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Yang-Lee zeros, Julia sets, and their singularity spectra
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We have studied the global scaling properties of the Julia sets of the Yang-Lee zeros of the s-state

Potts model on the diamond hierarchical lattice. The singularity spectrum f (a) and the generalized

dimension D, are calculated for dift'erent s values. General observations are made on their varia-

tions.

I. INTRODUCTION

In recent years there has been much interest in the
study of phase transitions on hierarchical lattices. ' These
lattices are iteratively constructed to be exactly self-
similar. On the theoretical side, since the Migdal-
Kadanoff renormalization group is exact, they provide a
class of models about which precise statements can be
made. On the practical side, since these models are high-
ly inhomogeneous, they serve to give insights into the un-
derstanding of such physical systems as random magnets,
polymers, percolation clusters, and superconducting net-
works.

On a hierarchical lattice, the exact renormalization-
group recursion relation defines a rational mapping of the
coupling constant. Associated with such a rational map-
ping in the complex plane is the Julia set. Recently a re-
markable observation has been made on the Julia set of
the renormalization-group mapping. It has been shown
that this Julia set is simply the limiting set of the Yang-
Lee zeros of the partition function. Since the discovery
of the famous Yang-Lee theorem, very little is known
about the distribution and structure of the zeros of the
partition function, except for a few exactly solvable mod-
els. In the case of hierarchical lattices, fairly complete in-
formation about the Yang-Lee zeros has thus become
available due to their connection to the Julia set.

In another line of development, it has been recognized
that most of the fractals in nature are actually composed
of an infinite set of interwoven subfractals, and hence the
name "multifractal. " To provide a more complete char-
acterization of the global scaling properties of multifrac-
tals, one has to use a spectrum of critical exponents and
their singularities. Julia sets are multifractals. The
singularity spectrum for the simplest quadratic complex
mapping has been studied. In view of the fact that the
Julia sets associated with phase transitions on hierarchi-
cal lattices have physical Ineaning, it would be interesting
to study their singularity spectra. However, unfortunate-
ly, it is still unclear what direct physical meaning one can
attribute to the singularity spectrum of the Julia set of
the Yang-Lee zeros.

In this paper we study the singularity spectrum of the
Julia sets of the s-state Potts model on the diamond
hierarchical lattice. In Sec. II the relation between the
Yang-Lee zeros of the partition function and the Julia set

of the renormalization-group recursion relation is re-
viewed. In Sec. III the thermodynamic formalism for the
singularity spectrum is recapitulated. In Sec. IV the
singularity spectra and the generalized dimensions of
these Julia sets are presented and discussed. In Sec. V a
summary of our results is given.

II. YANG-LEE ZEROS AND JULIA SETS

We will first review the beautiful work of Derrida
et aI. , who have discovered the connection between the
Yang-Lee zeros of the partition function and the Julia set
of the renormalization transformation for the Potts mod-
el on hierarchical lattices.

The Hamiltonian of the s-state Potts model is

Z= g exp K g 5(cT;, cr )
&v&

(2)

where K=PJ. For convenience, we use the' variable
z =eK

To derive the recursion relation for the partition func-
tion we first look at the first two levels of the construc-
tion, shown in Figs. 1(a) and 1(b). Summing over the
trace, we easily obtain the following recursion relation:

A (z)Z, (z') =Z2(z),

where

A (z) = (2z+s —2) (4)

z'= f(z) = z +s —1

2z+s —2

This transformation is simply the recursion relation ob-
tained by using the Migdal-Kadanoff renormalization
group, which is exact here. The general recursion rela-
tion between the partition function at the (n —1)th level
and the nth level is

Z„(z)=Z„,(z')[ A (z)]

H= —J g 5(o;, cr ), o;=1,2, . . . , s
(&j)

where 5 is the Kronecker delta, and the sum is over
nearest neighbors. The partition function is then given
by
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N p9
I'(q, r)= $

, l,' (12)

where I,- is the linear dimension of the ith piece and p; its
probability. In our case the probability is taken to be
uniform for each piece. The function r(q) can be deter-
mined from the implicit equation

(b) (c) I (q, r(q))=1 . (13)

FIG. 1. Diamond hierarchical lattice.
Once r(q) is obtained, the generalized dimension D and
the exponent a(q) can be calculated:

There are 4" ' bonds at the nth level; therefore, the par-
tition function is a polynomial of degree 4' ' in z. Let z,
be the zeros of Z„(z):

r(q)D =

o.(q) = dr(q)
dg

(14)

(15)

4n —l

Z„(z)=s ~ (z —z, ) .
i =1

The singularity spectrum f(a) is then given by the
Legendre transformation

Now one may rewrite Eq. (6) in the form of Eq. (7) f(a) =qa(q) r(q) . — (16)
4 n —l

s Q (z —z, )=
4 2

s Q (z' —z,') (2z+s —2)
i =1

(8)

4 n —
l 4n 2

Q (z —z; ) = Q [(z'+s —1)'—z,'(2z+s —2) ] . (9)

Each factor on the right-hand side is a fourth-degree po-
lynomial

where z,
' denotes the zeros of Z„,(z). By using Eq. (5),

Eq. (8) can be rewritten as follows:

In the limit N~ &m, Eqs. (13)—(16) should give exact
results; however, since in practice we can only deal with
finite N, Eq. (13) gives very slow convergence. To im-
prove the rate of convergence we will instead use the ra-
tio method. Moreover, since we can only obtain r(q) nu-
merically, Eq. (15) is not very convenient. We will there-
fore derive an algebraic expression to calculate a(q).

Define the partition function at the nth level

N pq(n)
1„(q,r(q))= g;=, 1,'(n)

P;(z) =(z +s —1) —z (2z+s —2) (10) where N=a", a an integer. Then r(q) can be determined
from the equation

We notice that in Eq. (10) there is an equivalence between
the zeros of P;(z) and the preimages of z,

' under the map-
ping f

P, (z)=0 z,'=f(z) . i.e.,

I „(q,r(q)) =1,
I „,(q, r(q) }

(18)

Therefore the four zeros of P, (z) are just the four preim-
ages of z; under the mapping f. This property allows one
to obtain the 4" ' zeros z; of Z„(z) by working out the
preimages of the 4" zeros z,

' of Z„&(z). Therefore,
step by step, one can get the zeros of Z„(z) from the
unique zero of Z, (z) =s(z+s —1), i.e. , z =1—s. As
n ~ ~, these preimages form exactly the Julia set of the
transformation f in the complex z plane.

The physical region of the set of zeros of the partition
function Z„(z) is the positive real z axis. There will be no
point in the set which lies on the positive real z axis if n is
finite. As n increases some points will move toward the
positive real z axis. Only when n is infinite will there be
points reaching the physical region.

e (n)

1 (n)

pP (n —1)

1 (n —1)~
(19)

ln

g 1, '(n —1)

I, '(n)

Here we have assumed that r(q) is the same at level n —1

as level n Because .p, is a constant we can express q(r)
explicitly. So we will use q(r) instead of r(q) to calculate
a(q):

III. THERMODYNAMIC FORMALISM

In the thermodynamic formalism the partition function
is defined by

q(r)=
—ln

p(n —1)
p(n)

(20)
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a(q(r))

ln
p(n —1)

p(n)

g I; '( n ) lnl; ( n )

one point. We denote by l(z; ) the size of the ith subset,
i.e., l(z;) is the size of the piece containing the point z, .
Similarly, l(z, &) is the length for z, „where z, , is the
backward iterate of z;: z, , =f (z; ). The scaling function
cr(z; ) is defined by

g I; '(n —1) g I; '(n)
l(z, )

(26a)

( lnp(n —1) ) —( lnp(n) )
( lnl(n —1) ) —( lnl(n) )

which can be approximated by
(21)

(26b)
The average ( A(n)) is weighed by I, '(n)lg, I, '.(n).
Equal probability means Since

p(n) =(Ia") (22)

where I is an integer depending on the number of unsta-
ble fixed points. Substituting Eq. (22) into Eq. (21), one
gets

continuing the backward iteration, one gets

lna
a(q) =

( lnl(n —1))—( lnl(n))

Equation (16) is correspondingly changed to

f(a) =q(a)a(q(r)) —r,
whereas Eq. (14) becomes

(23)

(24)
Backward iteration is a method that renders unstable
fixed points stable. Here zo is the fixed point of
z, ,zo =f"(z; ). Io is of order one, and therefore

(25)
I, =If '(z, )f '. (f"(2, )) .f'(zo. ) I

(27b)

In the following, Eqs. (23)—(25) will be used to calculate
f(a) and D .

In the case where the Julia set is one dimensional or
quasi-one-dimensional, l; is well defined. ' But in our
case the Julia sets are not quasi-one-dimensional. Figure
2 shows a typical Julia set of the Ising model (s =2) on
the diamond hierarchical lattice. For such a Julia set the
points are no longer well ordered. The usual way of
defining l; seems difficult to apply here. To overcome this
difficulty we will instead use the method of derivatives.

Consider a map f defined in the complex plane. We
divide the set into N subsets, each subset containing only

Equations (20)—(25) and (27) are the formulas we will use
to calculate f(a) and D~. To test the validity of this
method, we have applied it to calculate f(a) and D for
the maps f(z)=z"+c (n )2). The results are the same
as those obtained by the direct method.

We briefly mention two limiting cases: s ~0 and
s~ oo. As s =0, the rational recursion relation Eq. (5)
degenerates into a polynomial of degree two,

(28)

The Julia set of this map is at the threshold of becoming
a broken quasi-one-dimensional circle (Fig. 3). The two
fixed points of the map coincide

0—

4C
& I!

FIG. 2. Julia set for s =2.0 at level 6. FIG. 3. Julia set for s =0 at leve16.
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(29) lnp
(32)

lnp

ln~ f'(z*)I
where p is now independent of n. Therefore

lnp

(3O)

(31)

This is the marginal case in which the circle is just about
to break up. The Hausdorff dimension is equal to one.
To perform a more careful analysis of the limiting behav-
ior, let us examine Eq. (5) in detail W. e found numerical-
ly that as s~O, z*, ~1+, f'(z', )~1, z2 ~1
f '(z

z )~~, where z *, and z z are the two unstable fixed
points (see Table I). The extremal a values of the fixed
points are determined by the derivatives at these points

This agrees with the trend we have observed for s = 1 and
O.S, as shown in Fig. 4(a). Since p —l, a~DO corre-
sponds to l,„~l, where the breaking points of the
closed Julia set occur. And a~0 corresponds to
l;„~0, the most concentrated parts of the Julia set.
This infinite range of a indicates that the Julia set for
s ~0 is very nonuniform: l,„/l;„~~. This behavior
is quite different from that of s~~, to be discussed
below.

In the limit s ~ ~, the Julia set is unbounded, i.e., the
invariant set is not distributed at a finite distance from
the origin. Although we cannot get an analytic expres-
sion for the transformation, by examining the large s
values, we can conjecture as to what the Julia set and

TABLE I. Fixed points and their derivatives for various s values.

S

0.5

1.0

1.5

2.5

3.0

3.5

4.0

4.5

5.0

0.162 434 564 7
1.000 000 000 0
0.730 405 563 6
2.107 159 871 7
0.000 000 000 0
1.000 000 000 0
0.381 966011 3
2.618 033 988 8

—0.013 639 705 7
1.000 000 000 0

—0.013 639 705 7
3.027 279 411 3

—0.191 487 8840
1.000 000 000 0

—0.191487 884 0
3.382 975 767 9

—0.351 981 999 4
1.000 000 000 0

—0.351 981 9994
3.703 963 998 8

—0.500 000 000 0
1.000 000 000 0

—0.500 000 000 0
4.000 000 000 0

—0.638 464 011 5
1.000 000 000 0

—0.638 464 011 5
4.276 928 023 1

—0.769 292 354 2
1.000 000 000 0

—0,769 292 354 2
4.538 584708 5

—0.893 826 691 1

1.000 000 000 0
—0.893 826 691 1

4.787 653 382 2
—1.013050 099 7

1.000 000 000 0
—1.013050 099 7

5.026 100 1994

Fixed points
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.000 000 000 0
0.287 047 659 2
0.000 000 000 0

—0.287 047 659 2
0.000 000 000 0
0.508 851 778 8
0.000 000 000 0

—0.508 851 778 8
0.000 000 000 0
0.695 389 085 4
0.000 000 000 0

—0.695 389 085 5
0.000 000 000 0
0.866 025 403 8
0.000 000 000 0

—0.866 025 403 8
0.000 000 000 0
1.026 495 470 6
0.000 000 000 0

—1.026 495 470 6
0.000 000 000 0
1.179485 6100
0.000 000 000 0

—1.179485 6100
0.000 000 000 0
1.326 551 396 6
0.000 000 000 0

—1.326 551 396 6
0.000 000 000 0
1.468 711037 4
0.000 000 000 0

—1.468 711 037 4
0.000 000 000 0

Derivatives
0.330068 031 3
0.000 000 000 4

138.267 583 171 6
1.402 349 101 0
0.000 000 000 0
0.000 000 000 0

10.472 135 958 8
1.527 864045 0
2.099 657 432 0
0.000 000 000 0
2.099 657 431 9
1.613023 065 1

3.087 378 025 4
0.000 000 000 0
3.087 378 025 4
1.678 573 5104
3.647 032 761 7
0.000 000 000 0
3.647 032 761 7
1.732 220 386 3
4.000 000 000 0
0.000 000 000 0
4.000 000 000 0
1.777 777 777 8
4.238 690 877 5
0.000 000 000 0
4.238 690 877 5
1.817 441 381 4
4.408 189 273 7
0.000 000 000 0
4.408 189273 7
1.852 601 595 8
4.532 962 385 4
0.000 000 000 0
4.532 962 385 4
1.884 199 1544
4.627 362 909 0
0.000 000 000 0
4.627 362 909 0
1.912 902 460 1
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2.0

l.5—
QI +4+~

r

f (a) 10— a—

0.5—

O.O

l

(b) FIG. 5. Julia set for s =4. 5 at level 6.

real roots corresponding to two unstable fixed points and
one stable fixed point for

s4 8s'
&0,

4 27
(35)

i.e., 0&s &so, where so= —,", . The significance of the
stable fixed point was discussed in Refs. 2 and 7. If

0 I

-50 -25
l

0
I

25
I I

50 75
S4 8s

27
(36)

FIG. 4. f(a) and Dq for s=0.5 and 1.Oat levels 5 and 4. (a)

f(a); (b) Dq.

f(a) look like as s~ ~. In our numerical calculation,
we found, for s&s„where s, =16, the Julia set grows
bigger, more uniform (I,„/I;„~1),and tends to a cir-
cle as s increases. At the same time f(a) becomes
thinner and shorter, i.e., a,„, a;„, and f,„(a) all ap-
proach one. We have examined this trend for
s =50—5000. From those results, we conjecture that as
s ~ oo, the Julia set is an infinite uniform circle, and f(a)
is just one point: f=a = 1. Therefore the Julia set at
s ~ ~ is no longer a multifractal, but simply a fractal like
the uniform Cantor set.

i.e., s &so or s &0, there will be only one fixed point on
the real axis, the other two fixed points being complex
conjugates. Table I shows the fixed points and their
derivatives for various s values. We see for s &so, there
are three unstable fixed points, and only one is real,
whereas for s &so, there are two unstable fixed points,
both of which are real. As a consequence, the Julia sets,
f(a) and D behave quite differently.

In Figs. 2, 3, 5, and 6 we have shown the Julia sets for
some typical s values. For s &so, the Julia sets become
denser as s decreases (Figs. 2 and 5); for s (so, it is just
the opposite (Figs. 3 and 6). This feature is best refiected
in the Hausdorff dimension. Figure 7 shows the Haus-

IV. SINGULARITY SPECTRUM
AND GENERALIZED DIMENSION

Since the complex rational map Eq. (5) is of power
four, there are four fixed points given by the equation

2z' +s —1 (33)
2z*+s —2

z —3z +(3—2s)z —(s —1) =0 . (34)

It is easy to see that there is always a trivial fixed point
for any s value: z*=1. Excluding this trivial fixed point
from Eq. (33), we get a cubic equation

I

a

As observed by Itzykson and Luck, Eq. (34) has three FIG. 6. Julia set for s = 1.0 at level 6.
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2.0

20- ~

l.5—
(a)

D, l5- f(a) l.o—

l.O-

I I

0.0 2.0 4.0
I

6.0 8.0 IO.O
0.0

FIG. 7. Hausdor6' dimension Do for the s-state Potts model.
Do reaches its maximum value at s = 27. 2.5—I

(b)

dorff dimension Do versus s. Do=1 at s =0, it increases
to its maximum value at s =so, then decreases again to its
minimum value 1 as s ~~. Except for the limiting cases
s =0 and s~ ~, the Hausdorff dimensions of the Julia
sets are all greater than one. This is expected because
these Julia sets are not quasi-one-dimensional but planar.
For s ) 3, there is only one point, zF ) 1 on the positive
real axis (Fig. 5). This corresponds to a ferromagnetic
transition. For s & 3, another point 0 &zz & 1 appears on
the real axis with Fig. 2. This corresponds to an antifer-
romagnetic transition. Moreover, when s & 2 additional
points appear in the interval 0&z &1 on the real axis
(Fig. 6). We do not know if there is any physical
significance that can be attributed to these points.

The singularity spectrum f(a) and the generalized di-
mension D are calculated for s between 0.5 and 5.0. For
s & so, both f(a) and Dq change continuously with s. As
s decreases, the f(a) curve moves to the right and be-
comes higher [Figs. 8(a) and 9(a}] while D moves up
[Figs. 8(b) and 9(b)]. However, as s passes through so,
this trend ceases. Figure 4(a) shows f(a } for s = 1.0 and
0.5. It is shorter and bigger than that for s =1.5. Corre-
spondingly, D becomes a higher kink [Fig. 4(b)]. For
s (so, as s decreases, f(a) becomes shorter and stretches
along the real axis [Fig. 4(a)]. D at the same time be-
comes a higher kink. Eventually when s~0, f(a) will
extend to the whole semi-infinite real axis, i.e., a„„„~0,
nm»~ ~, and Dq will be an infinitely high kink.

For s &so, f(a) and D also differ for s & 3 and s (3.
When s ) 3, among the three repelling fixed points, the
point of the type (a, 0) is located at the most rarefied
point (corresponding to a,„), whereas the other two
conjugate points of type (a, b } and (a, —b } are located at
the most concentrated points (corresponding to a;„).
Because of these special fixed points the f(a) curves, no
matter how low the level of calculation is, have exact a
and a,. „. Therefore the f(a) and D curves converge
very quickly. Figure 10 shows the f(a) curves for s =4.5
at levels 5 and 4, respectively. We see that they almost
coincide even at these low levels. But as we go below
s =3, none of these repelling fixed points correspond to
a;„or a,„, and the rate of convergence for both f(a)

3.S
4S
S

2.0—

Dq
l.5—

l.o—

I I I

-40 -20 0 20 40 60

FIG. 8. Singularity spectra f(a) and generalized dimensions

D, for s =3.5, 4, 4.5, and 5, all at levels 4. (a) f(a ); (b) D,

4(z —1)(z+s —1)(z +s —1)f'(z)=
(2z+s —2)

(37)

If in a Julia set there are some points z; which make
f'(z; ) less than one, there will be lots of I; & 1 including
not only those badly located points but also some of their
preimages. The higher the level, the more irregular
lengths there are. In the Julia set for s =3 we can see
that there are some points (at a finite level) very close to

and D becomes very slow and irregular. Figure 11
shows f(a) for s =1.5 at levels 7 and 6. Compared with
the f(a) curves for s =4.5 shown in Fig. 10, we see that
even at these higher levels the convergence of f(a) for
s =1.5 is much worse than that for s =4.5. The gap be-
tween f;„and 0 in Fig. 11 indicates that one needs to go
to higher levels to obtain better convergence.

We should also like to mention the difficulties we en-
countered when we tried to calculate f(a) and D for
s =3. There are lots of I, ) 1 which are not allowed be-
cause they will give probabilities greater than one. The
left side of f (a) converges well, but the right side does
not converge even at very high levels. This may serve as
a hint that the derivative method may not be universally
applicable. Let us see in more detail what happens when
s =3. From Eq. 27(b), f'(z) can be obtained from the re-
normalization transformation equation (5)
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