
tems (such as described by partial differential equations)
might be modeled by systems that are discrete in both
space and time. ' Work along these lines has revealed
that a class of coupled map lattices can exhibit spatial
domain like structures (kink-antikink patterns, for exam-
ple). Furthermore, it has been shown that these systems
can exhibit highly nontrivial behavior such as spatial in-
termittency, period doubling of kink-antikink patterns,
the coexistence of laminar and chaotic regions, and so
forth.

It is, however, an open question whether phenomena in
coupled map lattice systems are really indicative of typi-
cal phenomena in systems that are continuous in time
and space. An intermediate approach, which might be
used to bridge the gap between continuous space-time
systems and discrete time systems, is a system that is con-
tinuous in time and discrete in space. The systems con-
sidered here consist of simple second-order ordinary
differential equations defined on a one-dimensional lattice
of oscillators with nearest-neighbor coupling. A mechan-
ical realization of the system we consider is illustrated in
Fig. 1. In the uncoupled limit the basic ordinary
differential equation (ODE) describing the dynamics of

each oscillator is chosen to be the forced Duffing equa-
tion. This equation is known to display a rich variety of
dynamical behavior: from periodic to chaotic solutions,
multiple attractors, and fractal basin boundaries.

For the specific parameter values we use to investigate
our coupled ODE lattice system, we observe two regimes,
one at relatively low forcing and one with a somewhat
higher forcing. In the first case we observe the formation
of spatial domains where groups of neighboring lattice
points are in similar states. Furthermore, these low forc-
ing cases evolve to a state which is periodic with the same
period as the driving, i.e. , a fixed point of the time one
stroboscopic map (Poincare). Even though the final state
is a simple one, the transient dynamics through which
the system passes is rich in structure. In particular, we
observe extremely intermittent behavior wherein the time
evolution of a given oscillator alternates irregularly be-
tween slowly evolving periods and periods of rapid chaot-
ic oscillation. These oscillation patterns propagate along
the chain. These spatially structured chaotic transients
appear to be very typical in this system. In the strongly
forced case, the system seems to evolve as sustained
chaotic final state. Here, the spatial patterns are irregu-
lar with no apparent domain structure. In common with
the lower forcing case, the tendency for extremely inter-
mittent temporal behavior persists, but now it is sus-
tained rather than transient.

In Sec. II we introduce and discuss the specific system
studied. In Sec. III we present numerical results and
their interpretations. Section IV presents conclusions.
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LINEAR SPRINGS

FICx. 1. Illustration of the unforced coupled ODE lattice
chain.
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II. COUPLED ORDINARY DIFFERENTIAL
EQUATION LA'I"I'ICE SYSTEM

The chain of nonlinear oscillators whose behavior we
investigate is a collection of N forced Duffing oscillators
coupled via a linear dispersive term whose equations of
motion are

x, (r) = yx—, (r)+ —x, (r)[1—x,'(r)]

+f cos(coDt )+eD2[x;(t)],
where i = 1, . . . , N. Dots denote differentiating with
respect to the time t, and D2 is the second spatial
differencing operator

D~[x, ]=x, +, —2x;+x; (2)

The variable x, (t) is the displacement at time t of the ith
oscillator from its point of unstable equilibrium in the ab-
sence of damping, driving, and coupling. The parameters
y, o., f, coD, and e are, respectively, the damping
strength, the strength of the restoring force, the ampli-
tude and frequency of the external driving, and the cou-
pling strength. We use periodic boundary conditions
XQ XQ)X ] XQ+ ]

Taking a Poincare surface of section of the system, Eq.
(1) results in a coupled map lattice. The section is ob-
tained by examining the system's state after each driving
period r=2m. lcoD. Letting v;(t) =x, (t) deno—te the veloci-
ty of the ith oscillator at time t, the state of the system at
time t =n~ with n an integer is given by the 2N-tuple
g„=—(x, (nr), . . . , x~(nr), U, (nr), . . . , U~(nr)). Then,
the sequence of states gk, for k =0, 1, . . . , is generated
by a deterministic, discrete-time dissipative map f', which
takes gk into g'I, +, . That is, gi, +,=? (g'k). The map T
differs from the most commonly studied coupled map lat-
tice systems' in three important respects. First, f'is in-
vertible and, hence, it mimics a flow. Second, it takes
two variables per site to specify its state rather than one,
as is the case in coupled logistic maps, for example.
Third, and most important, as our system is integrated
over one driving period ~, the motion of any fixed oscilla-
tor can, depending on the system parameters, be
influenced by oscillators quite far away. The range of in-
teraction depends on, among other things, the coupling
strength and the damping. Hence, the map T typically
exhibits long-range coupling, even though the system de-
scribed by Eq. (1) has a nearest-neighbor coupling. On
the other hand, except for a few notable examples, previ-
ous work on coupled map lattices were strictly limited to
nearest-neighbor coupling.

To show how a coupled set of ordinary differential
equations can bridge the gap between coupled map lat-
tices and partial differential equations, we seek to obtain
the continuous limit of a dispersively coupled Duffing
chain of oscillators. The continuum limit of Eq. (1) can
be shown to be

a2= —y + —P(1 —
Q )+f cos(coDt)+e . (3)

2 az2

The correspondence between Eqs. (1) and (3) is seen

readily by making the heuristic substitutions
i~z, x, (t)~g(z, t), and D, ~B IBz . We expect that as
N is increased in Eq. (1), its solutions approach solutions
of Eq. (3) more and more closely. Linearizing Eq. (3)
about the stable equilibria $0=+1 and assuming the usu-
al harmonic space-time dependence of the form
t( - exp( i —cot + ikz), yields the dispersion relation
co =ok +o ic—uy .Thus &e is proportional to the
group velocity of the wave, y results in linear damping of
the wave, while o. can be interpreted as a susceptibility of
the medium. Setting o. =O corresponds to waves propa-
gating in vacuum, where there is no dispersion. In the
material medium, a causes the waves to be dispersive.
Thus the coupled lattice ODE system (1) might be ex-
pected to model typical characteristic phenomena to be
expected in forced, spatially extended nonlinear wave sys-
tems with dispersion and damping.

Returning to Eq. (1), we note that when the coupling is
turned off, i.e., @=0, the system becomes a collection of
independent oscillators each having the equation of
motion

x, (t)= —yx, (t)+ —x, (t)[1—x, (t)]+f coscoDt . (4)

This is the equation of motion of a particle moving in a
double-well potential when damping and driving are add-
ed. The well has points of stable equilibrium at x; =+1
and a point of unstable equilibrium at x,- =0. The system
equation (4) has been studied extensively, and it has been
shown numerically that it is capable of various types of
behavior such as chaos and "final-state sensitivity. " The
latter results from the coexistence of several attractors
whose basins of attraction have fractal boundaries. It is
only natural to wonder, therefore, what types of behavior
are possible in a lattice dynamical system whose local dy-
namics are so rich.

Some intuition from low-dimensional dynamics can be
brought to bear on this question in the weak-coupling
limit. In this limit, we expect that the motion of a single
oscillator in the chain is qualitatively similar to a system
obtained by adding noise to Eq. (4). For example, it is
often found that attractors are stable under small noisy
perturbations. Thus, if f, cuD, cr, and y are chosen so
that Eq. (4) yields motion on some attractor, the corre-
sponding noisy motion will occur on a slightly "fuzzed
out" version of that attractor. We expect then that an os-
cillator of Eq. (1) also behaves in this way when the cou-
pling is weak; the attractor of the full system will be,
roughly, the direct product of N strange attractors of Eq.
(4).

In cases where Eq. (4) has multiple attractors whose
basins vary in size, the effect of adding noise is that of
"washing out" the smaller basins of attraction; the exter-
nal noise tends to "knock" an orbit originally in such a
basin out into a basin of larger measure. If a smoothly
varying initial condition is used in the corresponding,
weakly coupled chain, different oscillators can tend to the
different attractors of Eq. (4). The effect of the coupling
will be to send oscillators originally intended for attrac-
tors with small basins into the attractors having the
larger basins. Thus, we expect the coupling to "smooth
out" the fine-scale structure of the basin of the local dy-
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namics. This would imply that fine-scale structures of
partial differential equation systems would be wiped out
on a length scale determined by the coupling strength;
the finer-scale structures of the basins would be eliminat-
ed.

Another important issue associated with the chain
when the local dynamics has multiple attractors is that of
domain formation. Recall that in such cases the effect of
using smoothly varying initial conditions is to send
different oscillators to different attractors when the cou-
pling is small. Groups of nearby oscillators in the chain
whose initial conditions lie in the same basin all tend to-
wards the same attractor. Other adjacent groups tend to-
wards different at tractors, forming domains. Walls
separating such domains are associated with oscillators
whose initial conditions are close to basin boundaries.

III. NUMERICAL EXPERIMENTS

In this section we present the results of experiments
performed by numerically integrating Eq. (1). The exper-
iments examine the transient as well as the asymptotic
behavior of the solutions of Eq. (1). The experiments are
of two types. In the first type, the parameters of the sys-
tem (e, y, o, f, aiD, and N) are fixed, and the initial
condition g'o is varied. The second type of experiment in-
volves increasing the driving strength f with the remain-
ing parameters and initial conditions held fixed. All the
simulations were done with a fifth-order Runge-Kutta al-
gorithm with variable step size and chain length
X =256.

We begin by examining the chain when the parameters
y, f, coD, and o. have values such that the local dynamics
have several coexisting attractors. One such situation
occurs when y=0. 15, f =0.10, coD =0.833, and cr = 1.
(We fix o =1 throughout this work. ) For these parameter
values, the single Duffing oscillator has two periodic at-
tractors with a fractal basin boundary separating their
basins. As f is increased there is transition to chaotic
motion at f, =0.12. We investigate here the properties
of the chain in both these regimes starting with the case
where each single oscillator undergoes periodic motion.
Using e =0 (i.e., no coupling) and the initial condition

x;(0)=a +0.45 sin
2'lTl

(5a)

to the same attractor. Experiments and simulations on
coupled cells of chemical oscillators have shown rhythm
splitting behavior ' similar to that observed here (viz. ,
part of the chain exhibits a fixed point state while other
parts exhibit periodic time dependence).

As the coupling c. is increased the period-6 motion
disappears, and the displacement as a function of lattice
position smooths out. This is shown in Fig. 3 for c, =1.0,
where the initial condition and the parameters of the lo-
cal dynamics are the same as for Fig. 2. Note that, unlike
Fig. 2, the state shown in Fig. 3 is a fixed point of f'.
That is, the same state is observed at all times t separated
by 2n laiD (for Fig. 2 the attractor is a fixed point of T ).
The smoothing of the displacement as a function of the
lattice position seen in Fig. 3 is expected as c is increased
since the dispersive coupling term increases in impor-
tance. Note that in Fig. 3, x, versus i still has two basic
domains corresponding, respectively, to up and down
states. Within each domain, however, there is a
sinusoidal oscillation which has a wavelength of about 14
lattice sites. Based on the total lattice length of 256
points, this corresponds to a mode number of

When the off'set a in Eq. (5a) is varied (holding the sys-
tem parameters fixed as for Fig. 3), it is found that, for
different values of a, the system asymptotes to a large
number of different final states, most of them fixed points
of f'. For example, Fig. 4 is a plot of x; versus i at
n =2048 for a =0.003 01. This initial condition again re-
sults in a fixed point final state with two domains and an
m = 18 oscillation, but the down domain has broadened
considerably from that of Fig. 3. Not only does this sys-
tem possess many attractors, but the actual asymptotic
motion which results apparently depends sensitively on
the choice of the initial condition. This final-state sensi-
tivity ' is expected in systems which possess fractal basin
boundaries.

l.5 ——

U;(0) =0, (5b)

with the ofFset a =0.003, we find that under F some of
the osciHators asymptote to fixed points, while others
asymptote to period-6 orbits. This is depicted in Fig. 2
where the displacements of the oscillators are plotted
against lattice position for six successive iterates of T for
1025 ~ n ~ 1031. (We choose n large so that the transient
has died down. ) Evidently, there are four coexisting at-
tractors, an up (positive displacement) fixed point, a down
(negative displacement) fixed point, and a pair of period-6
limit cycles, one up and one down. The particular attrac-
tor that a given oscillator tends to depends on its initial
condition. Since a smoothly varying (in space) initial
condition was used, the lattice breaks up into domains
determined by groups of nearby oscillators asymptoting

x o.o l-

-0.5 q

—1.0--L

64
T

' ~ '
T

128

FIG. 2. Plot of the displacernent x vs the chain site i for six
consecutive iterates (1025~ n ~1031) in the asymptotic state.
Superimposed, also shown is the sinusoidal profile for the initial
condition. The parameters are y=0. 15, f =0.10, coD =0.833,
c.=0, and a =0.003.



4838 UMBERGER, grREBOGI, OTT, AND AFEYAN 39

l.5— I.2

I,O—

0.5
0.6

x 0
04

0.5 0.2

50 I00 I50
I I

250

0.0—

0.2
0 200

I

400
I I

800 }QQQ I200

FIG. 3. Same plot as in Fig. 2 but now c-a=1.0, and n =2048. FIG. 5. Plot of displacernent x vs time n fon for the oscillator
i =61 and 1 n + 1024. The parameters are the same as in Fig.
4

One might expect that the sensitivity to final state de-
ld b reflected in the transient behavior

ofof the chain as well. In Fig. 5 we plot the displacement o
the i =61 oscillator versus time between n = 1 an
n =1024 for the case of Fig. 4. Note that the time series
shows intervals of roughly constant displacement inter-

d b large-excursion chaotic bursts. Apparent y,
but is dis-this oscillator tries to lock onto a fixed point, bu

rupte romt d from doing so by disturbances originating from
other portions o e af th 1 ttice and is occasionally thrown i

the fractal basin boundary region where it exhibits chaot-
ic motion. At around n =650, this locking-bursting be-
havior dies down and d the oscillator settles into its final,
fixed displacement state. In Fig. 6 we show a plot o x;
versus n for i =120 of the same chain as in Fig. 5. This
oscillator shows relatively wild chaotic behavior w ic
also ceases at a ou n-b t =650. Comparing Figs. 5 and 6

between n = an=1 d 200 we see that during the interval
when oscillator 61 is almost static, oscillator 120 is ex-
periencing re a1 tively fast large amplitude changes in t e

ment. This is an indication that the details o edisplacement. is is
the ositiontransient behavior which occurs depends on e p

am leWe illustrate this with another fixed point examp e
h =0.003 (as in Fig. 3) is used, but where the driv-w crea =

t e valueing is sig y sli htl stronger, f =0.11 instead o t e
lace-=0.10 in Fig. 3. Figure 7 shows the chain disp ace-

ments as a function of lattice position superimposed from
n =2024 to n =2048. The system again settles to a fixed

oint. Fi ure 8 is the same as Fig. 7 except that the is-
. r 600 n 661. Notelacements are superimposed or npa

that the region near the left domain wa gall under oes a
reat deal of motion while other parts of the chain, in-great ea o rno io

eluding the region near the right domain wa, iwall is relative-
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FIG. 4. Same plot as in Fig. 3 but for a-a =0.00301 instead of
a =0.003 00.
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FIG. 6. Same as Fig. 5 but for the oscillator i = 120.
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r the oscillator i =226 andIG. 9. Plot of x vs n for the o
1 ~ n ~ 1024. The parameters are the sam

'
g.same as in Fig. 7.

In Fi . 9 x, versus n is shown o.or i =226 and
n ~ 1024. This oscillator is in the stable zone

an u behavior during the timeand undergoes relatively static e
~ n ~ 700. This contrasts greatly with the e-

avior of oscillator 101, which is we in e u

at at n =700 the i =226 oscillator starts to un gunder o

ic. ' ' ' '
1 which shows x; versus i for

han es ust as osci ator
ic. This is depicted in Fig. 11 w ic s ow

iscussed ine s eculate that the transient behavior discu
f h. -"-"f-n,xam les arises rom

1 basin boundariesrs in our chain and fracta asin
separating the various basins. e gros

e of the final state of the examples dis-spatial structure o t e na s dis-
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domain. The main i erenc
ns of the domainf the domains and the positions othe sizes o e
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b an orbit as tothat the confusion experience ypears t a
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ve f h' hl tructured transient regions. For

models that show domain formation do not ex-
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FIG. 8. Same as Fig. 7 but for 600 ~n ~661. FIG. 10. Same as Fig. 9 but for the or the oscillator i =101.
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FIG. 11. Same as Fig. 7 but for 750 ~ n ~ 800. FIG. 13. Plot of x vs i showing the superposition of iterates
2024 ~ n ~ 2048 for the same parameters as Fig. 12.

havior we observe is due to the forcing coupled with the
DuSng nonlinearity rather than with the discrete-space
aspect of our system.

The observation of spatio-temporal chaotic bursts dur-
ing the transient phase leads us to look into the types of
behavior possible when the asymptotic behavior is not as
simple as fixed points. With this in mind, we examine the
effects of increased driving. The local dynamics is known
to make a transition to chaos around f, =0. 12 when

y =0.15, coD =0.833, so keeping e = 1.0, we increase f.
Figure 12 shows a disordered chain state at n =2048

when the driving is set to f =f, =0.12 [the initial condi-
tion is that of Eqs. (5) with a =0.003]. Note the absence
of the m = 18 structures. To get an indication of the tem-
poral behavior of this system, Fig. 13 shows a superposi-
tion of 25 iterates of T for 2024~n ~2048. The time
series for oscillator 1 and its power spectrum, all for the
time interval 1025 ~ n ~2048, are shown in Figs. 14 and
15, respectively. This behavior persists past n =8192.

Thus at f =0.12, the chain state is highly disordered
with a chaotic temporal evolution. The transition to this
behavior takes place at f=0. 112. At f =0.112, the
chain displacements look qualitatively the same as in Fig.
12 (see also Fig. 13), as shown in Fig. 16. However, on
examination of the time series, there are similarities to
what was seen in the fixed point cases, namely, that cer-
tain oscillators attempt to lock onto a local fixed point at-
tractor and that these locking intervals are interrupted by
chaotic bursts. This is seen in Fig. 17, where x, (n) is
plotted for i = 1 from n =1024 to n =2048. Note the rel-
atively stable (low-amplitude) motion from
1200 & n & 1700. A superposition of chain displacements
from n = 1304 to n = 1324 (Fig. 18) reveals the temporary
formation of an orderly stable structure analogous to the
m =18 structure of the fixed point experiment. Oscilla-
tor 1 is in this region which accounts for its relatively
small amplitude motion.

1.5
1,5

1.0
l.0 -1

0.5 I-

x 00
x 0.0—

-0.5—
-0.5—

- I.O—

—15—
0

I

50 100 150
( I

200 250 300

—l.5 I

1000 1200
I I

1400 1600 1800 2000 2200

FICy. 12. The chain state x vs i for f=0. 12 and n =2048.

n

FIG. 14. Plot of x vs n for oscillator i = 1 and
1025 ~ n ~ 2048 and for the same parameters as in Fig. 12.
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FIG. 15. Power spectrum of the trajectory shown in g.Fi . 14.
a (co) is the Fourier amplitude and the frequency co is in units of

FIG. 17. Plot of x vs n for f =0. 112, i = 1, and
1024~ n (2048.

This type of transition to sustained chaos is phenome-
nologically similar to transitions to chaos in low-
dimensional dynamical systems which undergo crises.
In particular, if we look at a dynamical variable as a
function of time, for different values of the parameter, we
observe that chaotic transients become longer and longer
until we obtain sustained chaos at the crisis value of the
parameter.

IV. CONCLUSION

In this paper we have numerically investigated a one-
dimensional lattice system of dissipative, forced, non-

linear ordinary differential equations. The continuum
1 't f th this system is a nonlinear driven dissipative

11-wave equation. In the absence of forcing, sma-
ampi u1't de linear waves on the continuum system display

s ace ofboth dispersion and damping. The parameter space o
this system is very large, and so our investigation of it has
not been exhaustive. The central, most interesting
feature revealed in our numerical investigations was the
extreme intermittency of the temporal behavior of the
system. We believe that this is a typical feature of forced,
nonlinear, spatially extended systems with wave propaga-
tion, dispersion, and damping.
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FIG. 16. Plot of x vs i for f =0. 112 and n =2048.
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FIG. 18. Plot of x vs i for f =0.112 attd 1304( n ( 1324.
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