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Field-induced nonequilibrium periodic structures in nematic liquid crystals:
Nonlinear study of the twist Frederiks transition
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Spatially periodic structures in nematic liquid crystals usually appear as the initial response to a
suddenly applied reorienting field. To account for the significant discrepancy between the measured
periodicity and the periodicity calculated from a linear instability analysis we derived nonlinear
equations of motion and solved them numerically. Our results agree well with the observed wave-
length. We propose a novel mechanism responsible for the final wavelength selection.

During recent years much effort has been devoted to
the study of pattern formation and wavelength selection
in dissipative systems. ' Spatially periodic structures
have been observed in hydrodynamic instabilities of
Auids, crystal growth, and chemical-reaction-
diffusion systems, just to mention a few. Reorientation
instabilities in liquid crystals (LC's) belong to this class of
phenomena. Although there are some differences, a ma-
jor one being that in LC the instabilities are transient, de-
tailed analysis of wavelength selection in these particular
systems may contribute to a better understanding of
wavelength selection in general.

When a magnetic field is applied to an initially uni-
formly aligned nematic LC, the average orientation axis
or director n reorients in order to minimize the magnetic
free energy. If the field is much larger than a critical
field, the system is suddenly placed far from equilibrium.
It responds by creating a distortion which maximizes the
rate at which the LC lowers its total free energy. This
may be a periodic response and the exact form of defor-
rnation depends on viscous and elastic coefficients, mag-
netic field strength, boundary conditions and geometry of
the sample. Periodic structures have been found for all
classes of nematics. ' ' The first theoretical study was
carried out by Guyon, Meyer, and Salan (GMS) who used
nematodynamic equations linearized with respect to the
distortion angle. Linear analysis assumes that all modes
of distortion are independent and that the only mode
which is macroscopically observable is the one with the
fastest growth rate. The subsequent application of the
GMS approach has been successful in a qualitative sense;
that is, given a reasonable estimate for material parame-
ters, the wavelength of a distortion as a function of ap-
plied magnetic field is well described by the theory. But
the important question of whether the simple analysis of
periodic transitions can be refined to a routine for
measuring viscous and elastic coefficients has not been
resolved.

We report here the results of the first quantitative test
of the validity of the linearized theory in the twist
geometry. The director n in this geometry is initially
aligned parallel to the boundaries and a magnetic field is
applied normal to n, and in the plane of a sample (Fig. 1).
The key factor which enabled us to pursue a quantitative-
ly reliable analysis is that the experiments were per-
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FIG. 1. G-eometry c f the periodic twist instability. The mag-
netic field H is applied along the y axis to a liquid crystal initial-
ly aligned along the x axis. The wavelength of the instability is
k and the thickness of the sample is d. The director n in the
mid-plane (z =0) is schematically represented by dashed lines.
The local (prime) coordinate system is also shown.

formed with the same sealed samples for which the ma-
terial parameters, shown in Table I, were previously ob-
tained from quasielastic Rayleigh light scattering and
field effect measurements. 24

The particular liquid crystalline system studied was
poly-y-benzyl-glutamate (PBG, from Sigma Chemical
Company) in a solvent mixture of methylene chloride and
dioxane. Samples were prepared with volume fractions
of PBG of 15.5%, 17.1%, and 21.1%. The parallel align-
ment was achieved by combining oblique evaporation of
silicon monoxide and deposition of plasma-polymerized
ethylene gas. The detailed description of this technique is
reported elsewhere. The lowest magnetic field applied
was 5 kG, the highest 12 kG. The instability, when
viewed through a microscope with crossed polarizers, ap-
pears as a set of stripes perpendicular to the unperturbed
director no (Fig. 2).

The physical origin for a periodic response is twofold:
strong coupling between Quid flow and director rotation,
and the large viscous and elastic anisotropy of the nemat-
ic phase. More specifically, in a periodic distortion the
associated effective viscosity is greatly reduced, and con-
sequently the response speed increased, compared to a
uniform distortion involving a large rotational viscosity

39 4828 1989 The American Physical Society



39 FIELD-INDUCED NONEQUILIBRIUM PERIODIC STRUCTURES. . . 4829

TABLE I. Elastic constants and viscosities of PBG used in the numerical integration. All the ma-
terial parameters (except the elongational viscosity v, ) were obtained by combining light scattering and
field effect measurements (Ref. 24). The value for vi was estimated according to an existing hard rod
theory (Ref. 31) and independent experiments on the dynamics of the splay-bend Frederiks transition
(Ref. 32). Magnetic susceptibility g, =7.19X10 emu/mol for our sample was determined from pub-
lished x-ray diffraction measurements of the order parameter in nematic PBG.'

K,

12.1

K~
(10 dyn)

0.78 7.63 1.74 0.37

gc
(p)

69.4 69.4 15.0

y, . Thus the small wavelengths are favored by dissipa-
tion, but on the other hand opposed by elasticity, because
large director gradients increase the elastic energy. The
optimal wavelength is found to be a balance among drag,
elastic, and field forces.

The following discussion refers to one sample only
(volume fraction 17.1%, thickness d =46.2 pm), as our
results were reproduced by the other two as well. The
sample was left in the field until the stripes were well
developed and then transferred to a microscope. An at-
tached video camera, interfaced to a computer, was used
to digitally record the stripes. The wavelength of the dis-
tortion k, defined as in Fig. 1, was obtained by calculat-
ing the intensity autocorrelation function of the image
and fitting it to a linearly decaying cosine function. This
way the average A, over the entire sample was determined.
For each magnetic field strength several measurements
were taken. The observed wave vectors (k, /k, ), where
k =27r/X and k, =mid, were plotted against the growth
rate s computed from the linear theory' (shown in Fig.
3). Clearly, two conclusions can be deduced from Fig. 3:
first, the measured wavelengths significantly differ from
the theoretical predictions, and second, they were always
shifted towards larger values. We postulated that the sys-
tematic offset may be the consequence of nonlinear
effects, pronounced at large deformations, where the in- 0.35

0.30

H=12kc

teraction among different modes can change the finally
selected wavelength. Also, material parameters such as
the splay elastic constant K, , elongational flow viscosity
v„and shear viscosity gb, absent in the linearized pic-
ture, may be important for the quantitative understand-
ing of the instability at finite amplitude.

To simplify the algebra, the equations of motion are
solved in a local coordinate system (x',y', z'=—z ) attached
to the director (n=x') and then transformed back to the
laboratory reference frame (x,y, z) (shown in Fig. 1). In
the prime system the distortion is small; therefore
second-order terms in the distortion amplitude can be
omitted. We let the initial director no be along the x axis
and the field H along the y axis (Fig. 1). The instantane-
ous director orientation relative to the x axis is defined as
8(r, t). The director, velocity, and magnetic fields in the
laboratory system are

n =(cos6E, sin0, 0),
v=(O, U, O),

H=(O, H, O),

E;. (i
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FIG. 2. Polarized photomicrograph of the twist periodic
structures in PBG. The magnetic field H=10 kG was applied
in the plane of the sample (in the direction of the short edge of
the photograph). The average distance between adjacent stripes
(half wavelength) is 77.2 pm. The sample thickness d =46.2

pm.

FIG. 3. Rate of growth for different wave vectors. Measured
wave vectors ( X ) vs wave vectors calculated from the linear
theory ( ) for various field strengths and viscous and elastic
coefficients shown in Table I. Calculated wave vectors corre-
spond to the maximum growth rate, drawn with the solid line.
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and the transformation of coordinates yields

n'=(1, 6g, 0) —= ( l, n , 0),
v'=(u sing, u cosg, 0)=—( u„,u~, O),

H'=(H sing, H cosg, 0)=(H, H~, O) .

Ignoring inertial terms, the balance-of-force equations
are

ary conditions were used, g(O, t)=g(256, t)=0 and
u(O, t) =u(256, t) =0, reflecting the actual physical situa-
tion. For each computer run a random initial condition,
in which different Fourier components of the director
were properly weighted by a Boltzmann factor, was
created in a standard way. ' To be more specific, we
briefly describe the procedure. The Fourier decomposed
free energy of the orientational fluctuations can be writ-
ten as

0= —0 p+a~a, a, n +2v, a. , U. , +~,a.,a, , U ~
2

+qb(B u +B, u ), (3)
F = g I

a I2(K3q2+K2q2),1

2V
(9)

0= —8 p+a a, a. , n, , +~,a.'., +&,a.,a, ..
+q, (B, u ~ +28 .u ~ ), (4)

where p is the pressure, and the five basic viscosities are
taken to be the Miesowicz shear viscosities g„gb,and
g„along with elongational flow viscosity v& and pure
rotational viscosity y &. The coupling viscosities
are a2= ,'( tlb

—'tl,——Y, ), a3= ,'(gb —
vl,—+V, ), and r/4

,'(nb+ri, ——)'i).
The balance-of-torque equation is

k T
(I ~(q)l') =

V(K3q +Kzq, )
(10)

where A (q) is the amplitude of the corresponding
Fourier mode, V is the volume, and q, = m. /d (d
is the sample thickness). In our case q„=( vr /L )n,
n = 1,2, . . . , 256 is a quantized wave vector, and
V=L d. By applying the equipartition theorem to Eq.
(9), the thermally averaged expectation value of the am-
plitude of the director fluctuation (per normal mode) can
be expressed as

'V &~lny'= 2 x' y' 3 y' x'+ i y' y'

+K28, n +K. 3t)~ n +y, (H„.H +H n ~ ),
(5)

where kz is the Boltzmann constant and T is the temper-
ature.

There are 256 g(x, O) values, and each of them is
represented by the sum of 256 Fourier modes. For exam-
ple, the xIth element is

where g, is the anisotropy of the susceptibility and K&,
K2, and K3 are the splay, twist, and bend elastic con-
stants, respectively.

After transforming Eqs. (3)—(5) to the laboratory sys-
tem and eliminating pressure from (3) and (4), we are left
with

c),B„g(a,sin g —ct, cos g)

=c)„u[2(v&—g4+rl, ) sin gcos g+ri, cos g

256

g(xI, O)= g 3, sin(q xt+P),
j=1

where P is the random phase constrained to be either vr or
0 because of fixed boundary conditions. For each q
mode, a familiar Monte Carlo scheme is then employed
to select a random set of initial amplitudes A, which
conform to the distribution function of Eq. (10).

+Tib sin g]+B,u(7), cos g+qb sin2g),

1'&B,g= B, u (a, sin g —az cos~g)

+c)„g(K,sin'g+ K, cos g ) +K g2 g

+g, H sinOcosg .

(6)
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Equations (6) and (7) are solved numerically in the
mid-plane (z =0) (Fig. 1) assuming a harmonic depen-
dence along the z axis for both director and velocity

0=0(x, t) cos(zm/d ),
u = u(x, t)

cos(zest/d

) .
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The test of the plausibility of this assumption is described
further below.

The numerical integration was carried out on a grid
consisting of 256 points using a forward finite difference
method. ' This differencing scheme was checked
against a more sophisticated fully implicit method, but
it turned out to perform equally well. The sample length
L was chosen to accommodate approximately the same
number of wavelengths as the real sample. Fixed bound-
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FIG. 4. Comparison between measured wave vectors and
wave vectors obtained from the numerical integration as a func-
tion of magnetic field strength. Experimental values ( X ), nu-
merical calculation (0), and the linear theory {H). The twist
critical field H, =2.24 kG.
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The magnetic field dependence of the wave vectors for
the experimental data, linear theory, and our numerical
integration is shown in Fig. 4. The numerical result for
each field is an average over ten runs. Obviously, the
nonlinear calculation reproduced the measurements to a
high degree of accuracy. The small discrepancy may be
attributed to the neglect of the nonlinearities along the z
direction. We numerically investigated this possibility by
assuming now that the wavelengths along the x direction
are adequately described by the linear theory and we cal-
culated the director along z. For large angles of distor-
tion, as expected, we found deviations from a cosine func-
tion. However, the final wavelength selection has already
occurred by that time, so the implementation of the two-
dimensional model would not contribute much further
physical insight into the instability.

To understand why the observed wavelengths differ
from ones predicted by the linear theory we have studied
the amplitude evolution for both 8(x, t) and v (x, t). This
is easily achieved by Fourier transforming 8(x, t) to
8(k, t) and v(x, t) to U(k, t), and monitoring the corre-
sponding power spectrum ~8(k, t)~ and ~v(k, t)~ . Exam-
ples of how 8(x, t) and its power spectrum ~8(k, t)~ for a
band of wave vectors change in time are shown in Figs. 5
and 6, respectively. This particular sequence was accom-
plished with the amplitude of the initial state of the order
of 10 rad, field strength of H=8 kG, and viscous and
elastic coefficients given in Table I. For small amplitudes
the fastest growing distortion mode is indeed the one cal-
culated from the linear theory. But as the deformation
becomes larger, the linear mode slows down and a mode
with a smaller wave vector starts to grow faster, shifting
the observed average wavelength to larger values. The
essential features of Fig. 6 were reproduced for other
fields as well.

Once the field has been applied, the selected wave-
length depends on both the viscosities and the elasticities.
But their relative influence may differ at various stages of
evolution. Initially, the fluid velocity changes signifi-
cantly, indicating the greater impact of the viscosities at
early times. As the distortion continues to grow, the ve-
locity starts to decrease, which means that the elasticities
begin dominating the process. They tend to eliminate
large director gradients by forcing the wavelength to be
as long as possible.

To test this idea we plotted the power-spectrum evolu-
tion of 8(k, t) [Fig. 7(a)] and v (k, t) [Fig. 7(b)], as a func-
tion of time for two wave vectors; the fastest one as cal-
culated from the linear theory and the other which had
the final maximum amplitude. We call this latter a non-
linear mode. By comparing Figs. 7(a) and 7(b), at the
time interval when the nonlinear mode takes over [Fig.
7(a)], the velocity [Fig. 7(b)] has dropped by a factor of 3
from its maximum value. This is in agreement with our
model. Further evidence that the energetics plays an im-
portant role comes from the study of the impact of ma-
terial constants on the selected wavelengths. Although
there are no free parameters in the numerical integration,
by varying elastic and viscous coefficients absent in the
linear theory (K, , gb, and v, ), we observed that only the
splay elastic constant K, significantly affected the wave-
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FIG. 7. (a) The square root of the power-spectrum evolution
of linear ( ———) and nonlinear ( ) distortion modes. Ini-
tially the linear mode is faster. At deformations 0)~/4; the
amplitude of the nonlinear mode exceeds the 1inear mode. (b)
The same as (a) for the velocity. The nonlinear mode of (a) takes
over at the point where the velocity (b) has decreased by a factor
of 3.

lengths. Increasing KI by 25% would increase k by
about 10%. On the other hand, changing both rib and v,
by a factor of 2, made essentially no impact ( (1%) on
wavelength.

The proposed model of two distinct stages in the evolu-
tion of the periodic twist instability, initially dominated
by viscosities and finally by elasticities, motivates further
challenging investigations. For example, experimental
verification requires measurements of both amplitude of
the distortion and velocity of the fluid as a function of
time, and requires comparing them with values obtained
from the equations of motion. Furthermore, in the ab-
sence of a general theory, one can try to develop models
based on this work which describe interaction among
competing nonlinear modes.

To conclude, we derived nonlinear equations of
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motion, the solution of which accurately fitted the experi-
mental data. In turn, this means that the linear theory is
inadequate for extracting ratios of material parameters
from the twist periodic Frederiks transition. The non-
linear calculation may be applicable, but only if the num-
ber of unknown constants is limited to two or three. Oth-
erwise, one can always find a consistent set of eight pa-
rameters to fit this model without knowing whether the
values obtained are unique. The splay elastic constant is
an important parameter at large distortions. And finally,

we proposed a novel mechanism responsible for the ob-
served wavelength selection.
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