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II. Application to the classical one-component plasma, the signer crystal, and He
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We extend our previously developed Ginzburg-Landau theory for calculating the crystal-melt in-
terfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged
fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al.
[Phys. Rev. A 35, 2611 (1987)] yields for the surface tension r= l. 12X 10 '(Z'e'/ a'), where Ze is
the ionic charge and a is the radius of the ionic sphere. For the fermion system, the absence of reli-
able correlation functions near the coexistence line makes it difticult to estimate the surface tension.
We treat the Bose crystal-melt interface by a quantum extension of the classical density-functional
theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is
applied to the metastable He solid-superfluid interface at T=O, with a resulting surface tension
~=0.085 erg/cm', in reasonable agreement with the value extrapolated from the measured surface
tension of the bcc solid in the range 1.46—1.76 K. These results suggest that the density-functional
approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid
interfaces, given knowledge of the uniform phases.

I. INTRODUCTION

Recently we have developed a Ginzburg-Landau
theory for the solid-liquid interfacial tension and interfa-
cial width of the bcc elements. ' This theory complements
a number of other recent calculations of the solid-liquid
interface, based on a density-functional formalism.
Our theory involves expanding the density functional in a
power series, in which the individual coefficients are de-
rived either from the properties of the pure liquid or from
the freezing properties of the homogeneous system at
melting. The theory gives surprisingly good agreement
with experiment for the bcc elements Na and Fe, even
though it explicitly involves only one order parameter,
the amplitude of the [110] Fourier components of the
density.

In this paper, we further test this theory by applying it
to a broad range of other systems. We consider three in
particular: the classical Wigner crystal, otherwise known
as the one-component plasma (OCP); the quantum
Wigner crystal, composed of interacting charged fer-
mions; and the quantum Bose crystal He. We find that,
to a first approximation, all can be treated by the method
of Ref. 1, suitably generalized.

As formulated in, ' our theory has only one principal
order parameter, namely, the Fourier component of the
density at some particular reciprocal lattice vector. Such
a theory is not adequate to treat freezing of the uniform
solid, which can be quantitatively analyzed only with the
use of many reciprocal lattice vectors. The one-
parameter interface theory avoids this problem by fitting
the necessary coefficients to the freezing properties. Al-
though this fitting procedure explicitly involves only one
density coefficient, other coefficients (in particular, the
liquid-solid density difference) are included implicitly via

perturbation theory. We find that the resulting expan-
sion works surprisingly well for many kinds of interfaces
between bcc solids and coexisting liquids.

The freezing transition is normally first order. Thus, if
it is to be described by a Landau theory with only one or-
der parameter, that Landau theory must include a
nonzero third-order term. In Ref. 1, the order parameter
was chosen to be the [110]Fourier density amplitudes, all
of which must be equal by symmetry in the bcc solid.
The [110] reciprocal lattice vectors have the property
that groups of three such vectors can be chosen which
sum to zero. This leads to a nonvanishing third-order
term in the Landau expansion, and hence a first-order
freezing transition. Furthermore, the [110] reciprocal
lattice vectors have nearly the same k value as the princi-
pal peak in the liquid structure factor. The [110]vectors
are therefore the softest of the "soft modes" in the liquid,
and are the natural choice for an order parameter. In
contrast, for fcc structures, the cubic term is absent if
only the Fourier components of the smallest reciprocal
lattice vector are chosen as order parameters. To obtain
the observed first-order freezing transition in the fcc lat-
tice, one must generally include at least two sets of
Fourier components. '

The classical OCP can be treated directly within the
formalism of Ref. 1 because it freezes into a bcc crys-
tal. ' The [110] amplitudes can also be used to treat
the bcc Fermi and Bose crystal-melt interfaces. Howev-
er, the classical Ginzburg-Landau theory cannot be
directly used in these cases, because the quantum nature
of the Auids requires the use of di6'erent linear response
functions. We obtain the necessary response function
from the Feynman theory' of liquid He.

We turn now to the body of the paper. The results for
the OCP and the Fermi and the Bose crystal-melt inter-
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face are presented in Secs. II, III, and IV. A brief discus-
sion follows in Sec. V.

II. CLASSICAL ONE-COMPONENT PLASMA

A three-dimensional classical one-component plasma
(OCP) is defined as a system of classical point ions, of
charge Ze, where —e is the charge of an electron, im-
mersed in a uniform, rigid negative background of oppo-
site charge. According to both Monte Carlo studies and
analytic estimates, ' the classical OCP undergoes a
first-order freezing transition from a liquid to a body-
centered-cubic (bcc) solid. The transition occurs at a
value of the plasma parameter I =Z e /(ak~T) given by
I ~

—180, where a =(4vrn0/3) ' is radius of a sphere
containing exactly one ion and n0 is the ionic number
density. The entropy change per ion at this tl ansition is
estimated to be 6-0.82k~. Since the neutralizing back-
ground of the OCP is rigid, charge neutrality leads to the
constraint that the volume change on freezing is zero.

The interfacial tension of the OCP can easily be es-
timated using the density-functional approach of Ref. 1.
In this approach, the grand free energy 0 is expressed as
a functional of the singlet ionic number density n (x),

A=Q[n(x);T].
For a bulk solid or a bulk liquid, n(x) can be expanded in
terms of the Fourier components of the liquid density,

n(x)=n0 1+g+ g u„exp(iK„.x) (2)
K„~O

where n0 is the number density of the uniform liquid and

K„is a reciprocal lattice vector of the solid phase. The
amplitudes g (for OCP q=0) and u„are constants in the
uniform solid phase, and zero in the liquid phase. If
there is a planar interface between solid and liquid per-
pendicular to the z axis, then the amplitudes g and u, are
z dependent and

n(x)=n0 1+g(z)+ g u„(z)exp(iK„.x) . (3)
K„w0

In order to calculate the solid-liquid interfacial tension
of the OCP at melting, we assume that the dominant am-
plitudes at the transition are those corresponding to [110]
reciprocal lattice vectors. The grand free energy
difference per unit surface area, Aco=co„]—m~;, can then
be expressed in the form of a Ginzburg-Landau expan-
sion,

Ace=(n0k&T/2) f a&u]]0(z) a3u]]Q(z)—

any, is not neglected. The form of the perturbation ex-
pansion is, however, such that only the [1 10] coefficients
ultimately appear explicitly in the Ginzburg-Landau free
energy.

The coefficients a2, a3, a 4, and b can be related to the
properties of the bulk solid and of the liquid-solid transi-
tion. The result of this fitting procedure is

a2 = 12/S(K„~),
b= ~C (K]]0) g (K]]0'z) = 2C'(E]]0)

K
l lO

a3=(2a2a4)'

a4 =(az/u»o»2

(5)

(6)

(7)

(8)

da2
6—

—,
' T~u „0dT T=T,

„

(10)

where 6 is the increase in entropy per ion on melting.
Equations (8) and (10) together determine a~ in terms of
a 2 and its constant-volume temperature derivative
(da2/dT)r r, which can in turn, via Eq. (5), are related

]il

to the temperature derivative of the structure factor at
melting, [dS(K»0)/dT]r

Given the coefficients in the free-energy expansion, the
corresponding surface tension and surface profile are ob-
tained by minimizing the free-energy functional with
respect to the amplitude u]]0(z). This minimization can
be done analytically, with the results

where S(k) is the liquid structure factor, C(k) is the
direct correlation function defined by

S(k) =1/[1 —C(k)], (9)

and C"(k) is the second derivative d C(k)/dk .
As noted in Ref. 1, Eqs. (5) and (6) are exact relations

between a3 and b and the linear response functions S(k)
and C(k) of the homogeneous liquid. The relations (7)
and (8), on the other hand, follow from the melting condi-
tion, Ace=0 at the melting temperature, and from the ex-
tremal condition, BAcu/Bu»0 =0, which must be satisfied
by the free energy functional of the uniform solid at the
melting temperature.

Since the linear response functions S(k) and C(k) of
the liquid are readily estimated either from experiments
or from various theories of uniform liquids, the
coefficients a2 and b are readily computed. Following the
procedure of Ref. 1, we determine a4 (or equivalently,
u»0) by requiring that the expansion (4) give the correct
heat of fusion at melting. This leads to the condition

+a 4u „0(z)+b
2

du]]p(z)
dz .

dz

(4)

r:(npkp T/6)u]]0(apb)

u „()(z)=u „]][1+tanh(az)],
a=[a, /(4b)]' '

(12)

(13)

As noted in Ref. 1, this procedure does not neglect
coefficients other than the [110] set, but includes them
implicitly via a kind of perturbation expansion. In par-
ticular, the density difference between solid and liquid, if

Equations (5)—(13) give a complete description of the
surface tension of any bcc elements, under the assump-
tion of isotropy. By isotropy we mean that the
coefficients u»p are taken to be equal for all members of
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the [110]set of reciprocal lattice vectors, even within the
surface region. The resulting surface tension is indepen-
dent of surface orientation, by construction. Presumably,
it can be viewed as a kind of average of ~ over surface
orientation.

This formalism can be applied in a straightforward
way to the liquid-solid interface of the OCP, using as in-
puts the relevant results of Monte Carlo simulations.
From these simulations, one can extract the parameters
rf-180; S(K„,1 f)-2.97; C"(K„,I f)- —4.5a; '
b, -0.82k'] per ion; and (da2/dI )~„]--0.0108. The

f
resulting surface tension and surface width at freezing are

rocp=1. 12X10 (Z e /a ),
ocp =6-«

(14)

(15)

where u]ocp is the 10-90 width of the interface profile (the
distance over which the principal order parameter rises
from 10% to 90% of its bulk solid value) and is related to
the wave vector e of the hyperbolic tangent profile by

wocp =2.2/cz (16)

III. CHARGED FERMION SYSTEM

To our knowledge, no computer simulations are avail-
able for the crystal-melt interface of the classical three-
dimensional OCP. In order to provide a qualitative test,
we compare these predictions with measurements and
other calculations for Na, which is well described in
terms of a classical OCP reference system. ' The ionic
sphere radius for Na at melting is a =2. 14 A, which
gives, when combined with Eq. (14), rN, =26.3 erg/cm,
in reasonable agreement with the quoted experimental
value ~,„,—20 erg/cm . ' The calculated width lo —14
A. This value is about nine atomic layers and is compa-
rable to the width calculated by computer simulation for
the Lennard- Jones crystal-melt interface. '

Although we have calculated the interfacial tension for
the OCP only in the isotropic approximation, we can
crudely estimate the degree of anisotropy, by assuming it
is comparable to that previously calculated for Na. ' This
analogy suggests an anisotropy of the order of 1% (Ref.
1) among the principal crystal faces.

hereafter assume to be an electron), and m, is the mass of
an electron. The critical value, r,f, at which the electron
liquid freezes into a bcc Wigner crystal has been estimat-
ed by a number of groups, using both computer simula-
tions and analytical approximations. The value of r,f as
estimated by these calculations ranges from 5 to 100.
Presumably, the most reliable estimate would be that ob-
tained from fermion Monte Carlo simulations, ' wnich
give r,f =67.

To calculate the surface tension of the quantum
Wigner crystal-melt interface by the formalism of Sec. II,
we must again take as order parameters the Fourier com-
ponents of density corresponding to the first shell of re-
ciprocal lattice vectors K»0. The excess grand free ener-

gy per unit surface area Ace is then expanded as a power
series in these order parameters. Assuming a planar
crystal-meit interface normal to the z axis, we can con-
veniently write this expansion in the form

Aco )] '] dz a
Q

ll ] ]Q (z ) a 3 ll ] ]Q ( z ) +a 4ll ] ]Q ( z )
2 3 4

2 1

dll ] ]Q(Z)+b
dz

(17)

where A, ] =2nQ/k. Q and A,Q=m„kFI(]r]rl), nQ is the densi-
ty of the electron plasma, and kF =(3m. nQ)'~ is the Fer-
mi wave vector of the electron plasma.

As in the classical OCP, the coe%cients a2 and b can
be expressed in terms of the appropriate correlation func-
tions of the uniform electron plasma,

a2=12$ (K]]Q)

b =
—,'[7 '(k)" ]k =K g (K»Q. z)

Klio

(18)

(19)

where y(k)=y(k)/A, Q is a dimensionless form of the
density-density response function y(k). These equations
ultimately come from an expansion of the excess grand
free energy AQ of an inhomogeneous system in powers of
the density,

gQ= —,
' f f dx dx'G(x —x')[n (x)—nQ][n(x') —nQ],

The crystal-melt interfacial tension of a charged fer-
mion system (that is, a Wigner crystal in equilibrium with
its melt at 0 K) can, in principle, be calculated in a frame-
work similar to Sec. II. However, some extension of this
formalism is required to take into account the quantum
nature of the fermion system. Moreover, the relevant
correlation functions are very poorly known in the vicini-
ty of the liquid-solid transition, which occurs at a much
lower density than the metallic densities for which the
electron-gas response functions are available. In this sec-
tion, we outline the relevant formalism in such a way that
the interfacial tension can be calculated easily, given the
necessary correlation functions.

The fermion system at 0 K is described by the dimen-
sionless coupling density parameter r, = (4vrn Q I
3) ' /al], where n Q is the number density,
as =Pi /(m, e ) is the Bohr radius of a fermion (which we

(20)

where the kernel G (x) is related to y(k) via

G(x)=
3 fdkexp(ik x)y '(k) .

1

(2~)
(21)

k 1y(k)= 1— (23)

and takes the form

But whereas in the classical case y(k) is related to the
liquid structure via

y(k) =nQS(k)/ks T,
y(k) for the Fermi liquid is connected to the static dielec-
tric function e(k) via
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Xo(k)
y(k) =

1+[1—G (k)]go(k) V, (k)
(24)

where

V, (k)=4vre /k (25)

and

m ~F 1 1 —x 1+x
yo(k) = —+ ln

2 4x 1 —x
(26)

Here yo(k) is the free-electron density response function
and x =k/2kF. The function G(k), related to the irre-
ducible polarization kernel, describes the effects of ex-
change and correlation on the static response of the elec-
tron gas.

The remaining coefficients a3 and a 4 in the Ginzburg-
Landau expansion can be obtained by using melting and
extremal conditions, as in Sec. II. The conditions again
lead to Eqs. (7) and (8), which express a, and a 4 in terms
of the single unknown u[~0. Given u»o, a2, and b, the
solid-liquid interfacial tension of the Wigner crystal can
then be expressed in a form identical to that of Sec. II:

(27)

IV. BOSON SYSTEM: He

We turn next to a completely different type of solid-
liquid interface, namely, that between a Bose fluid and its
coexisting solid. The principal example in practice is
solid bcc or hcp He in equilibrium with its liquid along
the melting curve in the P-T plane. The surface tension
of this system has been measured along the melting curve
by Gallet et al. and by Balibar and Edwards. These
interfaces show a number of fascinating phenomena, such
as the universal curvature of the crystal-melt interface in
the vicinity of the roughening transition. Our principal
objective in this section is not to treat such subtle effects,
but rather to show that the density-functional approach
is at least qualitatively reasonable in boson systems as it is
in classical and fermion crystals.

The details of the density functional are somewhat
different for a Bose system than for a classical system. In
terms of the Ginzburg-Landau form introduced in Sec.
II, the difference arises in the coefficients a2 and b: both
involve integrals over an appropriate linear response

The coefficients a
&

and b are now given by Eqs. (18) and
(19). The Fourier component u»o can be estimated
in various ways. For example, one can employ a
Lindemann melting criterion, as was done by Albers and
Gubernatis, to express u»0 as a fraction of the nearest
neighbor separation at melting. However, the other
coefficients depend on the response function g(k) at a
very low density. Since this is poorly known, it is difficult
to estimate the solid-liquid interfacial tension of a Wigner
crystal at present. However, when a better response
function becomes available, an estimate can be made very
easily. Presumably, the resulting surface tension will be
similar to that given in Eq. (14), with a different numeri-
cal coefficient.

function y(k). y(k) appears in the density-functional for-
malism when the grand free energy of an inhomogeneous
system is expanded about that of a homogeneous fluid.
The result of this expansion, to second order in the densi-
ty fluctuation, is same as Eq. (20) in Sec. III.

In the case of Bose liquids, as in Fermi liquids, y(k) is
not related to the structure factor by a classical relation
such as Eq. (22). In order to treat the Bose crystal-melt
interface at T =0, we estimate y(k) within the Feynman
approximation, ' which is sufficiently accurate to give the
roton minimum in the density fluctuation excitation spec-
trum at T=O,

g(k) =4noMS (k) /(irik) (28)

where M is the atomic mass. As in Sec. III, it is con-
venient to introduce a dimensionless response function
which takes the form y(k)=g(k)/A, 2, where
=4noM/(R K„o)

We now use the response function (28) to develop a
Ginzburg-Landau approximation to the density function-
al for bcc He" at T=0. For bcc crystals, the order pa-
rameter corresponding to the smallest reciprocal lattice
vector K»0 is already sufficient to describe the first-order
melting transition. To treat the nonuniform crystal-melt
interface, we must allow the order parameters to vary in
space. The free energy must now include a term involv-
ing the gradient of the order parameter. The appropriate
expression for the excess grand free energy per unit sur-
face area is (assuming a planar interface perpendicular to
the z axis)

no% K ),0
2 2

[u iio(z)] =

X Jdz a2" iio(z) —a3u iio(z)
2

+a4u ii(oz) +b
2,

du „o(z)
dz

and

a2 = 12/g(Kiio )= 12/S (Kilo ) (30)

b = g (kiio'z)1

S2(Kilo) k

1

2&»o

4S'(K i io )

K»oS(K»o )

S (K I io )

S(K&&o)

3S (K»o)+
S(K»o)

(31)

(29)

where once again a2, a3, a4, and b are coefficients to be
determined.

The coefficients a2 and b can now be obtained by use of
Eqs. (18) and (19) in Sec. III, using a derivation analogous
to that used in finding these coefficients for the classical
case. The results are (assuming the Feynman form for
the response function)
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As in Sec. II, the coefficients a3 and a4 can be ex-
pressed in terms of the coefficient az and the bulk solid
order parameter u»o, using the melting condition and
the requirement that the free energy be an extremum
with respect to the order parameter. The expressions for
these coefficients are identical to Eqs. (7) and (8). Now,
as has been shown by Ramakrishnan and Yussouff; the
bulk order parameter u»o is related to the Debye-Wailer
factor e '" (Ref. 3) through the relation u»o
=e '", where u»o=u»o/(1+g) and rl is the frac-
tional density increase on freezing. For the OCP g=0 (a
consequence of the Coulomb forces in these materials),
and thus u»0=u „o.In the Bose system, by contrast, the
forces are short range and these two parameters are not
equal. At T =0, the Debye-Wailer factor is due entirely
to the zero-point vibrations of the quantum crystal, and
may be approximated by the expression

W =3R K „0/(8Mk~SD ), (32)

where OD is the Debye temperature of the solid, and for
bcc helium we use the estimate OD =21.4K, as extrapo-
lated to T =0 by Edwards and Pandorf.

The interfacial tension for a planar surface can be ob-
tained by minimizing the excess grand free energy func-
tional as in Secs. II and III. Minimizing the relevant
functional, expression (29), gives

r=n fi K u (a b)' (24M) . (33)

We now apply this phenomenological theory to esti-
mate the solid-superAuid interfacial tension of bcc He at
T=O. The calculation requires the structure factor of
liquid He at T=O and at a pressure of about 25 atm,
comparable to the freezing pressure; we take this func-
tion from Green's function Monte Carlo calculations,
which agrees very well with x-ray and neutron
diffraction ' ' studies at 1 atm pressure. Our results for
the input coefficients (namely, az, b, and the value of u»0
in the solid phase) are shown in Table I, as are both the
"experimental" and calculated bcc surface tensions at
T =0. Since the bcc solid is metastable at T=0, the ex-
perimental results must be extrapolated from measure-
ments of the surface tension and its temperature deriva-
tive in the bcc phase in the range T=1.46—1.76 K;
these measurements are given in Table I. Agreement be-
tween theory and linearly extrapolated experiment is
reasonable, especially considering the approximations re-

quired to obtain both theoretical and experimental esti-
mates. The agreement between theory and experiment is
actually better than that shown, because the linearly ex-
trapolated "experimental" surface tension is certainly too
large. Indeed, the derivative —S,„,=d ~/d T =0 at
T=O, since the surface entropy S,„,must vanish at
T=O. Thus the extrapolated experimental curve must
reach T =0 with horizontal slope.

V. DISCUSSION

We have presented a formalism which permits a simple
calculation of the crystal-melt interfacial tension for
three systems: the classical OCP, the quantum electronic
system at zero temperature (quantum Wigner crystal),
and the boson system ( He). All three calculations
represent an application of a density-functional formal-
ism in a Ginzburg-Landau approximation. In all three
cases, we have also made an isotropic approximation, so
that the calculations involve an orientational average of
information about the interface. The formalism could
readily be extended to calculate orientation-dependent
properties, but for these, it would certainly be necessary
to include more order parameters in the expansion of the
free energy.

Our Bose calculations agree reasonably well with an
extrapolation of experimental data for He to 0 K. Like-
wise, the OCP calculations are in good agreement with
experimental data for Na, as inferred from nucleation
theory applied to supercooling experiments. This com-
parison is germane because Na, of all the simple metals,
is the best described by the OCP model. The fermion for-
malism is more difficult to apply at present because the
necessary electron-gas response functions are not avail-
able at the densities of the Wigner transition.

Our results for both the OCP and He appear to be
roughly described by a simple rule of thumb of the type
first suggested by Turnbull. For the OCP, Turnbull's
rule suggests that the liquid-solid interfacial tension
should be approximately the heat of fusion per surface
atom. The heat of fusion is T 5, where T is the melt-
ing temperature and 6 is the entropy of fusion. If we
consider the [100] surface of the solid OCP, and consider
as surface atoms only those atoms in the outermost sur-
face layer, this estimate gives ~=1.15X10 Z e /a,
very close to our result (14). This argument cannot be
used directly for He at 0 K, because, of course, 5=0 at 0

+theor ( g/ 1 pf (erg/cm )

TABLE I. Input parameters and calculated results for bcc He. no is the number density of liquid
He near freezing at pressure about 25 atm; g =(n, —no ) /no is the fractional density increase on melt-

ing; coefficients a&, b, and u»0, all as defined in the text; the experimental surface tension ~,„p,. is the
linearly extrapolated result as explained in the text; and m is the 10-90 width of the interface.

no (A ) g a2 b(A) m (A)

0.0258 0.0853 3.7 —10 0.085 0.21 (T=O K)
0.112' (T=1.46 K)
0.088' (T = 1.76 K)

7.2

'Reference 25.
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K. A reasonable alternative is v. =PAUn,„„,where P is
the coexistence pressure, AU is the change in atomic
volume at freezing, and n,

„„

is the number of surface
atoms per unit area. This formula gives ~=0.04—0.07
erg/cm, somewhat lower than the extrapolated experi-
mental value but in the same range.

The reasonable agreement between our Ginzburg-
Landau calculation and an extrapolation of the experi-
mental He surface tensions indicates that our extremely
simple phenomenological theory is also plausible for
quantum Bose systems. Thus the density-functional ap-
proach, suitably generalized to include more order pa-
rameters, seems to be among the most promising present-
ly available for both classical and quantum systems.
With the inclusion of more order parameters and better

response functions, it may be possible in the future to ob-
tain truly quantitative agreement with experiment. It
may also be useful for other types of systems not con-
sidered in this paper, such as the interface between solid
bcc He and its liquid at T =0.
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