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SQ(4) symmetry and the static Jahn-Teller effect in icosahedral molecules
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The GX(g+h) Jahn-Teller problem, relevant to the instability of icosahedral molecules in
fourfold-degenerate electronic states, is investigated. The stationary points of the resulting adiabat-
ic potential energy surface are retrieved by the method of the isostationary function. This method
takes advantage of the parent SO(4) symmetry of the G X(g +h) problem under equal-coupling con-
ditions. The structure of the surface depends on the relative strength of the coupling to fourfold-
and fivefold-degenerate modes. If the G Xg coupling is predominant, five tetrahedral minima are
found, forming the vertices of a four-dimensional tetrahedron. If the 6 Xh coupling is the more
pronounced, ten trigonal minima are found at the vertices of a Petersen graph. The results are in
agreement with the epikernel principle.

I. INTRODUCTION

The icosahedral orbital quadruplet G is Jahn-Teller
(JT) active under nine vibrational coordinates, transform-
ing according to the fourfold- and fivefold-degenerate
representations GH. This JT problem is usually denot-
ed as the G X (g+h ) problem. Khlopin et al. have stud-
ied the five-dimensional 6 Xh subsystem' but to date no
general solution of the full system is available.

In the present paper we determine the extremal points
of the adiabatic potential energy surface (PES) for the full
G X(g+h ) Hamiltonian. Our analysis is based on the
SO(4) parent symmetry of this Hamiltonian.

II. ICOSAHEDRAL MOLECULES

Icosahedral molecules are comparatively rare in nature
and their electronic states have been studied only sporadi-
cally. However, the icosahedral B,2 subunit dominates
the structural chemistry of boron allotropes and several
examples of molecules with I& or near-I& symmetry are
now known, including the largest closo-borane anion
(B,2H, z ) (Ref. 6) and the recently synthesized hydro-
carbon dodecahedrane (C2oH2o). A truncated icosa-
hedral structure of II, symmetry has been proposed to ex-
plain the "C6p" signal in the mass spectrum of the prod-
ucts of laser vaporization of graphite and theoretical
studies of the millimeter-wave spectra of liquid water
have considered a near-icosahedral (H20)6O cluster.

In the wake of the C6p hypothesis much effort was
directed towards a qualitative understanding of the elec-
tronic structure of this and related species. It was shown
that, in a simple Huckel picture, C6p would have a closed
electronic shell with a large gap between the highest oc-
cupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO) and retain much of the
n. stabilization of graphite. ' In fact, an infinite series of
icosahedral carbon shells is theoretically possible, with at
least one for each C„where n =20(b +bc+c ) and

b O, c 0. Such clusters fall into two disjoint classes. "
When b —c is divisible by 3 the cluster has a multiple of
60 atoms and is closed shell. Otherwise, the number of
atoms is 60k+20 and the cluster has a closed shell only
as the doubly charged cation C„+. The neutral mole-
cules of this second series have a 6 configuration with
two electrons occupying a fourfold-degenerate orbital
(G, G, or G„). The singly charged cations, C„+ with
n =60k +20, have a fourfold-degenerate ground state
and thus should exemplify a G X (g+h )-type JT instabili-
ty.

The parent member of the first series is the truncated
icosahedral C6p molecule. Simple geometrical arguments
show that a closed-shell neutral molecule can be expected
for any n =60+6m (m =0,2, 3, . . . ) whether the symme-
try is icosahedral or not. ' Each cluster has 12 pentago-
nal faces and all other faces hexagonal.

If twenty carbon atoms are placed at the vertices of the
regular dodecahedron (symmetry It, ) they form the sim-
plest possible cluster with 12 pentagonal faces, C2p. This
is the prototype of the 60k+20 icosahedral series and as
a neutral molecule would have the m configuration
( A )~( T,„) (II6)' (G„) . The It, C2O

+ cation occupies at
least a local minimum on the potential energy hypersur-
face [as shown by exploratory ab initio self-consistent-
field (SCF) calculations' ], but clearly the singly charged
cation C2p+ must distort to a lower symmetry by the
Jahn- Teller theorem. In all probability the low-spin
ground state of the neutral species will exhibit the same
type of distortion. One interesting aspect of the general
algebraic treatment in the present paper is that it pro-
vides guidance as to how a molecule with a 6-type
HOMO would distort and what elements of symmetry
would be lost in the process.

III. SYMMETRY ASPECTS

In the subsequent treatment extensive use will be made
of the finite and infinite invariance groups of the
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G X (g + h ) problem. This section is concerned with a
precise definition of the various symmetry transforma-
tions involved. Three levels of symmetry are considered:
the infinite SO(4) group, the finite icosahedral group at
the JT origin, and the icosahedral subgroups which result
from the symmetry-lowering distortions.

A. Parent SO(4) group

As has been demonstrated by Fooler, ' ' SO(4) is an
invariance group of the G X (g+h ) system under equal
coupling conditions. The concept which lies behind the
use of such continuous groups for Jahn-Teller systems is
the degeneracy space of the electronic manifold. If this
manifold is to be related to a finite group representation

of the first kind, as is the case for the icosahedral 6 repre-
sentation, the degeneracy space may be taken to be real.
This real space of the electronic quadruplet may be de-
scribed by a fixed set of four orthogonal unit vectors,
I IGa ), IGx ), IGy ), lGz) I. An arbitrary function, lGy),
can be expressed by means of four direction cosines, say
a, x, y, and z, referring to the four angles between

l Gy )
and the respective unit vectors,

l G y ) =a l Ga ) +x
l
Gx ) +y Gy ) +z

l
Gz )

with a +x +y +z =1 .

Alternatively, one could use hyperspherical polar coordi-
nates r, y, 9, q& as in Eq. (2). '

x =r cosy sinO sing

y =r sing sinOsing

z = r cosj9 sin+
a =r cosg

'with r=1; 0 cp 2m", 0 0 z', 0 (2)

The polar forms of the corresponding gradient and Hes-
sian operators' are given in Appendix A.

The normalized row vector (a,x,y, z) defines a point
on the unit hypersphere around the origin of the electron-
ic space. The group of proper rotations of this vector is
the special orthogonal group in four dimensions, SO(4).
In view of the subsequent applications, we briefly recall
the local properties of SO(4). The four coordinates give
rise to six generators

Aiy Y~(dy +A

—1(j2x 2 (/xa Pyz ) ~

—18 2y 2 (+ya /zx )

—1(
82z p (gaza d'xy )

gxa l X a

gya

+za l z
~

+xy

(3)

The ~, and &'2 operators in Eq. (5) are the angular-
momentum operators of two independent SO(3) factor
groups of SO(4). In consequence, an irreducible represen-
tation of SO(4) may be labeled by a pair of j quantum
numbers as (j„jz). Such a representation has dimension
(2j, +1)(2j2+1). Representations will be integer if j,
and j2 are both integer or both half-integer. The tensori-
al rank of a (ji,j2) representation is equal to the sum of
its j values.

The coordinate functions a, x,y, z were defined as the
natural action space of SO(4). Accordingly, these com-
ponents span the fundamental "vectorial" or "canonical"
representation of SO(4), with ji =j2 =

—,'. This may easily
be verified by applying the Casimir operators&, and&'z to
the coordinate functions. As an example one has for a

These generators obey the commutation relations in Eq.
(4)

~', a = (~', +~ , +g' „)a. 2 ~ 2 .2 , 2

1 ~ 2 ~ 2 ~ 2
4 (P xa +/ ya +P za )

=—'a .4

where t, u, U, and ~ are distinct Cartesian coordinates.
Symmetry-adapted forms of these operators are given

in Eq. (5):

In turn, the transformation properties of the &' opera-
tors are to be determined from their commutation rela-
tions. As an example, combination of Eqs. (3)—(5) yields
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These commutation relations show that the three&', com-
ponents transform like j, = 1,j2 =0, and thus form a basis
for the (1,0) representation. Likewise, the three com-
ponents of &'2 may be shown to span the (0, 1) representa-
tion.

B. Icosahedral group

The finite symmetry group of the quadruplet problem
is the icosahedral group I&. Since the Jahn-Teller active
vibrations are of even parity, the centrosymmetry of the
icosahedron cannot be destroyed and the problem may be
examined equally well in the framework of the
icosahedral rotation group I. Figure 1 shows the num-
bering of the symmetry operations of I in a Cartesian
reference frame.

Our conventions follow precisely the recommendations
of Boyle and Parker. The symmetry axes C ~' and
C 3' ' are generators of I. Other generator elements of in-
terest are C3' ' and Cz' for the tetrahedral rotational
subgroup T, C3' ' and C2' for D3, and C'z and C'2 for
D2.

Hoyle and Parker have also specified a suitable stan-
dard choice of irreducible representations. Their canoni-
cal components will be labeled a, x,y, z for 6 and
O, e, g, il, g for H. The defining transformation matrices
for relevant generators are given in Appendix B. Furth-
ermore, a complete set of Clebsch-Gordan (CG) coupling
coefficients for the Boyle-Parker symmetry basis has been
published recently. '

TABLE I. Decomposition of irreducible (j&,j~ ) representa-
tions of SO(4) to irreducible representations of I.

dim

(0,0)

(1,0)

(0,1)

T2

T]
6

The representation matrices of 6 form a faithful repre-
sentation of I and in addition have determinant +1. The
icosahedral group may thus be embedded in SO(4). The
subduction table for the SO(4) lI symmetry lowering can
be obtained by standard procedures. An interesting illus-
tration in the recent literature is offered by the subduc-
tion of SO(4) to the hyperoctahedral group SW4.

Table I shows the splitting of the SO(4) representations
(j„j2) up to the fourth rank. Evidently, the scalar repre-
sentation (0,0) will correspond to the totally symmetric
representation A of I. Similarly, the vectorial representa-
tion ( —,', ~—,') corresponds to the symmetry of the degenera-

cy space and thus subduces G. The operator representa-
tions (1,0) and (0,1) are threefold degenerate and thus
must subduce T, or T2. A precise assignment of their
icosahedral transformation properties may be obtained
by coupling two G vectors, (a,x,y, z ) and
(BIBa,BIBx,BIBy,BIBz), to a T, product. From the
tabulated CG coupling coefficients ' one finds

(2,0)

(0,2)

(1,1)

H
H
Tl +H
T2+H
6+K

5

x
C4, 5

2

12

FIG. 1. Icosahedral symmetry group in a Cartesian reference
frame, according to the conventions of Boyle and Parker (Ref.
20). Various useful generators of the icosahedral subgroups are
also indicated.
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(0,3)

(2, 1)

(1,2)

(4,0)

(0,4)

(3,1)
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7

7

12

15

15

16

9
9
16

21

21

24

Tl+6
T, +G
T2+ G+H
Tl +6+H
T, + T2+ G+H
T, + T2+ G+H
3+T)+Tp+6+H

G+H
6+H
A+ Tl + T2+G+H
A + Tl + T2+6+H
A + T& + T2+6+2K
3 + Tl + T2 +G +2H
Tl + T2+26+2H
T& + T2 +2G +2H

A + Tl +T2+26+2H
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a a a a
1

(8)

a 8 a a
'az 'aa+ a ax

Upon substitution it may easily be verified that the T]
tensor in Eq. (8), multiplied by i', coincides with the &'z

operator in Eq. (5). Hence the (0, 1) representation of&'2
transforms as T, . Likewise, the (1,0) representation of~,
may be shown to transform as T2. Further relations
follow from a comparison of analogous Kronecker prod-
ucts in both groups. As an example, one has

( —,', —,
' )g ( —,', —,

'
) = [(0,0)e(1,1)]e [(1,0)e(0, 1)I,

Gg G=[ AeGsH]e [T,s T~1 .
(9)

= [(0,0)e (1,1)e (0,2)e (2,0)e (2, 2)]
e [(1,0)e(0, 1)e(2, 1)e(1,2)I . (10)

This (2,2) representation is of special importance, since it
yields a tota11y symmetric icosahedra1 component, which
determines the PES of the G X (g+ h ) problem [see below
Eq. (18)]. Repetition of this procedure will eventually
generate the entire subduction table.

Since the (0,0), (1,0) and (0,1) representations in Eq. (9)
have already been assigned unambiguously, it follows
that the (1,1) representation must subduce the remaining
GEBH representation. This is the symmetry spanned by
the JT active coordinates.

The square of the coordinate representation (1,1) pro-
duces inter alia the (2,2) representation, which is a sym-
metrized representation of the fourth rank,

(1, 1)e (1, 1)

In this chain D& is an epikernel, but C5 is not. Indeed D~
marks the first appearance of an A, component, while no
additional invariance arises under C5. As another exam-
ple, the C2 subgroup is seen to yield more invariant H
components than any of the preceding subgroups [cf. Eq.
(12)]. Hence Cz must be an epikernel of H,

D2. 2A+B, +B2+B3

D3. A j+2E =C2. 3A+2B . (12)

D5.. A )+E)+E2

In this way all the attainable subgroups of G and H vibra-
tions may be determined. The results are represented in
Table II. The same procedure may also be applied to the
total nine-dimensional coordinate representation GH.

G

variant component in this chain marks an epikernel sub-
group.

This procedure will now be illustrated for the JT-active
G and H vibrations. The relevant subduction scheme is
shown in Fig. 2. Clearly, for both representations the
kernel corresponds to the trivial subgroup C, . This is the
first subgroup for which the G and H representations be-
come totally invariant. Likewise, the epikernels may be
determined from the first appearances of A, (or A ) com-
ponents along the various descent routes. As an example,
consider the decomposition of H along the pentagonal
chain:

I Ds ~C)
H~A, +E, +E~~A +F., +E2 ~5A .

C. Kpikernel and kernel subgroups

JT distorting forces acting along nontotally symmetric
vibrational modes will carry the nuclei over into
configurations corresponding to subgroup symmetries of
the parent icosahedral group. The lowest subgroup at-
tainable for a particular mode, is called the kernel of
that mode. Allowed intermediate subgroups are termed
epikernels. ' The kernel and epikernels are determined
uniquely by the symmetry representations of the distor-
tion modes. They are most easily obtained by inspection
of a descent-in-symmetry sequence of the parent point
group. In such a sequence, the symmetry-lowering
capacity of a given distortion mode will be used up as
soon as a subgroup is reached which leaves the tota1
mode representation invariant. This subgroup corre-
sponds to the kernel endpoint. Between the parent
group, where the entire representation is nontotally sym-
metric, and the kernel, where total invariance is reached,
there is usually a gradual increase in the number of in-
variant components: each first appearance of a new in-

A, T

E, T

A1, A2'E

A, , 2E 0 E1. E2

A1.E1' E

0

2A, 28
C2 3A 28

2A, E

A, 2E
1 2

A, E1, E

4A
1 5A

FICz. 2. Crenealogy of the icosahedral rotation group, includ-
ing the subduction chains for the G and 0 representations.
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TABLE II. Kernel and epikernel subgroups for the fourfold-

and fivefold-degenerate representations of I.

Representation'

G
H
(G,H)

Kernel

Cl
Cl
Cl

Epikernels

T,D3, C3, C2

Dq, D3,D2, C2

D3,D2~C3, C2

'(G, H) refers to configurations that are obtained by combina-
tions of G and H displacernents.

IV. MODEL HAMILTONIAN

In this section we consider the model Hamiltonian &,
that generates the G X (g +h ) surface. As has been
shown by Khlopin et al., ' the extremal properties of this
surface are independent of the number of interacting
fourfold- and fivefold-degenerate modes. The electronic
Harniltonian may therefore be restricted to the ideal
single-mode limit, with only one vibrational mode of 6
and one of H symmetry. & is written as follows:

=~+ X ~
Q~~+-,' X &Ag~~ .

AA, QA& p AA.

(13)

Here Q~z denotes one of the nine JT-active coordinates.
K~ is the harmonic force constant of the A mode. The
zero refers to the icosahedral starting configuration.
Usually this icosahedral origin is placed at zero energy.
The action of & in the electronic quadruplet space gen-
erates an adiabatic potential energy surface, with four
sheets, Ek(g ), as expressed in Eq. (14):

Ek(Q)= —,
' g KAQAq+eI (Q), k =1,2, 3,4

A, A.

where e„(Q ) is the kth root of the secular equation:

II W~J(g) —ek(g»;, Ii=0

with

(14)

(ls)

IV;, (g}=z (Gt Gj QA~
a

~QA~ 0

= Q F~g~q(Gi IAA, Gj ) .

As before, each increase in the number of invariant com-
ponents of the sum representation as a whole marks an
epikernel of 6+H. In the present example all the epiker-
nels of 6+H are found to be epikernels of one or both of
the irreducible representations involved.

From Fig. 2 and Table II, the epikernel groups of G
and H are seen to give rise to chains of consecutive sub-
groups. The first members of these chains immediately
below I are the epikernels T, D3, and D5. These epiker-
nels are also referred to as the maximal epikernels. D2 is
a subgroup of T and therefore must be considered as a
lower ranking epikernel. C2 and C3 are still at a lower
level, just before the kernel tail. In our subsequent treat-
ment the maximal epikernels will be of primary irnpor-
tance.

W is a force element matrix, describing the linear distort-
ing forces which destabilize the JT origin. F„ is the irre-
ducible force element for vibration of symmetry type A.
The bracket denotes the appropriate CG coupling
coefficient; i and j represent components of the electronic
representation G. The explicit expressions for the ele-
rnents of W may be derived from the published CG
tables ' and are given in Eqs. (16):

v'3W„= FGQ, ,aa

ZZ

—FGQ. + —FH( —go+ &3Q, »&z
2 3

' 15

1 v'p

2 3 15
—FGQ, + —FH( —

Qa
—&3Q, ),

2&v
2 3~—FGQ, + ~—FHge

15

1 1
W,„=W„=—,—FG Q„+,—FH Q(,2&3 &3

W, = Wy, = — —FGQy + —FH Q„,1 1

2 3
G y 3

0

(16)

8' =W

8' =8
XZ ZX

1

2 3
—FGQ, +

v's

2&3
v's
2~3 "Q
v's

Ggx

1
FH g&,

3

1

&IS
—FHQ(

1

~—FHQ,
15

1

&IS FHQ

2
3 F~

Previously Khlopin, Polinger, and Bersuker' derived the
stationary points of the adiabatic JT surface for the spe-
cial case of zero JT stabilization energy along the 6
mode, i.e., EG =0. In this case JT activity is restricted to
the subspace of the five H coordinates.

Another special solution arises if the JT stabilization
energies for both modes are equal. In this instance the
surface may be shown to consist of an equipotential ener-

gy trough surrounding the JT origin. ' ' This trough
extends in the nine-dimensional coordinate space and has
three degrees of freedom. It exhibits the rotational in-
variance of the hypersphere, a change of direction in the
electronic space being related to an equipotential dis-
placernent on the bottom of the trough.

The most general case with unequal JT stabilization

Here Q„g„,g~, g, are the four G-type coordinates and

Qs, g„g~, Q„,Q~ are the five H-type coordinates, obey-
ing the standard transformation properties, as specified in
Appendix B. For further use we define also in Eq. (17)
the JT stabilization energies for both modes, EG and
EJT.

2
JT 3 FG

E
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energies for G and H modes may be viewed as the resu1t
of symmetry breaking of this rotational invariance. In
this process the adiabatic surface retains a continuous
minimal energy trough, though no longer of uniform
depth. A warping occurs, giving rise to the appearance
of minima, local hill tops, and saddle points.

These extremal points may easily be found with the
guidance of the epikernel principle. ' According to this
principle extrema1 points on a JT surface are expected to
be associated with epikerne1 symmetries. More specifi-
cally, stable minima prefer maximal epikernel sym-
metries.

In the present work we will use a different method,
based on the isostationary function Th. is method evalu-
ates the symmetry-breaking properties of the JT Hamil-
tonian with respect to the parent SO(4) group. It allows
one to locate all the extrema of the G X(g+h ) surface.
At the same time it provides a useful check on the validi-
ty of the epikernel principle for icosahedral molecules.

V. LOCALIZATION OF KXTREMAL POINTS

The problem we are facing is to find the extremal
points of a nine-dimensional surface, described by the
roots of a secular equation. For a linear model Hamil-
tonian this problem may be solved in two steps. The
first step consists in finding the extremal eigenvectors by
minimizing the so-called isostationary function in four-
dimensional electronic space. In the second step these
extremal eigenvectors are inserted in the stationary con-
ditions of Oepik and Pryce, to yield the distortion coor-
dinates of the extremal points.

(~E~~)=4E +'E + "(E E)f"—(18)

The fz"z function is given by

fz"z =
—,', [16a —12a +1]

18—
—,'[x +y +z ——', (x +y +z ) ]+ —axyz

with a +x +y +z =1 .

This expression for f z"z was obtained by using the general
formula of Ref. 3, in combination with the Clebsch-
Gordan coefficients, tabulated in Ref. 21. A detailed

A. Isostationary function

The isostationary function, ( ~~E ~~
), is a function of the

electronic coordinates a, x,y, z, specified in Eq. (1). It is
stationary for the eigenvectors of the extremal points on
the JT surface. For a two-mode problem, such as the
G X (g+ h ) problem, (

~

E
~~

) consists of a scalar term,
which is the weighted average of the JT stabilization en-
ergies of the two modes, and a tensorial term, which con-
tains the icosahedral invariants of the symmetrized
fourth rank rePresentation of SO(4), with ji =jz =2. In-
spection of Table I reveals that this (2,2) representation
yields only one totally symmetric component upon sub-
duction from SO(4) to I. Denoting this component as
fz"z, one may write

derivation ' is presented in Appendix C. The same result
can also be achieved by using the technique of the so-
called integrity basis.

For equal JT stabilization energies (Ec =Ez ), the
term in fz z vanishes and the value of the isostationary
function is constant everywhere in electronic space. This
corresponds to the degenerate coupling case, which gives
rise to an equipotential minimal energy trough in the ac-
tual JT distortion space. For unequal JT stabilization en-
ergies the stationary points of ( ~~E~~) may be found by
minimizing the f z z function, subject to the eigenvector
normalization condition. The use of Lagrange multi-
pliers yields 80 extremal eigenvectors. Since fz"z is an
even function under spatial inversion, all eigenvectors
occur in pairs with opposite sign. In this way 40 non-
trivial eigenvectors remain, as listed in Table III. The
symmetry of an extremal eigenvector is the group of all
symmetry operations of I which either leave this eigen-
vector invariant or change its sign. As an example, the
(1,0,0,0) eigenvector is clearly invariant under the genera-
tors of the T subgroup. Hence it has tetrahedral symme-
try. The group T is also said to be the stabilizer of the
(1,0,0,0) point. As a further example the eigenvector
(I/&6, —&5/~ 6, 0,0) is stabilized by C3' ' and Cz

~

and therefore has D3 symmetry. Finally, the (0, 1,0,0)
eigenvector is found to be invariant under the Cz' axis.
It changes to (0, —1,0, 0) under Cz' . Hence the stabiliz-
er of this eigenvector contains both perpendicular C z

axes and therefore is identified as D2.
The orbit of a pair of antipodal eigenvectors is defined

as the set of antipodal pairs that are mapped onto each
other by elements of I. The 40 pairs of extrema1 eigen-
vectors are found to be separable into four orbits, labeled
as a, P, y, 6 with respective symmetries Td, D3, D3 Dz.
The number of elements in a given orbit is equal to the
quotient of the orders of parent and stabilizing groups, as
required by the orbit-stabilizer theorem. Hence one has

dimo, '= dimI /dim T =5,
dimP =dimy =dimI /dimD3 = 10,
dim6=dimI/dimD2 = 15 .

(20)

Finally, the nature of an extremum may be found by
evaluating the Hessian matrix, as defined in Appendix A.
A11 eigenvectors of a given orbit are symmetry equivalent
and thus will have the same Hessian eigenvalues. The re-
sults are specified in Table IV.

For a dominant JT stabilization along the 6 mode, i.e.,
E~ &E~ &0, the cx points with tetrahedral symmetry
have three positive Hessian eigenvalues, which is charac-
teristic of a true minimum. In the f3 points the isostation-
ary function has an overa11 negative curvature, which
points to a maximum. If, on the other hand, the H mode
is more stabilized than the G mode, i.e., for E~ & EG & 0,
these assignments must be reversed and the trigonal P
points correspond to the minima. The remaining y and 5
points are always saddle points of index 1 or 2. These
conclusions are also apparent from the extremal values of
the isostationary function itself. Clearly, for dominant
GXg coupling the (~~E~~) energy function reaches its
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TABLE III. Extremel eigenvectors of the isostationary function for the 6 X(g+ h ) problem. Eigen-
vectors are denoted as (a,x,y, z ). Only one eigenvector of each antipodal pair +(a,x,y, z ) is listed.

a.T :D3 y:D3 5:D2

(1,0,0,0)

—,'(1,v'5, v'5, v'S)

,'(1,v'5, —v'5, —v'5)

—,'(1, —&5,v'5, —v'S)

—,'(1, —v'5, —&5,v'S)

v'6
—(1,—v 5,0,0)

v'6
' (1,v'5, 0,0)

v'6 (1,0, —v'5, 0)

v'6 (1,0, &s,o)

v'6 (1,O, O, —v'S)

v'6 (1,0,0, v'5)

(3 —v 5 —v'5 —v 5)zv'6

(3, —v's, v 5, v'5)
zv'6

(3,v'5, —v'5, v'5)
2&6

(3,v 5, v'5, —v'5)
2&6

—(0,0, 1, —1)
1

v'2

—(0,0, 1, 1)
1

v'2

—(0, 1,0, —1)
1

v'2

—(0, 1,0, 1)
1

v'2

—(0, 1, —1,0)
1

—(0, 1, 1,0)1

v'2

(v'5, 1, 1, 1)zv'2
1 (v'5, 1, —1, —1)zv'2
1 (&5, —1, 1, —1)zv'2
1

( v'5, —1, —1, 1 )zv'2

(0, 1,0,0)

(0,0, 1,0)

(0,0,0, 1)

—,'(v'S, 1, 1, —3)

—'(v'5, 1, —1,3)

—'(v 5, —1, 1,3)

—'(v'5, —1, —1, —3)

—'(v'5, 1,3, —1)

-'(v'5 1 —3 1)

—'(v'5 —1 3 1)

—'(vs, —1, —3, —1)
—'( v'5, 3, 1, —1)
—'(v'5, 3, —1, 1)
—'(v'5, —3, 1, 1)
-'(v'5 —3 —1 —1)

minimum in the tetrahedral a points, while the GXh
coupling favors the stabilization of the trigonal P points.

the secular equation with respect to each distortion coor-
dinate:

B. Distortion coordinates of the extremal points a~[a,x,y, z ] 3' +&~Q~~ =O

Oepik and Pryce have obtained stationary conditions
for the coordinates of the extremal points by minimizing for all Ake GSH . (21)

TABLE IV. Symmetry, energy, and extremal characteristics of the four orbits of stationary eigenvec-
tors. The JT stabilizati energies, EG and EH, are defined in Eq. (17).

dim symmetry Hessian eigenvalues'

5

10

10

15

D3

D3

D2

EJT
G

2 EGJT+ 1EHJT
3 3

1EJT+ 8EJT
9 9

24
5

6
5

'All values are to be multiplied by —,', (EG —EH ).
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The explicit forms of these conditions are given by B),82

Q, = — — (3a —x —y —z ),2&3K,

FG
Q, = — (ax + &5yz ),

3KG

FG
Q = — (ay+&5xz),

&3KG

A 83

FG
Q, = — (az +V5xy ),&3K,

2FH
Qs= — — (2z —x —y ),

&15KH

&ZF„
Q, = — — (x' —y'),

&SK„

2FH
Q&

= ( —v'5ax +yz ),
15KH

2FH
Q„= ( —&5ay+xz ),&15K„

2F~
Q&= ( —&5az+xy) .

&ISK„

a: 7 P 03 y - 03 D&

&i(Q) = —— + —,'KG(Q. —IIQ. II)'+ —,'KH(Qe+ Q')
F

G

+ —,'( Q„,Qg )()1")

+ —,'(Qy, Q~ )(F)
"9 .

FIG. 3. Splitting of the electronic quadruplet for the various
types of extrema. The energy levels were calculated from the
expressions in Table V, assuming EG =

2 EH . This case corre-
sponds to a trigonal minimum (13:D3), with A, ground state.

En these expressions the electronic eigenvectors are
coupled to a traceless second-rank tensor, which may be
seen to form a basis for the (1,1) representation of SO(4).
[See Table I and Eq. (9)]. This representation does indeed
subduce the GH symmetry species of the distortion
coordinates. Extremum coordinates, IIQA&II, may be
found by introducing in Eq. (22) the extremal eigenvec-
tors, listed in Table III. Since the (1,1) coordinate repre-
sentation is of even rank, eigenvectors of opposite sign
give rise to the same coordinates and thus refer to the
same extremum point in coordinate space. The four or-
bits of eigenvectors yield four types of stationary points.
One representative of each type is described in Table V.
The other equivalent points may be found by inserting
the other eigenvectors of the same orbit or by applying
symmetry operations of I. Table V also provides expres-
sions for the eigenvectors and eigenvalues of the excited
G components at each extremum point. The correspond-
ing splitting patterns are displayed in Fig. 3. From the
figure and the table, it is clear that the two different types
of D3 extrema refer to different symmetry assignments of
the nondegenerate ground-state component.

The conclusions of Sec. V A regarding the extremal na-
ture of the various types of solutions may be checked by
explicitly evaluating the local curvature of the JT surface
at the stationary points. As an example we analyze the
curvature in the tetrahedral point, specified in Table V.
A perturbation theoretic expansion of the secular equa-
tion for the relevant (1,0,0,0) eigenvector yields to
second order:

+—,'(Q„Qg)(F) (23)

with

3 FG

—KG
FH—KG F

FH FH
—,
' KG KH ——', KG

FG FG

Equation (23) represents a quadratic potential energy ex-
pression which yields nine local normal modes of
A +E+2T symmetry. The corresponding force con-
stants are given in Table VI. The K~ and KE force con-
stants are seen to be positive so that the A and E modes
always represent directions of positive curvature. In con-
trast, one of the KT constants reaches a value of zero for
EG =EH . This case corresponds to the special solution
of degenerate coupling, which is characterized by a Hat
equipotential trough. The T mode at zero frequency will
be tangent to the bottom of this trough. For EG
& EH &0 both KT constants may be verified to be posi-
tive. This confirms the previous conclusion that for a
dominant JT stabilization along the G mode, the
tetrahedral points will be true minima. On the other
hand, for EH & EG & 0 one of the KT force constants is
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TABLE V. Ground-state and excited components, energies, and extremal coordinates for a representation solution of each symme-

try type.

Symmetry Eigenvectors Energy
IIQGII (units of FG/ICG )

(Q. Q. Qy Q. )

IIQHII «»ts of FH~&H)

(Qe. Q. Qt Q„.Qg)

a:T(C3' ' C ) (1yOyOyO) A Eg ,0,0,0 (0,0,0,0,0)

(0, 1,0,0)

(0,0, 1,0)

(0,0,0, 1)

5 EJT

p.D (C1,3, 2 g4, 5
) —(1,—v 5,0,0)v'6

1
( —v'5, —1, 1, 1 )2v'2

2v'6
(v'5, 1,3, 3)

—(0,0, 1, —1)
1

v'2

27 27

A2 —, Eg —EH10 JT 55 JT

1 —v5
6~3 6~3

" v'5 v'5 v'5
—,0,03v'6 3v 2 3v 3

y:D3(C3,C2' ) (O, O, 1,-1)1

v'2

1
(
—&5, —1, 1, 1)2v'2

2v'6
(v'5, 1,3,3)

v'6 (0, —&5,0,0)

—,EG +3

E ——'E~ —-'EH
9 9

—v'5
2v'3' 2&3 ' '

1 1 1

v30 v 10 &15
—,0,0

5:D2(C2', C2' ) (0,1,0,0)

(1,0,0,0)

(0,0, 1,0)

(0,0,0,1)

B3 —'EG +—EH

—-EG —-EH7 JT 8 JT
9 9

2 1 JT 16 JT
9 9-EG ——EH

—,0,0,0
1

2&3' ' '
v'2 v'2—,0,0,0

15 5

Normal mode Force constant'

~:Q.—IIQ. II

E:' KH

(Q„,Qg)

(Q„Q„)
(Q„Qg)

X[1+(1+Y)' ]

'X and Y are defined as follows:

TABLE VI. Local normal modes and force constants for the
tetrahedral extremum.

bound to be negative, thus indicating that the tetrahedral
points are no longer stabilized.

The results from Table V may also be compared with
the previous study of the separate 6 Xh problem by
Khlopin et al. ' In the absence of JT stabilization along
the G mode (FG =0) the tetrahedral distortions will no
longer be activated, since they are confined to the coordi-
nate space of 6 symmetry. However, the three other
types of extrema will remain and their components in H
space may be shown to coincide with the results of Ref. 1.

VI. DISCUSSION

A. 6 Xg versus G Xh coupling

EH
X=—KG+KH12 2 12 EJT

FHKz
4X2 EJT EJT

H G

The adiabatic surface of the linear G X (g+h ) problem
may adopt two different forms depending on which of the
two participating modes gives rise to the larger JT stabili-
zation energy. If the stabilization along the G mode is
more pronounced, the surface will be characterized by
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five equivalent tetrahedral minima, forming the a orbit.
Next in energy to these minima are the ten D3 extrema,
described by the y orbit. For E~ &EH &0, these extre-
ma are saddle points of index 1 (see Table IV) and there-
fore correspond to transition states between two neigh-
boring tetrahedral minima. Furthermore, evaluation of
the distances between various extremal points in coordi-
nate space reveals that the five tetrahedral minima are all
at equal distance from each other. The topology of this
tetrahedron based surface may thus be represented by the
completely connected pentagraph, as shown in Fig. 4.
This complete five-graph is isomorphous to the four-
dimensional tetrahedron. It has ten edges, that match
the ten D3 transition states of the y orbit. Tunneling be-
tween the five T minima will give rise to two vibronic en-
ergy levels of 3 +G symmetry.

If on the other hand, the stabilization energy for the H
mode is larger, the surface will be characterized by the
ten D3 minima of the P orbit. Next in energy for this
coupling regime are the 15 D2 extrema of the 6 orbit.
For EH &EG &0 these extrema appear to be saddle
points of index 1 (see Table IV) and therefore will act as
transition states between two neighboring D3 minima.
Distance calculations reveal that every D3 minimum is
adjacent to three equivalent nearest neighbors and at
equal distance from the six remaining D3 minima. The
topology of this surface may be described by the so-called
Petersen graph, with ten vertices for the P orbit and 15
edges for the transition states of the 5 orbit (see Fig. 5).
In such a graph two different isomerization pathways are
conceivable, involving either adjacent or nonadjacent
minima. Interestingly, the same graph may also be used
to represent a particular isomerization mode of a trigonal
bipyramid. Finally we note that tunneling between the
ten D3 minima will give rise to three vibronic energy lev-
els of 3 +G+H symmetry.

B. Validity of the epikernel principle

As may be seen from Table II and the ensuing discus-
sion in Sec. III the GH distortion space contains three

FIG. 5. Topology of the JT surface for preferential G Xh
coupling. The ten vertices of the graph represent the ten trigo-
nal minima (P), while the 15 edges refer to isomerization paths
over D& transition states (6).

maximal epikernel subgroups: T, D~, and D3. Accord-
ing to the epikernel principle ' these are likely to be as-
sociated with stable minima of the adiabatic potential en-
ergy surface. From this list the D5 epikernel must be el-
iminated, since a D~ distortion splits the electronic mani-
fold into two degenerate components, E, +E2, and thus
is unable to remove the electronic degeneracy. The
remaining T and D3 epikernels (Ti, and D3& for cen-
trosymmetric problems) were indeed found to character-
ize the two possible types of minima.

The situation is comparable to the linear T X(e+tz)
problem in cubic symmetry. ' This problem is also
characterized by only two maximal epikernels: D3 and
D4. If T X e coupling is dominant, minima adopt the
tetragonal epikernel symmetry of the E mode. On the
other hand, a TXt2 coupling regime stabilizes points
with the trigonal epikernel symmetry of the T2 mode.
There is a slight difference though in that the D3 maxi-
mal epikernel of the G Ep H distortion space is not
confined to the irreducible subspace of the H mode, but
consists of both G and H components.

Furthermore, the method of the isostationary function
has revealed the presence of subsidiary stationary points
with D3 and D2 epikernel symmetries. It is conceivable
that these points may become absolute minima as a result
of second-order interactions. Finally, the lower-ranking
epikernels, C3 and Cz, and the C, kernel itself, do not
give rise to stationary points of the linear hamiltonian.
These conclusions confirm the validity of the epikernel
principle for icosahedral JT problems.
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APPENDIX A: GRADIENT, LAPLACIAN,
AND HESSIAN IN HYPERSPHERICAL

POLAR COORDINATES

The relationship between rectilinear (a,x,y, z) and po-
lar (r,y, &, y) coordinates is given in Eq. (2) of Sec. III A.
The polar components of the four-dimensional gradient
have been given by Louck. ' One has

=a

Here the e's represent the unit vectors in the polar coor-
dinate system. They are related to the rectilinear unit
vectors by the following expressions:

e„=cosine, + sing cosge, + sing sinO singe

+ sing sinO cosye

e&
= —singe, +cosg cosge, +cosy sing sinye~

1 B
V =—

r Bg
1 a

r sing BO

1

r sin/sing By

Hence the total gradient is

(Al)
+cosy sinO cosye

ez= —singe, +cosgsinye +cosgcosye

e =cosye —sinye

(A3)

a 1 a 1 a aV'= e„,ez—,e , e" ar ' + ~ Bg
' r sing BO

' ~ r sinO sing ay

(A2)

Now to obtain the VV tensor, we follow the same pro-
cedure as Stone. ' From Eq. (A3) the appropriate deriva-
tives of the polar unit vectors may easily be evaluated.
One has

a
Br

a
BX

(e„ere'~) =

ao
a

By

—e„

singe~ cosine &

sin/singe cosysinge

—
cosine+

—singe„

cosge —sin gsinge„—singcosgez —cosge

(A4)

a2

ar2
a1a
array

a 1 a
r r sing BO

a 1 a
Br rsingsing By

a1a
arr Bg

1a 1 a'
r Br r2

a
By r2siny BO

a 1 a
ag r2singsino By

VV

ar rsing BO

a 1 a
r sing

1 B cot+
r Br r2sin g ag r

a 1 a
Bg r sin /sing a

(A5)

a 1 a
Br rsingsing By

a 1 a a 1 a
Bg r sin/sing Oy Bg r sin /sing B

1a 1 a'
r sin csin O ay

+ coty a cotg B
r2 BX r2sin21 ag

The trace of this tensor corresponds to the polar form of the four-dimensional Laplacian:

jr r ay r sing ag r sin/sin O ay r Br r By r sing
(A6)

The second derivatives on the surface of the four-dimensional unit sphere are readily obtained from Eq. (A5) by setting
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r equal to l. Accordingly the surface Hessian of a function f is given by Eq. (A7). Here f =df /Bqr, f&&=d f /ogd8,
etc. ,

VV i„,f=
sing

COS+ f0
sin g

1 f cos+
sing sinO ~+ sin2g sing

1 f cosJ fsing

1 fBe+cotyf,
sin g

1 f cos8
sin gsinO sin csin 0

1 f cos+
sing sinO ++ sin~g sing

1 cos8
sin y sin8 sin y sin 8

1 cotO
, f„+cotyf, +

2 f,
sin csin 0 sin y

(A7)

APPENDIX B: TRANSFORMATION MATRICES
FOR THE G REPRESENTATION

A(a, x,y, z)=(a, x,y, z)[(D(%)] . (Bl)

The D(%) matrices in Eq. (Bl) are transposed, as com-
pared to the matrices of Boyle and Parker. Following the
convention of Eq. (B1), one has

Boyle and Parker have listed a few representative ma-
trices describing the transformation of the G components
under the symmetry elements C,",C3 ', Cz' of I, as
specified in Fig. 1. For convenience these matrices are re-
peated here, together with the matrices for the C3' and
C 2' generator elements of D3. In our conventions ' sym-
metry transformations are defined as follows:

APPENDIX C: ICOSAHEDRAL INVARIANT
OF THE (2,2) REPRESENTATION OF SO(4)

f 2, 2
= g a(a, aka( T;,ki .

i,j,k, l
(C 1)

Here i, j, k, and I run independently from 1 to 4, with
a, =a, a&=x, a3=y, and a4=z. The T elements involve
summations over Clebsch-Gordan coefficients:

The function f2"2 represents the icosahedral invariant
of the fourth-rank irreducible tensor representation of
SO(4). It may be derived in a straightforward way, using
Eq. (26) of Ref. 3. According to this equation, one has

D( @1,12
)5

—1/4
3/S/4
v'S/4

—3/S/4

—&s/«s/4 &s/4
—3/4 —1/4 —1/4
1/4 —1/4 3/4

—1/4 —3/4 1/4

(B2)

T, ki
= g ( G"a,

~
GgGa ) ( Gak Gg ~ Gai )

heH
( Ga, ~HhGa ) ( Ga&Hh

~
Gai ) . (C2)

D( p1,4, 3)
3

1 0 0 0
0 0 0 1

0 1 0 0
0 0 1 0

(B3)

In evaluating these expressions, the permutational sym-
metry of the tabulated CG coefficients ' is seen to give
rise to the following simplifying relationships:

)D(@1,3,2)
3

—3/S/4 —3/S/4 —3/S/4
—&5/4 3/4 —1/4 —1/4
3/5/4 1/4 1/4 —3/4
&5/4 1/4 —3/4 1/4

T
~ ~TkI ~T

In this way one obtains

(C3)

(B4) f2 2= —,'a —
—,', (x +y +z )+—'„'(x y +x z +y z )

D((y1, 2)

1 0 0 0
0 —1 0 0
0 0 —1 0 (B5)

18——'(a2x +a y +a z )+ axyz . (C4)

D(C", ) =

0 0 0 1

1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 —1

(B6)

With the use of the normalization condition,
a +x +y +z =1, this expression may be rearranged to
yield the functional form of Eq. (19). This form clearly
shows the familiar tetrahedral invariants in x, y, and z
that are contained in f2"2. The first term in Eq. (19) is the
Gegenbauer polynomial of order 4. '
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