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Chaotic dynamical systems are investigated, with the help of the Rényi information concept, both
in their phase space and in their history space. Several phases are distinguished and their charac-
teristics are discussed. Emphasis is put on two particular situations representing borderline cases of
chaos: when an unstable periodic orbit exists in the system with a zero or an infinite Lyapunov ex-

ponent.

I. INTRODUCTION AND SUMMARY

Chaotic motion, which is the subject of the present pa-
per, is a phenomenon very often observed in dynamical
systems.! Due to its inherent randomness its description
requires statistical methods. Shannon information has
played a central role in random systems long since
answering the question how much information an ob-
server gets, on average, while making a single measure-
ment, if the measurement deals with a finite number of re-
sults.”® Later, Rényi generalized the concept of informa-
tion,® introducing the order-g information. (g=1 corre-
sponds to Shannon information and when we refer to
Rényi information in the following, Shannon information
is included as a special case.) Dynamical systems have
continuous variables in general, so it is necessary first to
partition the phase space, next to make measurements,
and finally to investigate the information as the resolu-
tion € becomes infinitely fine. Unfortunately, Rényi in-
formation tends to infinity in this limit as a rule, and thus
finding meaningful quantities to characterize the system
becomes an important task.

To deal with the continuous limit, Rényi has intro-
duced the concept of the order-g dimension D (g),* which
tells us the speed of the divergence. His more detailed in-
vestigations showed that usually only one part of the
order-q information diverges, and one can specify a
remaining part I, p»> which does not, by subtracting
D(g)In(1/€) and taking the €—O0 limit. This
phenomenon is well known from classical equilibrium
statistical physics, where the order-1 Rényi dimension
agrees with the dimension of the phase space. It should
be mentioned that by investigating systems far from equi-
librium Haken has found that Shannon information for
such systems can also be split suitably into a divergent
and a nondivergent part.*>

In the case of chaotic dynamical systems a large num-
ber of papers has been devoted to the properties of the
different dimensions in the last few years (for a review see
Ref. 6) but to the best of our knowledge the quantity I a.D>
which will be called reduced Rényi information of order
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g, has not yet been investigated. Such an investigation is
the first aim of the present paper. In particular, we wish
to point out that one can use it for describing systems
showing phase transitions in the spectrum of generalized
dimensions,”’”® when D(q) is finite and nonzero, thus giv-
ing a more complete picture of the nature of such phase
transitions. We shall present an example in which it
diverges approaching the phase-transition point on both
sides, while a break point can be seen in the spectrum of
dimensions at the same time. Furthermore, we shall dis-
cuss such a situation where D(q) is infinite (zero) in one
part of the D(q) spectrum. In such cases I, , is minus
(plus) infinity in the same region of g. We shall investi-
gate how the phase transition appears approaching these
anomalous phases. Two examples will be given where the
behavior of I, , shows the influence of a nearby phase-
transition point.

Our second goal is to apply this approach when the
central quantity is the dynamical Rényi information,'®
which tells us about the information obtained by an ob-
server who makes a series of measurements. This prob-
lem can be best treated by constructing a new abstract
space, the so-called history space, and mapping the prob-
lem to the first one, defined in phase space.!" The dynam-
ical counterparts of the Rényi dimensions turn out to be
the generalized order-g Rényi entropies K (g), apart from
a trivial factor. K(1) is by definition the Kolmogorov-
Sinai entropy and as usual, we take as the definition of
chaos that it is nonzero. In complete analogy with I, ,,
one can introduce in the history space the reduced
dynamical Rényi information of order q denoted by I q’: D

The discussion will include dynamical phase transitions
defined by the appearance of nonanalytic points in the
Rényi entropies as a function of g. We shall distinguish
three phases. We shall denote as the chaotic chaos phase
(CCP) the region of g values ¢, <q <gq,, where K(q) is
finite and nonzero. It is also characterized by a finite re-
duced dynamical Rényi information of order ¢ between
g, and g,, which is found to diverge when approaching
the phase-transition points g, or g,. Two anomalous
phases are defined as follows. In the region of the regular
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chaos phase (RCP) K (q) is zero, while in the stochastic
chaos phase (SCP) K (g) is infinity. Furthermore, I,
behaves anomalously in these phases, namely, it is plus
infinity in RCP and minus infinity in SCP. The former
anomalous phase was found previously in chaotic dynam-
ical systems exhibiting weak intermittency.'>!> The
latter is a new phase, and we have observed it in systems
in which the trajectory gets close to an unstable periodic
orbit with an infinite Lyapunov number. It will be shown
that the dynamical multifractal spectrum g(A), which is
the Legendre transform of (1—¢)K(q), is not a single-
humped function for systems having the stochastic chaos
phase, but that only the increasing branch of g(A) ap-
pears.

Furthermore, we shall prove that the reduced dynami-
cal Rényi information of order 1, It is equal to the

effective-measure complexity introduced by Grass-
berger.!*
The general considerations will be illustrated

throughout the paper using one-dimensional chaotic
maps and carrying out both numerical and analytical cal-
culations.

The paper is organized as follows. Section II will give
some short definitions on the static quantities. Section
IIT will discuss the “static’”’ phase transitions. Section IV
is devoted to the dynamical quantities and phase transi-
tions in them, followed by examples and numerical evi-
dence.

II. DESCRIPTION OF PHASE SPACE

Informationlike and dimensionlike quantities

Shannon’s definition of information is not the only one
possible. It fulfills a number of important conditions (the
Khinchin axioms®) but if one relaxes these conditions
somewhat, a number of other informationlike quantities
can be defined. The most important of these generalized
information quantities are the order-q¢ Rényi information
quantities defined in the phase space as®

1
1—

I1.(q)= qln > Pf, g1 (1a)

i=1

One can define I (g =1) as the Shannon information

I(1)=—T PiInP, . (1b)

i=1

Here € refers to the size of uniform boxes introduced by
partitioning the phase space and »n is the number of boxes
with nonzero probability P; according to an invariant dis-
tribution. Similar to the Shannon information, I.(q)
diverges as €e—0 as ~1In(1/¢), thus the dimension of or-
der g is given by3 1>~V
I1.(q)
D(g)=lim——— . (2)
(@)= /e
The generalized dimensions D(gq) can be expressed
through the spectrum f(a) as®

D(q)=q+1[qa(q)~f(a(q>)] : 3)
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where a(q) is defined by the relation

d
alq) dq(q 1)D(q) . (4)
Consequently, f (a) is related to (¢ —1)D (g) by means of
a Legendre transformation.

These definitions assume a special set of measuring in-
struments with uniform resolution €. In general, this is
not the case; the sizes of measuring boxes may be nonuni-
form. Furthermore, there is nothing in the definitions
that need to be specific to attractors of dynamical sys-
tems. For more precise and technical definitions we refer
to the literature.'"!®

Further characteristics of the system can be obtained if
one investigates the D-dimensional information of order ¢

I, p=lim[I(q)=D(g)n(1/e)] (5)

introduced by Rényi.> This quantity, which will be re-
ferred to in the following as reduced Rényi information
of order g, is the next leading term to D(g)In(1/€) con-
tained in the order-g Rényi information I.(q), when D (q)
and I, , both exist. In the case of an absolutely continu-
ous distribution with density function P(x), I,  is equal
to I,fD in a certain region of ¢, where

P _
Iq,D—

Loin [[P0o))9dx, g#1 (6a)
l—gq

17 =~ [ P(x)InP(x)dx . (6b)

The region of ¢ where this equality holds is defined by the
condition that the integrals in (6a) and (6b) exist, at least
as improper ones. (6b) can be interpreted as the Shannon
information for continuous random variables and (6a) as
its generalization, or alternatively the finite part of Rényi
information, i.e., the nondivergent part of Rényi informa-
tion as the resolution € tends to zero.

The condition of a nonzero and finite D(g) and I,
can be formulated so that the partition function in (la)
should scale in the limit e—0 as

n

S Pi=A(q)e"? (7
i=1

where
m(q)=(q—1)D(q) , (8a)
InA(g)=(g—1)1,, . (8b)

The validity of (7) can generally be traced back to the
basic assumption that the probability in a box scales as a
power law with the size of the box,®

P~e" . )

When, in the following, we will find phases where (7) does
not hold, it will be the consequence of the violation of (9)
in certain boxes.

III. PHASE TRANSITION IN FUNCTION OF ¢

The spectrum of generalized dimensions,'®!” and the
static multifractal spectrum f(a) have attracted recent
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interest,®!®1° and in certain cases nonanalytic behavior
has been pointed out. Such behavior might be interpret-
ed as a phase transition in the framework of different
kinds of thermodynamic formalism worked out for
dynamical systems.?0 2212

We want to point out that nonanalytic behavior in
D(q) is not the only sign of a phase transition. Qualita-
tively one can expect that near to the phase-transition
points one needs more precise measurement of I.(g), i.e.,
one should choose smaller €, to measure D(q) with the
same error bar. In other words , one expects that the re-
duced Rényi information I, diverges as g approaches
the phase-transition points.

As an example let us investigate a simple dynamical
system, namely, a family of one-dimensional, piecewise
parabolic maps®* defined by

x'=fpplr,x)={r+1—[(r—12+4r|1—2x[]"} /2r ,

—1=r=1i,

\

0=x=1. (10

The parameter r is the control parameter that measures
the deviation of the map from the tent map. As the prob-

ability density generated by the map is known,? namely,
Ppp(r,x)=1+r(1—2x), —1=r=<1, 0=x=1, (11)

analytic calculation can be performed. For rs+1 one
obtains

D(g)=1, (12)
1 (A+r)ftt—a=ry*!
= P =
Top=lp =7 2r(1+9) ’
g#+1  (13)
1p=10p=4=2-[(1+rPIn(1+7)
—(1=r)In(1-r)], (14)
1 1+r
I*,’D=I£1’D=%ln ;ln 1=, (15)

It can be seen that no phase transition occurs if r=£==+1.
Phase transition in the D(q) spectrum can be found, how-
ever,”®12 if the control parameter 7 is equal to +1, name-
ly (for r==1),

_2q9 ifa<—1
Digi=1g—1 "1 (16)
1 ifg=>—1.

We show below how this phase transition is reflected in
the properties of I, ,. The calculation of I, j, yields for
g>—1land r==1

L [gin2—In(g+1)], g#1

1—¢q
+—In2, g=1

2

—gP —
Top=lan= (17

which can be obtained from Egs. (13) and (14) in the limit
r—*1. For g < —1, where Eq. (6a) does not apply, a
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direct calculation gives

I,p= _qln[(1—2")§(—q)], r==+1, g<—1 (18)
where {(z) denotes the Riemann § function. Approach-
ing the phase-transition point ¢ = —1, I, ,, diverges loga-
rithmically on both sides of it.

The nonanalyitic point at g, = —1 defines the phase-

transition point, and the two phases for ¢ > —1 and
g < —1, respectively, are characterized by finite and
nonzero D(q) and I, ;,. We call this type of transition a
second-rank phase transition. In addition, we point out
below that stronger types of nonanalicity can also occur.

It is a general assumption that the partition function
scales in the whole region of g, —® <g < o as in (7).
But for certain systems this assumption does not hold in
the whole region. Instead, it obeys

> Pf~B(g)Inl/e)" %@

i=1

(19a)

or

S P{~B(q)C(q)" /",

i=1

(19b)

where B(q), C(q), and 8(q) are g-dependent constants.
Possibly other non-power-law scaling forms also may
have some relevances, but we restrict ourselves to the
simplest cases.

For the occurrence of the form (19a) it is sufficient that
there exists at least one box probability P,, which de-
creases to zero slower than any power law as a function
of the size of boxes ¢, e.g.,

PS>-——61—, 5>0. (20)
In°1/€

In that case for g > 1 an upper bound of D(q) is given by

InP; 5 Inlnl/e
0<D(g) < lim—1— <lim—-22-27€ —
(@)= i i/ oM™ ¢ Inl/e

g>1. (@21

Thus, if some box probabilities decay slower than a
power law, D(q) is zero for g > 1, and the partition func-
tion scales as in (19a). Obviously by definition (5), the re-
duced Rényi information is plus infinity in that region.
Concerning the f(a) spectrum al(g)=f(a(q))=0 for ¢
values greater than 1, while a(¢g=1)=f(al(g=1)) can
take any value between 0 and D(1). Thus the phase tran-
sition at g, =1 gives a straight line in f(a)

fla)=a, a€[0,D(1)]. (22)

The g values less than 1 contribute to the remaining part
of f(a).

Similarly, if there exists at least one box probability P,
decaying to zero faster than any power law, the partition
function for negative g values is dominated by the terms
containing the anomalously fast decaying box probabili-
ties. Let us suppose, for example, that there exists a box
probability P, for which
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P,<C7V¢, C>1,6>0. (23)

Estimating D (g) from below we get for negative g values

InP —

. q f . q InC

D(q) = lim 2 lim =w, ¢<0.
(@ sl_.ol'—q Inl/e sl_.ol—q €’Inl/e * 4

(24)

The f(a) spectrum also has a strange behavior. From
the trivial inequality

fla)=a (25)
it follows for g < 1 that
alqg)=D(q) . (26)

Comparing this inequality with (24), one obtains
w=D(g)=alg), g<0 (27)

which says that there is no contribution to f(a) from the
negative g values, and thus it contains only the monotoni-
cally increasing branch. In the case of (23) the partition

|

Inx —In(1—x)]

f(x)=exp —(

Anomalous scaling occurs in the leftmost box, where

S:m, e—0 (30)

which corresponds to (20) with 8=1. A direct calcula-
tion shows that a first-rank transition can be observed at
g.=1. The phase for ¢ > 1 is described by

D(g)=0, g>1 (31)
Ip=c, g>1 (32)

while below g, the usual finite behavior can be found. Its
characteristics are given by

D(g)=1, g<1 (33)

Iq’D=I£D=Ti—q-[(1——2q)+(2q—-l)ln(l—'q)
+InI(1—2q,1—¢)], ¢g<1 (34)
where I'(x,y) denotes the
F(x,y)=fymt"—le_’dt (35)

function. Approaching g., the reduced Rényi informa-
tion shows the sign of a nearby phase-transition point,
while D (g) does not. Namely, the former one becomes
singular

Iq.D ~—1In ’ (36)

1—gq

which can be extracted from (34). The Legendre trans-

I—Inx)[1—In(1—x)]—|lnx —In(1—x )|
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function scales as in (19b), and the reduced Rényi infor-
mation is minus infinity for g <O.

Usually both anomalous scaling forms (19a) and (19b)
are restricted to a subset of ¢ €[ — w0, o ], which defines
the anomalous phases. Approaching the border points g,
of these phases, a phase transition occurs, which will be
called a first-rank phase transition, as contrasted to the
one discussed earlier. According to our definition, at a
first-rank phase transition the behavior (7) becomes
violated and gives way to the one like (19a) or (19b), while
in case of a second-rank phase transition the change re-
sults in a new exponent of the power law (7).

As an example, let us consider a one-dimensional
chaotic dynamical system, namely, a map having an in-
variant distribution with support [0,1] according to

u(x)= , x€[0,1]. (28)

1—Inx
In Ref. 23 the authors gave a straightforward way to con-
struct a one-dimensional single-humped map that has a
prescribed invariant distribution. By this method we get
for the form of the map corresponding to (28)

(29)

form of (¢ —1)D(q) [see Egs. (3) and (4)] gives the f(a)
spectrum, which is

fla)=a if a€[0,1]. 37)

The normal and the anomalous phases in D (g), i.e., g <1
and g > 1, respectively, reduce to one point in f(a)

1, g<1 (38)

flalg))=alg)= 0, g>1 (39)

and the straight line between comes from the first-rank
phase transition at g, = 1.

Our second example is when the invariant measure of
the interval [0,x] is given by

ulx)=e!"1* xe€[0,1]. (40)

The map which generates this invariant distribution is
given as follows:

flx)=1/[1=In(1—|e! "1/x—el= /=X (41)
Anomalous scaling occurs also in the leftmost box
Pr=ee” !¢, (42)

which corresponds to (23) with §=1. The result of a cal-

culation as above is
D(g)=w, ¢g<0 (43)
I,p=—wo, g<0 (44)

while in the normal phase
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D(¢g)=1, ¢>0 (45)

1
]q’D:l——q[(zq —1)+(1—2q)lng +1Inl'(2¢—1,9)],

q>0,g#1 (46)

D=‘}i-*mllqyb=l+2e Ei(—1). (47)

Approaching the phase transition point ¢.=0, I, p
behaves like

I,p~—qlnl/q, ¢>0. (48)

The f(a

fla)=1 ifa€[l,o]. (49)

) spectrum has quite a strange behavior

The contribution of negative g values cannot be seen in
f(a) because

alg)=o if ¢<0. (50)

The normal phase reduces to f(a(g >0))=al(qg >0)=1,
and the horizontal line from a=1 to a= « comes from
the first-rank phase transition of D (q).

The two examples of first-rank phase transition can
seem somewhat untypical because the anomalous behav-
ior of the measure was built in, and subsequently the
map, i.e., the dynamical system, was constructed. In Sec.
IV, however, we shall investigate the so-called history
space where such first-rank phase transitions show up in
a natural way in borderline situations of chaos.

IV. DESCRIPTION OF DYNAMICS

A. History space

Until now, we have studied the information obtained in
a single measurement. Next, we consider the information
gained by an observer in a series of measurements, which
follow the time development of the dynamical system.
Let us give first the definition of the measurement. Take
a record of a signal x, with t=1,2,...,n and partition
the phase space into m pieces labeled from 0 to m —1,
considering only which box is visited by the trajectory at
specified moments. The sequence O, =(i,i5,...,i,),
i;=0,..., m—1;j=1,...,n gives a possible character-
ization of the trajectory, where i; are attached to the
boxes and the symbols iy,i,,...,i, are taken at subse-
quent sampling times. It is assumed that there exists a
stationary probability distribution on the chaotic attrac-
tor. Accordingly, the sequences O, form a stationary
process. The probability that a given sequence occurs is
P(0O,), which can be calculated from the invariant distri-
bution. The symbol sequence probabilities should be con-
served when the system makes transitions to new states,

m—1

2 P(ll,...

n+l =0

Py, ... ,0,). (51)

n’ln+l)

Following Farmer,'! a new space can be introduced. A
given sequence of length n specifies the number

n
()= P =k i
z/’=3 iim™% j=0,...
k=1

,m"—1. (52)

The numbers z/’

one-to-one correspondence between the numbers z,,

are in [0,1), and this encoding results a
/) and

the sequences (i, ...,i,). Next, let us construct a new
probability-density function by the relation
P,(2)=P(i,,...,i,)m" ifz'<z<zP4+m™". (53)

In the limit n—o the resulting P(z)=lim,P,(z)
probability-density function is normalized and induces a
well-defined measure. Furthermore, the conservation
laws (51) ensure that integrating over the intervals
[z\,29'+m ~") gives the corresponding symbol-sequence
probabilities P(i,,...,i,)

z:'j)-f—m -n

Pliy, ... i)= P(2)dz . (54)

2\

This new space, where z is a point and P(z) is defined as
above will be referred to in the following as the history
space.

Let k=(Ay, ..., A, ;) be a finite partition of the
phase space (i.e., UL, 14 ; is equal to the full phase
space; A, NA ;=0 for k+#I/), and d(x,y) some metric.
The diameter of a set C is d(C)=sup, ,d (x,y), where the
supremum is over any two points x and y in C. The di-
ameter of a partition k= {A ] is d(k)=sup 4 d(A;). Let

the system evolve in one time unit as x,,,=f(x,). For
every piece A ; we write f k.)fl for the set of points
mapped by f* to A ;. The partmon k" is the partition
generated by x in a txme interval of length n

:{Ai,nf_laqizﬂ e NfTTA, i,

This partition has the following property. If two trajec-
tories start from the same partition element they give the
same symbol sequences up to the length n. Starting from
different partition elements the symbol sequences will be
different. Finally, the partition is a generating one if
lim,  .d(x")=0.". In the following we will assume that
a finite generating partition exists, i.e., m is finite, and we
will always be dealing with such partitions throughout
the paper.

B. Generalized information in history space

Information-theoretically, the observer who makes a
series of measurements, which was discussed earlier, ob-
tains

1,()==3'P(O

n

2InP(0,) (55)

information, where n refers to the time interval and the
prime means here and in the following that the summa-
tion is taken over the sequences with nonzero probabili-
ties. If the process is chaotic I,(1) goes to infinity as
~(const)Xn. Following Sinai,”* the mean rate of
creation of information, which is called Kolmogorov-
Sinai entropy, can be defined as

K()=lim I,(1)/n . (56)
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To describe the dynamical properties of the system,
other informationlike quantities can be defined by

1
l—q

I1,(q)= In¥’'P(O,), g1 (57)
0

analogously to the “‘static”” order-g Rényi information.
The dynamical information of order g, I,,(g) also goes to
infinity as ~ (const) X n and the rate

K(g)= lim I,(q)/n (58)
n— o
is called in the literature the order-g Rényi entropy. (For
a review see Ref. 6.)

By constructing the history space using a generating
partition, the relationship of the order-q dimension to the
order-g Rényi entropy becomes clear. As we mentioned
before, studying symbol sequences of length n is
equivalent to examining the symbol-sequence probability
density P(z) at a scale of resolution e=m ~". This map-
ping allows the order-g Rényi entropy to be rewritten in
terms of the order-g dimension in history space. Since
In(1/€)=n Inm, the order-g Rényi entropy K(gq) can be
written as

Inm ,

K(g)= fim |22
9 —nLnL n Inm
(59)

K(q)=D*(q)lnm ,

where we introduced the notation D*(q) for the order-q
dimension in the history space. These equalities are gen-
eralizations of Farmer’s results for ¢ =0 and 1.!!

There exists the dynamical counterpart of the f(a)
spectrum denoted by g(A), which is basically the f(a)
spectrum in the history space apart from some trivial fac-

tors. It is defined via®>~?’
A=a*lnm , (60)
gA)=f*(a®)lnm , (61)

where we used the notations a* and f*(a*) in the history
space instead of the usual notations a and f(a), respec-
tively.
Going on with this analogy, we can define the D*-
dimensional information of order g in history space as
I = lim[I,(g)—D*(g)nlnm]

q,D n— o

= lim [1,(q)—nK(q)], (62)
n-— oc

which we denote as the reduced dynamical Rényi infor-
mation of order g. I has an important meaning at the
particular value ¢ =1. To the characterization of the
complexity generated by the patterns of the symbolic dy-
namics, Grassberger has introduced the quantity called
effective measure complexity (EMC) (Ref. 14):

S nth,_,—h,), 63)
n=1

where 4, is defined by
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h,=I, (1)—I,(1). (64)
Let us consider
N

C(N)=73 n(h,_,—h,), (65)

n=1
which is by the definitions (64) and (65) equivalent to
C(N)=Iy(1)—Nhy . (66)

From (62), (64), and (66) it follows that in the limit when
N goes to infinity

IN()=NK()+1 ,++O(1/N°), 0>0 (67)
hy=K(1)+O0(1/N°*"), 0>0 (68)
C(N)=I, ,x+O(1/N°), a>0. (69)

Thus the EMC becomes
lim C(N)=I%}, . (70)

N-—>x

Consequently, the order-1 reduced dynamical Rényi
(Shannon) information is equal to the effective measure
complexity.

It can be shown that for the unique definition of (62) it
is not enough that the partition be a generating one, since
(62) can take different values for different generating par-
titions. For example, if we use the partition «'=«*,
which is also a generating one, I;'D* will be shifted by
D*(q)k Inm.

To define quD* unambiguously, we require that the

partition chosen should be a generating one and
I pe=infd, (), (71)

i.e., we use that generator which minimizes I «.

C. Dynamical phase transitions

Dynamical phase transitions show up as nonanalytic
points in the spectrum of Rényi entropies, and we shall
point out that they are also exhibited in the singular be-
havior of the reduced dynamical Rényi information. The
assumption that K (g) is nonzero and finite is equivalent
to that the partition function 3'[P(iy,...,i,)]? (where
the summation is over iy, ...,i,) scales as ~ A(q)A"(q)
for large n, where the g-dependent A(g) is © > A(g)>1
for g <1, and 0<A(g) <1 for g > 1, respectively. But, for
certain chaotic dynamical systems this scaling assump-
tion does not hold in the whole region of ¢, — o0 <g < .
The investigation of two possibilities in detail leads us to
anomalous scaling.

First, let us suppose that using a generator partition in
phase space and measuring the sequence probabilities,
our chaotic system has one (or more) symbol sequence O,
decaying slower than exponentially, say

P, ...,0,)=P(0,)= An"%, (72)

with positive 4 and s, and this relation holds for large
enough n. For g > 1 a nontrivial upper bound of K(q) is
given by
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K(@)< lim —g—%lnP(an)

n-— oo -

< tim —4—L(in4 —s1an)=0,, (73)
e 1—
thus K (gq) should be zero for ¢ > 1.'? Recall that our sys-
tem is chaotic, i.e., K(1) is nonzero by definition. Know-
ing the monotonically decreasing property of the Rényi
entropies, it can be seen that a phase transition occurs at
g.=1. This type of phase transition was found in some
one-dimensional chaotic maps in the weak intermittent
state,'>2%2% and later, in the Lorenz-model'? at parame-
ters 0=3.929, b=1.032, and r=16.49, which also
showed weak intermittency. The intermittency is a possi-
ble mechanism for the power-law decay (72) because Eq.
(72) means that some symbol sequence decays slower than
the usual exponential decay; in other words, this symbol
sequence is much more probable than the others. This is
the case when the trajectory gets close to a marginally
stable periodic orbit, i.e., the system is in weak intermit-
tent state.

Next let us investigate the case when there exists at
least one symbol sequence O, decaying faster than ex-
ponentially. For example,

P(i,,...,1,)=P(0,)<SB~ ", (74)

with constants B>1 and C>1. A lower bound of K(q)
for g <0 is given by keeping only this symbol sequence in
the partition function

g C"

1 1 ~ .
K(g)2 lim ———InP(0O,)2 lim ——
@ nLn:cl—qnn (On) ngrloq—l n

InB= o0,

g<0 (75)

which shows that K(gq) is infinite for negative g values.
However, the topological entropy K(0) is smaller or
equal to Inm, where m is the number of partition ele-
ments; consequently, we have a phase transition again,
with infinite jump at ¢ =0. Because the Reényi entropies
are monotonic and positive, K(q) is finite for positive g
values. Equations (72) and (74) are the dynamical coun-
terparts of Eqgs. (20) and (23), respectively, and the transi-
tions associated with them are first-rank phase transitions
in the history space.

It is interesting to ask the question, for which dynami-
cal systems do the singular behavior (75) of the K(q)
spectrum arise? In some sense the second possibility (75)
occurs in the chaotic state opposite to intermittency.

Usually the chaotic dynamics have (infinitely many)
unstable periodic orbits that repel the trajectory. The
measure of the instability of a periodic orbit is the
Lyapunov number along the periodic orbit

L= lim %lnllf'(x,, ' —y) - F1x)|
x; 11=f(x;), xq€ periodic orbit , (76)

where f'(x;) denotes the Jacobian matrix at point x;.
Qualitatively, the larger the Lyapunov number, the
stronger the repelling property of the periodic orbit. A
periodic orbit can be called marginally unstable if the
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Lyapunov number is zero, and superunstable if L is
infinite. Anomalous scaling may occur if the dynamical
system has one of these singular periodic orbits, causing
the trajectory to stay for an anomalously long or short
time, respectively, in the corresponding boxes of the n-
level partition «". The first situation is related to inter-
mittency as discussed above, while the second one is re-
sponsible for the behavior (74) and (75).

The usual classification of dynamical systems uses the
following terminology. If the system has nonzero
Kolmogorov-Sinai entropy K (1) it is called chaotic. For
systems exhibiting regular motion (i.e., being in a fixed
point or in a limit cycle) K (1) is zero and the systems are
called regular. Finally, a system is called stochastic if it
has infinite Kolmogorov-Sinai entropy associated with
the stochastic noise coming from outside of the system.

Let us suppose that the system is chaotic specified by a
nonzero Kolmogorov-Sinai entropy K(1). On the basis of
the above terminology we introduce the following
classification for phases in chaotic dynamical systems.
The chaotic chaos phase (CCP) is that part of the spec-
trum of the Rényi entropies where K (g) is nonzero and
finite. The region of ¢ where K(gq) is zero will be called
the regular chaos phase (RCP). Finally, the stochastic
chaos phase (SCP) is characterized by infinite Rényi en-
tropies.

We are now in a position to sketch the qualitative form
of the g(A) spectrum. For systems that have only CCP,
g(A) is usually a single-humped function.?> [We note it
can be highly degenerate as, e.g., for the logistic map
f(x)=4x(1—x), where K(g)=In2 independently of gq.
Here the single-humped function shrinks to a point.] It is
zero at A(xow)=K(xw), positive between them,
touches the line g(A)=A at A(l), and attains its max-
imum at A(0) where g(A) is equal to K(0). The shape of
g(A) for systems having RCP was discussed in Ref. 11.
Namely, because of the jump in K(q) at g=1, when one
performs the Legendre transform of (1—¢)K(q) one finds
that A(g =1) can take any value between K(1) and O.
Thus g(A)=A in the range 0<A <K(1). This part of
the g(A) curve then joins a single-humped curve with a
continuous first derivative.

It can be easily proved that

g(A(g))=Alg), (77)
from which
Alg)Z2K(g), g<0 (78)

follows. Thus, in the SCP A(q)= 0, i.e., the negative g
values do not contribute to the g(A) spectrum. However,
there still remains two possibilities. If the limit of A(q) is
finite when g tends to zero from performing the Legendre
transformation one finds that A(g =0) can take any value
between A(0O+0) and . Thus, in that case g(A)=K(0)
in the range A(0+0)=<A=<o. The second possibility
occurs when A(0+0) is infinite, i.e., g(A) is a strictly
monotonically increasing function of A, and its max-
imum, K(0), is reached at infinity.

Next, let us discuss the behavior of the reduced dynam-
ical Rényi information in the different phases. In the
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Plz) —————————————

S.0 | -

FIG. 1. History-space probability of the map (10) at the reso-
lution e=2"°. The control parameter r is 0.25.

RCP Iq px=1im, I, (q) [according to (62) and with
K (g)=0], which is bounded by

lim I,(¢)= lim I,(c)=— lim InmaxP(i,,...

n— oo

Vi)

n— o n— oo

(79)

from below. Thus, Iq,D* is plus infinity for ¢ > 1, provid-
ed that there is no P(i,,...,i,) which remains finite if

In the SC phase it directly follows that
Iq,D*:—OO using the definition (62) and the fact that
K(q)= . Finally quD* is finite in the CCP and expected
to tend to infinity approaching the phase-transition
points. For finite n 1,(q)/n ~K(q)+1q,D*/n; conse-
quently, Iq‘D* gives the first correction to the ‘“finite-
time-scaling” calculations. Furthermore, it shows the
phenomenon of critical slowing down in calculating the

Rényi entropies for finite times n when g approaches the
phase-transition points.

n— 0.

D. Examples

The dynamical system generated by the one-
dimensional family of maps (10) is particularly well suited
for illustrating the phase transitions outlined above and
for investigating the behavior of the dynamical quantities
because at the control-parameter value r =1 the corre-
sponding map has a marginally unstable fixed point in the
origin, while for r=—1 this fixed point becomes su-
perunstable. A generating partition corresponding to (71)
consists of a bipartition A ,=[0,%), A,=[%,1], where X
denotes the maximum point of fpp(r,x). For the unique
natural invariant distribution of the family, known? to
be (11), the history space of the maps can be easily con-
structed numerically by the common refinement of the bi-
partition. Figure 1 shows the history space probability
Py(z) for the map f(0.2,x) at the resolution e=2"°. [See
Eq. (53).]

We have numerically determined K (q), g(A) and Iq,D*

in three situations. As a typical situation when only CC

K(q)
1.5 T T T T ] T T T T T
L (Q) J
- (=] <
0S5 +— —
L
0 0 1 i i 1 1 1 1 1 1 q
-5 0 5
K(q)
1 T T T T ] T T T T
- (b) -

05 —

0.0 —t

FIG. 2. Order-q Rényi entropies for the class of maps (10) in
three situations. (a) r=—1 (SCP for ¢ <0); (b) r=0.5 (only
CCP); (c) r=1(RCP for g > 1).

phase is present we have chosen r=0.5. To illustrate the
CCP<+-RCP and the SCP<+>CCP phase transitions we had
to choose r =1 and r = — 1, respectively.

In the CCP we used the method described in Ref. 12,
which is based on the following: Starting from the points
of one of the pieces of the n-level partition k" the trajecto-
ry generates the same symbol sequence. Consequently,
integrating the probability-distribution function (11) over
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o B
1 i — 1 I ' 1 S q
-5 0 )
0.5 L) v
0.0 —
-0.5 i q
-5 0 S

FIG. 3. g dependence of the reduced dynamical Rényi infor-
mation for the class of maps (10) in the same situations (a)-(c)
as in Fig. 2.

these intervals gives the corresponding symbol sequence
probability. Knowing them, one gets the dynamical
Rényi information 1,(q) by (55) and (57). To obtain more
accurate results we used the asymptotic form for one-
dimensional maps?®

I,(¢)/n=K(g)+[A(q)+B(q)8"(q)]/n . (80)
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g(A)
15 T I T I T
(a)
1.0 —
05 —
00 1 1 l 1 A
0.0 0.5 1.0 1.5
g(A)
1.5 r T . I T
(b)
1.0 —

0S5 —
oo 1 l 1 [ 1 A
0.0 0.5 1.0 1.5
g(A)
1.5 —
(c)
1.0 —
- 1
0.5 |------- , —
oo 1 l 1 l 1 A
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FIG. 4. g(A) spectrums of the maps (10). The control pa-
rameters r were chosen as in Figs. 2(a)-2(c).

From (62) it directly follows that the constant 4 (q) is
A(q)=1q,D* . (81)

In this way, we obtain good results at moderate n apart
from small neighborhood of the phase-transition points.
Figures 2(a)-2(c) and 3(a)-3(c) show the values of K(q)
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and Iq ISE respectively, obtained from »=13,...,16 in

the three situations. From these data we obtained the
g(A) spectrum using the Legendre transform of
(g —1)K(q). The present calculation was made in the
range —5 =gq =5; thus, in Figs. 4(a)-4(c) one can see that
part of the spectrum g(A) which is between A(—5) and
A(5). For this map, however, in the presence of the su-
perunstable fixed point (r=—1) we could determine
analitically that A(0+0) is infinity. Consequently, this is
an example where g(A) consists of a strictly monotoni-
cally increasing part and nothing else.

One goes along a different thermodynamical path if
one investigates the effective measure complexity / \.p* a8

a function of the control parameter ». This function, de-
picted in Fig. 5, shows that the tent map (r =0) is less
complex, and the complexity increases upon leaving this
point in both directions. In one of the borderline cases of
chaos (r= —1) the effective measure complexity is finite,
while in the opposite case (r=1) it is an open question
whether it is finite or not.

The examples above belong to the family of fully
developed chaotic maps. The borderline situations,?’
where the phase transition occurs can be formulated in a
general way for this class of maps. Let us start by recall-
ing the definition of the fully developed chaotic maps
x;=f(x;).2% They map the interval [a,b] onto itself,
where f(a)=f(b)=a and f(x) is supposed to have a
maximum at X, where f(X). Further specifications un-
derstood in the definition of f(x) are that they are
differentiable, except possibly at a,X, b, their slopes at the
fixed points x* are |f'(x*)| =1 and they are monotoni-
cally increasing and decreasing for a <x <X and
b >x > X, respectively. It is also required that the maps
are ergodic for almost all initial values and they have a
unique invariant measure u, which is absolutely continu-
ous (with respect to the Lebesgue measure), and have pos-
itive Kolmogorov-Sinai entropy. The general form of
FDC maps is given by

Fx)=1—]1—2x|+v(f(x)), (82)
vix)=v(l—x), v(0)=0 (83)

and by conjugates f(x)=u[f(u x))] of f(x).2
Among these maps a phase transition of type CCP«~>RCP
occurs at g=1, if v'(0)=1, while for v'(0)=—1 an
SCP<—CCP transition can be found at ¢ =0. The map
(10) corresponds to the choice v(x)=rx(1—x). At the
borderline situation further examples are the maps below:

fls,x)=[1—|x"—(1—x)]"*, (84)
P(s,x)=sx*"1. (85)
They have an SC phase if s > 1 and ¢ <0, while the maps
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Iy, 0%
0.2 T T T T ] T T L

FIG. 5. r dependence of the effective measure complexity

I« for the maps (10).

frx)=1—|x"—(1—x)""", (86)
Pr,x)=r(1—x) ! (87)

have an RC phase if r <1and g > 1.

As we have discussed earlier, the reduced order-q
dynamical Rényi information I,(q)/n does not scale in
the RC and SC phases as (80). For maps having a mar-
ginally unstable fixed point it was shown'? that

1,(q)/n ~(const)lnn /n (88)

in the RC phase. The scaling form for maps in the SC
phase is quite different, namely,

1,(¢)/n~F(q)G(q)"/n , (89)

where F(q) and G(q) are g-dependent constants and
G(g)> 1. Finally, we mention that according to Eq. (80)
one can define the generalized entropy decay rate by

v(g)=—1Inl8(g)| , (90)

which is also an interesting quantity.?®3! It describes the
characteristic inverse relaxation time of the order-q
dynamical Rényi information. y(q) also becomes nonan-
alytic in the phase-transition points and is infinity, finite,
and zero in the SC, CC, and RC phases, respectively.
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