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A light particle (electron, positron, or positronium atom) thermalized in a dense fluid can, in cer-
tain instances, become localized in a region of altered fluid density. This process is known as self-
trapping. In this paper we formulate a mesoscopic model for the evolution of translational degrees
of freedom, which uses quantum mechanics to describe the light particle (LP) and classical mechan-
ics for the fluid molecules. The model self-consistently takes into account the mutual influence be-
tween the LP and fluid and the large isothermal compressibility near the liquid-vapor critical point.
The dynamical representation of this model leads to a set of hydrodynamic equations which couples
the LP wave function to the local fluid density. The equilibrium representation takes the form of a
Landau-Ginzberg functional in which the wave function plays the role of order parameter. Optimi-
zation of the probability density in state space generates a mean-field theory in which the wave func-
tion is coupled to the local fluid density via a local equilibrium condition. The time-independent
Schrddinger equation provides the second equation necessary to specify the local density and wave
function. When the LP-fluid atom interaction is represented by a Fermi pseudopotential, the two
coupled equations can be reduced to dimensionless form by scaling the position with respect to the
scattering length and scaling the thermodynamic variables density (p) and temperature (7) with
respect to their values at the critical point. Together with the principle of corresponding states,
they provide a universal description of the trapped state. Scaling transforms the normalization in-
tegral into a universal constant which contains all system-specific parameters and determines the
response of the gas to the presence of the light particle. The model was applied to the problem of
computing the mean decay rate of a localized positronium atom. The van der Waals equation was
used to approximate the equation of state. The decay rate and free energy were plotted versus den-
sity on isotherms. Trap formation was found to depend on the universal constant, scaled tempera-
ture, and density. The model provided good qualitative agreement with the results of experimental
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measurements of the decay rate of orthopositronium in ethane and argon.

I. INTRODUCTION

When a light particle (electron, positron, or positroni-
um) thermalizes in a fluid, its mean de Broglie wave-
length is much larger than the average distance between
the atoms of the fluid at the critical density. For
sufficiently large densities, the wavelength is greater than
its mean free path in the fluid, indicating that the light
particle (hereafter LP) simultaneously interacts with
many atoms of the fluid.! Experimental studies of elec-
tron mobility' and positron annihilation? strongly suggest
that, in certain regions of temperature and pressure, the
LP can create around itself a region of altered fluid densi-
ty in which it is localized.> The light particle is then said
to be in a self-trapped state. Self-trapping occurs most
readily near the liquid-vapor critical point where the iso-
thermal compressibility of the gas is large.

Most present theories of localization are macroscopic
in nature and start with density-functional theory.? A
free energy or, in the case of the grand canonical ensem-
ble, a grand thermodynamic potential, which depends
both on the average local fluid density and LP wave func-
tion, is constructed from thermodynamic principles.
Minimizing the free energy leads to a pair of coupled
equations for the optimal density and wave function.
There are a number of variants of the theory which pre-
dict the gross properties of the system with varying suc-
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cess. The central purpose of our work is (1) to show that
density-functional theories are the natural consequences
of a particular dynamical model which preserves the
quantum nature of the LP while treating the fluid degrees
of freedom classically, and (2) to illustrate that, when
properly scaled, the simplest variant of density-functional
theory manifests universality, whereby all of the system-
specific constants are combined in a single parameter
which determines both the existence and properties of lo-
calized states over the entire thermodynamic state space.
Subsidiary objectives are (1) the provision of two indepen-
dent criteria for determining the stability of the self-
trapped state in terms of scaled quantities, (2) the descrip-
tion of a computational algorithm which solves the cou-
pled equations for the self-trapped state with high speed
and precision, (3) the demonstration that localized states
always exist at the liquid-vapor critical point, and (4) the
investigation of the decay rate of localized orthoposi-
tronium over a wide range of density above the liquid-
vapor critical temperature of a van der Waals fluid.

The key feature of our dynamical model is the self-
consistent treatment of the interaction between the LP
and the fluid atoms, which allows for their mutual
response. It leads to an equilibrium theory, which con-
tains the phenomena of self-trapping, and a Kinetic
theory which generates a hydrodynamic characterization
of the system.
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In this paper we apply the model to the problem of
self-trapping. We show that a density-functional descrip-
tion of self-trapping naturally arises from the equilibrium
formulation of our model in terms of a functional in-
tegral. In typical density-functional theories of self-
trapping, the LP is represented by a single semimacro-
scopic average wave function. In common with the
mean-field approximation of a Landau-Ginzberg theory,
in our model the optimum wave function results from ex-
tremizing the argument of a functional integral.* Thus,
in addition to mean-field theory, the model has the poten-
tial for predicting the importance of fluctuations.

Earlier applications of density-functional theory to the
problem of self-trapping were provided by lakubov and
Khrapak,® Hernandez,® Moore, Cleveland, and Gersch,®
Stott and Zaremba,” Ebner and Punyanita,8 and Niem-
inen et al.® Moore et al. provide a very complete treat-
ment of trapping in an ideal gas. They are the only inves-
tigators who have provided numerically accurate solu-
tions for the local density and wave function of a trapped
particle. Although they refer to the LP as an electron,
and specifically study its mobility, because they assume a
repulsive-pseudopotential for the LP-molecule interac-
tion their density and wave-function calculations are
more suitable for positronium. Naturally the situation is
more complex for the interacting gas considered here.
However, their thorough work provided the basis for the
methods we discuss.

Iakubov and Khrapak were the first to consider the
trapping of both positrons and positronium for a van der
Waals fluid. Their methods and conclusions are dis-
cussed in an important review article.® In contrast with
the study of Moore et al. and the computational com-
ponent of this paper, they used Gaussian and related trial
functions to represent the LP wave function. The addi-
tional effects of intermolecular correlations were con-
sidered by Stott and Zaremba in their successful model-
ing of positron annihilation in helium,’ and by Ebner and
Punyanita in their work on electron mobility in noble
gases.® Stott and Zaremba employed trial wave functions
and an empirical equation of state, while Ebner and
Punyanita used the Percus-Yevick equation'® to con-
sistently model the free-energy density and direct correla-
tion function of the fluid. The LP wave function was
then determined by assuming a three-parameter trial
function for the radial dependence of the local density
and solving the resulting Schrodinger equation numeri-
cally. Nieminen, Manninen, Valimaa, and Hautojarvi
used similar techniques to analyze positronium and elec-
tron bubbles in helium.” They specialized to a hard-
sphere equation of state, and included an extensive calcu-
lation of the density dependence of the effective scatter-
ing length for the LP-atom interaction. Most of these
treatments of self-trapping can be obtained from the equi-
librium version of our model by employing approxima-
tions of varying complexity.

In considering the work cited above, it is important to
emphasize that, although the mean wave function of the
trapped LP varies slowly in position, the density may
change by nearly an order of magnitude within a few
angstroms. The rapid variation in local density is due to
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the fact that the fluid is in the critical region where the
isothermal compressibility is large. Consequently, a
small change in |¢|? produces a strong response. Thus,
regardless of how elaborate a given representation of the
fluid may be, the use of trial functions which force the
form of the fluid’s response to the excess particle may be
a questionable procedure for predictions which require a
precise knowledge of the density profile. The annihila-
tion rate of a trapped positron or positronium atom falls
into this category.

A second consideration is the inclusion of the nonlocal
effects of intermolecular correlation. It is anticipated
that they are only significant extremely close to the
liquid-vapor critical point, where the pair correlation
length can be on the order of the trap diameter. For a
model to benefit from this inclusion, the version of the
correlation function employed must scale properly at the
critical point. In fact, correct scaling is not uniformly
obeyed in these treatments.

The chief assumption of density-functional descriptions
is that the extremal wave function of the light particle
varies slowly over distances on the order of the mean sep-
aration between the fluid atoms. Here we first explicitly
invoke the assumption of local equilibrium to obtain two
coupled equations for the wave function and local fluid
density which define the self-trapped state. Second, we
assume that the LP-fluid atom interaction is represented
by a Fermi pseudopotential. We expect this assumption
to be adequate for the case where the LP is positronium
and the effects of long-range polarization are weak.’

By scaling the thermodynamic variables in relation to
the critical point, and suitably scaling the wave function
and coordinates, the coupled equations assume a univer-
sal dimensionless form. Taken together, the pair of equa-
tions define a nonlinear eigenvalue problem for the energy
and wave function of the trapped LP.!' Here it is shown
that the existence and behavior of solutions is determined
by a single dimensionless constant; the normalization in-
tegral of the reduced wave function in the reduced coor-
dinates. This constant determines the existence of bound
states, and the numerical value of the scaled energy. The
constant depends on the fluid properties at its liquid-
vapor critical point and the scattering length of the LP-
fluid atom interaction potential. It alone controls wheth-
er trapping is likely to be observed experimentally in a
particular fluid, and over what range of temperature and
density of the host fluid the phenomenon is stable.

A numerical algorithm was devised for solving the cou-
pled equations in a completely self-consistent fashion for
the spherically symmetric ground and excited states of
the trapped LP. With this method, the local density and
wave function were calculated. From these we can calcu-
late the normalization integral of the scaled wave func-
tion, the change in the system’s free energy resulting
from trap formation, and other relevant characteristics of
the localized state. The selected values of scattering
length and critical point parameters can be used to give a
graphic representation of the properties of the localized
LP as a function of density on isotherms for comparison
with real-world experiments.

As an application, we explicitly consider the pick-off
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annihilation of orthopositronium in simple fluids.> When
a positron is injected into a fluid it can quickly annihilate
with an electron from one of the fluid atoms or, alterna-
tively, it can combine with a free electron and form a po-
sitronium atom. The two forms of positronium, parapo-
sitronium (singlet spin state) and orthopositronium (trip-
let spin state), decay differently. Parapositronium under-
goes a rapid 2y decay with a lifetime of 1.23X 107 '° sec.
In the vacuum, orthopositronium (o-Ps) decays via a 3y
process with a lifetime of 1.47X 1077 sec. In condensed
matter it usually decays by pick-off annihilation, in which
the positron annihilates with an electron in the valence
shell of one of the fluid atoms. Future references to posi-
tronium will imply orthopositronium.

In Fig. 1 measurements of the o-Ps annihilation rate
are plotted versus density in ethane at 306.4 K. The re-
sults shown are characteristic of a number of gases above
the critical temperature. Typically, experimental iso-
therms of the pick-off decay rate Apy of 0-Ps increase
linearly with density until the de Broglie wavelength is
comparable with the mean free path."'? As the mean de
Broglie wavelength at room temperature is about 60 A,
this consists, for all practical purposes, of the ideal-gas
regime. As the density increases further, the annihilation
rate starts to dip below the extrapolated low-density line
at a prescribed density, say p*. The plot then gently
curves downward until it forms a crude plateau.

The linear dependence at low density results from the
sequence of random encounters experienced by the o-Ps
with the widely separated fluid molecules. The region of
maximum curvature is referred to as the transition re-
gion. Here it has been suggested that the o-Ps passively
samples regions of lower density in the fluid. A sem-
iempirical model based on the assumption that density
fluctuations play the key role in reducing the pick-off de-
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cay rate was advanced by Sharma and co-workers'?!3

some time ago and used by a number of investigators to
fit the data in this density region.'*!> This model fails in
the region of the plateau, where it is expected that self-
trapping predominates. Calculations suggest that typical
trap diameters are on the order of 30 A. Indications of
trapping have been found in Ar,'* CO,,'* CH,,'® C,Hq,"’
Ne,'® and He.!"” The range of density and temperature
for which self-trapping is apparent depends selectively on
the fluid.

To test the usefulness of our model, in this study we
used the van der Waals equation to describe the fluid as
simply as possible. We found that the central features of
the experimental isotherms of the positronium decay rate
were qualitatively reproduced by the theory. Although
the results reported here deal exclusively with positroni-
um, this method readily lends itself to the trapping of
other light particles, such as electrons and positrons.

The paper is structured as follows. In Sec. II the mod-
el is formulated. In Sec. III scaling and universality of
the mathematical description of trapping are considered.
Precise numerical methods for solving the nonlinear ei-
genvalue problem which defines the trapped state are dis-
cussed in Sec. IV. The application to the pick-off decay
process is explored in detail for a van der Waals gas in
Sec. V. Conclusions and directions for further study are
given in Sec. VL.

II. DESCRIPTION OF THE MODEL

A. Deterministic dynamics

The central objective of this research is to construct a
mesoscopic model of the light-particle—fluid interaction
which correctly predicts the phenomena of deep trap-
ping, and offers the possibility for describing the transi-
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FIG. 1. Decay rate (A,.p,) of orthopositronium vs density (D) in ethane at 306.4 K. The figure illustrates linear dependence at low

density followed by a soft transition to a plateau. (From Ref. 19.)
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tional behavior which occurs at fluid densities which are
too low to support the formation of stable traps and has
eluded a first-principles approach to date.'>'* By mesos-
copic, we mean that the internal quantum states of the
fluid molecules are not considered separately and their
translational degrees of freedom are treated classically.
In order for the model to have the capability of predict-
ing the dynamics of localization, it must be time depen-
dent. With these thoughts in mind, we introduce two po-
tentials, u and w, which represent the intermolecular in-
teraction and the light-particle—molecule interaction,
respectively. Each is assumed to depend only on the dis-
tance between the appropriate interacting pairs.
Dynamics for the model is defined by the Schrédinger
equation and Newton’s second law. Represent the in-
stantaneous position and momentum of a molecule by
r;(z) and pj(t), and the LP wave function by W(r,?).

J
Then ¥ and p; obey

O, Y=(1/iA)[(—#/2m)A+ W]V , (1

dp;

d—t’=—vj(U+Wq), (2)
where

Wir{r;})= 3 wir—r)),

i U= 3 ulr,—r
1Sj<N

L i<j

.3

J

In (2) W, is the potential produced by the quantum aver-
age of W,

w,({r; )= [ W(o)|W(r,0)|%r .

This deterministic dynamical model describes the sys-
tem behavior under both equilibrium and nonequilibrium
conditions. It treats the molecular motion by a general-
ized Born-Oppenheimer approximation,®® is self-
consistent, and conserves the right quantities, such as
momentum P, angular momentum L, and energy E:

P=(¥|(#/2))V|¥) +c.c. +3p, , @)
J
L=(V[rX(#/20)V|¥)+c.c.+ 31, Xp; , (5)

J
E=(VY|—(#/2m)A+Wr)|¥)+3(p;/2M)+U . (6)
j

At each instant of time, the system state is an element of
the tensor product space formed from the classical phase
space associated with the translational motion of the fluid
molecules {r;,p;} and the Hilbert space containing W.
We label this composite by I'. This model differs from
the usual adiabatic picture in which it is assumed that, as
time progresses, the LP is always in thermodynamic equi-
librium with the instantaneous configuration of the host
fluid (or solid).?!

B. Equilibrium

Equilibrium (Gibbs) states of the system are distributed
in T with probability density 8({|y¥)—1)exp(—BE)/
Zy, where E is given by (6) and
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Zy=(1/Nh*) [dT 8({¢|$) —1) exp(—BE)
= [ Dya(Cwly) — 1) expl —B(HIB2/2m) | 4) 10y (1)
)

is the canonical partition function. In constructing the
partition function, the sum over all possible normalized
wave functions is indicated. The & function guarantees
that only normalized states contribute. As usual,
P=(#/i)V where # is Planck’s constant divided by 2.
In (7) Qy(4) is the classical partition function of a non-
uniform fluid with N molecules,

ON=(1/**N)]1 fdpj exp
J

—BXP}/2M
J

X [ dr; exp[ —Buw,(r;)—BU]
=(1/Ap)*MQcw » (8)

where each molecule experiences the “‘external potential”
wy (0= (Ylw(r—r)y) = [wr—r)|e(r)dr . ©)

Ay, is the molecular thermal wavelength (h/V2MKT ),
and Qcy is the configurational partition function which
remains after integrating over the momenta of the fluid
molecules.

Our objective is to study the equilibrium states associ-
ated with stable traps. We expect that their wave func-
tions provide the dominant contribution to Z,. We con-
struct an extremal wave function ¥ by a variational prin-
ciple in which ¢ produces a maximum for the argument
of the functional integral subject to the condition of nor-
malization.

Let
Dy =(¢IP2/2m)|Y)—(1/B)InQpqy . (10)

Then
Zy=(1/AyN [ D 8({PlY) — 1) exp(—BDy) , (11)

and ¥ minimizes @, subject to the constraint () =1.
Next, let ®y=®,—E((¥|yp) —1), where we have intro-
duced the requisite Lagrange multiplier & to guarantee
the constraint. Construction of the functional derivative
of @) with respect to W* is straightforward:

5D,
sy

= —(#*/2m)A¢(r)— E(r)
+(1/Qen) TT [fdrj expl — B, (r;)]
J
X exp(—BU)Jw(r—r )P(r) .
k

(12)

Since the last term is a sum of single-particle functions, it
may be expressed in terms of the local mean density of
the fluid, p(r). Nullifying 8®) /8¢* yields the following
time-independent Schrédinger equation for ¥:

—(#2/2m)AP+ P [ dr'w(r—r)p(r') =63 . (13)
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Equation (13) is a general consequence of the dynamical
model. However, due to the coupling between ¥ and p, it
is incomplete. The existence of a complementary relation
between the two functions is a consequence of the fact
that Qp is the partition function of a fluid subjected to
the external potential w,(r). In deriving (13), p(r) is im-
plicitly the density produced in the fluid by ¢. Determin-
ing the density profile of a nonuniform fluid is a central,
incompletely solved, problem in statistical mechanics;'? it
can be taken as the starting point for understanding any
interacting fluid, both uniform and nonuniform. Here we
consider the simplest nontrivial closure.

Because the molecular coordinates are already in-
tegrated out in Q.y, we expect that 1§ varies slowly over
distances on the order of the mean intermolecular separa-

tion, p~!/3. Thus we are justified in using an approxi-
mate form for Qcy,
Qcyv=exp|—PB der[p(r)wq(r)+f(p(r),B)] ] } , (14)

valid when the external potential w, also varies slowly in
position. In (14) f is the local Hemholtz free energy den-
sity in the nonuniform fluid.!° The condition that the to-
tal Helmholtz free energy, —(1/8)InQy, is a minimum in
the canonical ensemble necessitates that p(r) is a func-
tional of the w,(r), and hence of ¥(r). Minimizing the
variation of InQ with respect to p subject to the con-
straint | p(r)dr= N yields the familiar result

[ drw(r—r)[g) P +plp(r)]=p, - (15)

In (15) u=9f /dp is the local chemical potential of the
fluid. Thus (15) expresses the usual condition of local
equilibrium for a fluid in the slowly varying external po-
tential w,(r). p, is simply the chemical potential far
from the location of the trap.'® We arrive at

@N(zZ):der [(ﬁ2/2m)|V1/_J|2
+p(r)fdr’w(r—r’)1$(r’)|2
+f(p(r),/3)] . (16)

Equations (13) and (15) self-consistently determine the
extremal wave function and density profile to the extent
that the assumption of local equilibrium prevails. They
could have been derived as well in the grand canonical
ensemble. In Sec. III they will be used to construct the
completely scaled description of trapping promised
above.

C. Quantum hydrodynamics

Equations (1) and (2) uniquely fix the dynamical evolu-
tion of the LP-fluid system. They can be used to formally
construct the rates of change of the local microscopic den-
sities of conserved dynamical quantities (fluid population,
total momentum, and energy). By forming their condi-
tional average over the fluid coordinates and momenta for
a given wave function, the following coupled, quantum-
hydrodynamic equations can be obtained:?*
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[—(#/2m)A+ WY =i#0,¥ , (17)
o,p+V-(pv)=0, (18)
Mp(d,+v-V)v=pF, —V-P, (19)
pd,+v-V)e=—P:Vv—V-J . (20)

In the above, v is the macroscopic local fluid velocity, P
is the pressure tensor, € is the internal energy per fluid
atom, J is the heat flux, and M is the molecular mass.
Coupling between the fluid and the LP is produced by
W (r,t) and F(r,1), the average interaction potential ex-
perienced by the LP at time ¢, and the average force on a
molecule due to the LP at time ¢;

W=fw(r—r’)p(r’,t)d3r’ ,
’ ’ 2 73,0 (21)
F,=—V [wr—r)|w, )% .

Closure is obtained by asserting the local validity of the
equation of state and the constitutive laws of nonequili-
brium thermodynamics, in which P and J are linearly re-
lated to the gradients of v and T (temperature) via the
viscosity and thermal conductivity.??

Equations (17)—(20) define the evolution of the system
at the macroscopic level. In equilibrium they reduce to
(13) and (15), the coupled equations describing trap for-
mation. They may also be applied to the study of trap-
ping dynamics and stability. Wu and Miller** used them
to analyze the linear dynamical stability of extended,
propagating LP states.

III. APPLICATION TO SELF-TRAPPING
A. Scaling and universality

In deriving (13) and (15), an ensemble average over
molecular positions was carried out. Thus it is expected
that ¥ and p vary slowly over distances on the order of
the intermolecular separation. If the interaction poten-
tial between the LP and the fluid molecules is of
sufficiently short range, then w(r—r’) can be approxi-
mated by the Fermi pseudopotential ¢8(r—r'), where
c= fw(r)dr=ﬁ2LS /2mm and L, is the scattering
length.> With this final simplification, (13) and (15) take
the form

[(—=#/2m)A+cp(r)]P(r)=6EP(r) , (22)
clg(n)P=po—pulp(r)], (23)

which may be scaled as follows: (1) Define new coordi-
nates by letting x=ar, where a =1/ (2m /#*)cpy and p,
is the density of the fluid far from the LP; (2) define the
scaled wave function ¢ by |¢|>=p8c|¥|?; (3) scale the local
density as p=p/py; and (4) scale the energy as e= & /pc.

These operations reduce the coupled equations to the
dimensionless form

(—A, +p)p=¢od, (24)
|¢[2=B(#0_N) . (25)

The significance of this version is that the equations will
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take the same form for many fluids. This occurs because
the principle of corresponding states?® assures us that Su
has a universal dependence on the reduced density p’
(=po/p.) and temperature T° (=T /T,). As usual, the
subscript ¢ refers to the liquid-vapor critical point. Thus
the right-hand side of (25) is a universal function of g, p’,
and T'. There are no system-specific parameters in either
(24) or (25). In the above it has been assumed that ¢ >0,
corresponding to a repulsive interaction on the average
(e.g., positronium). For an attractive interaction, i.e., for
a positron, ¢ <0, resulting in obvious sign changes in (24)
and (25).}

Taken together, the pair (24) and (25) constitutes a
nonlinear eigenvalue problem for ¢(x) and €. The formal
mathematical properties of partial differential equations
produced by functionals such as ®, [Eq. (15)] have been
studied by Berestycki and Lions.!! They prove that the
eigenvalue spectrum for spherically symmetric solutions
is continuous. Since p asymptotically approaches 1 as |x|
goes to infinity (far from the trap), 0<e =<1 for bound
states. Thus each spherically symmetric solution is
parametrized solely by e.

The central question is how do we determine € for the
ground state of a trapped LP at a specific density and
temperature. To see how this is accomplished, define the
reduced normalization integral by I, E(1/47T)f |¢|%dx.
Clearly, I,=1I,(¢). The normalization condition for 1,
f |¥|2dr=1, along with the definitions of ¢ and x, fix the
value of the reduced normalization integral,

I,(e)=Bc(2mcpy/#)"? /4, (26)

and hence determine possible values for €. I, can be ex-
pressed in terms of the reduced variables p’, T', and three
characteristic lengths

In =(p'3/2/Tﬁ )[}\.gLSS/Z(47T)]/2/lC9/2]
=(p""?/T"A . 27)

In (27) A, is the thermal wavelength of the LP at the crit-
ical temperature and /, (=p_ !”?) is the average distance
between the atoms of the fluid at the critical density.
Clearly, all of the system-specific parameters of the mod-
el are contained in the constant A, a scaled dimensionless
quantity that completely determines the properties of the
trapped state above T,.

B. Stability

The most important property of the trapped state is its
stability. A primitive quantitative measure of stability is
provided, in an obvious notation, by ®(#). It has the
disadvantage of containing the contribution of the bulk
fluid to the Helmholtz free energy, and hence masks the
effect of the LP in the thermodynamic limit. To remove
this annoyance, it is convenient to subtract ® y(1,,) from
@, (1) and then take the thermodynamic limit. Here ¢,
is the extremal solution corresponding to an ‘“‘extended”
state consisting of a plane wave propagating in the aver-
age fluid density =N /V (where Vis the fluid volume).

Let
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b= lim

PN D) =Py (Y]
N—>w,V—wo,N/V=p

= lim f dr[(#/2m)|V§|?
Now, Voo, N/V=p"V

+p(r)_I-dr’w(r—r')h'/;(r')l2

+f(p(r),B)—f(p,B)]—pc
(28)

in the local equilibrium approximation. We have as-
sumed that the extended reference state is low lying, so
that its kinetic energy vanishes in the thermodynamic
limit. In the above, note that p#p, for finite V. Thus
f(p(r),B)— f(p,B)#0 almost everywhere, creating a con-
vergence problem for the integral if the limits of spatial
integration are extended naively. This difficulty is avoid-
ed by expanding f (p,3) in a Taylor series about f (pg,/3)
and making use of 8f /dp=p. It is easily seen that only
the first-order corrections survive in the limit V— oo,
yielding

= [ dr [(#/2m)| VG2 +p(r) [ dr'wo(x—e)|F)?
+f(p(r),B)—f(po,B)

—polp(r)—pol ] —poC > (29)

where now the integration is over all space. This expres-
sion can be recast in a computationally useful form by (1)
employing the scaling introduced earlier, (2) asserting the
first law of thermodynamics (f =up—P, where P is the
ordinary hydrostatic pressure), and (3) recalling that ¢ is
the solution of (13):

®/cp.=p' £—1+(1/I,,)fowdxe[BPo/po—(BP/p)ﬁ

—Bluo—p)pl | .
(30)

In the thermodynamic limit it is no longer necessary to
distinguish between g and p,, and we opt for the latter.
Equations (29) and (30) can be regarded as the difference
between the two Helmholtz free energies (in the canoni-
cal ensemble) or two grand potentials® (in the grand
canonical ensemble), since, in the limit, they are identi-
cal.®® Again, according to the principle of corresponding
states, BP /p depends only on the reduced density and
temperature. Thus, in common with (13) and (15), the
right-hand side of (30) contains no system-specific con-
stants, and can be regarded as a function of €, p’, and T".
For a particular trap, its value is determined by (27), the
normalization condition. ® /cp, is one useful measure of
the stability of the self-trapped state. A negative value
indicates relative stability. A positive value still indicates
the existence of trapped solutions; however they are rela-
tively unstable when compared with propagating modes.
We consider a second stability criterion below.

The number of molecules displaced from the vicinity of
the trap is
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Np= —p)dr=(B.Cp)p'/T'I,) [ “dx x*(1—p),
D f(po pldr=(B.Cp)p'/ Ufo x x(1—p)

(31)
and the effective radius of a trap is defined as

R Z%foxdr rlyl?
= %(47/Bc )(Be /4, )4/3foxdx x| . (32)

We compare the number of displaced molecules with the
spontaneous root-mean-square fluctuation of the popula-
tion, ((AN)?)'”2, in a volume of size R. We expect that
when ((AN)?)!"2= N, stability against spontaneous den-
sity fluctuations is marginal. From the compressibility
equation of equilibrium  statistical mechanics?}
((AN)*)=p*K;/B, where here the volume v is
(47 /3)R* and K is the isothermal compressibility. The
quantity of interest is then

(AN 2
S
3/2
16r | K7 | [fdxij
=" | =T (33)
o LB [ Jaxxa—p]
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C. Decay rate

The decay rate of a positron, whether it is isolated or
bound in a positronium atom, is proportional to the local
electron density.® For orthopositronium, the decay rate
consists of the sum of the vacuum contribution, due to
the electron partner, and the pick-off (PO) contribution,
due to the presence of electrons bound in the fluid mole-
cules. If the positronium thermalizes prior to annihila-
tion then, within the context of the equilibrium statistical
ensemble described in Sec. II, its decay rate can be
represented by

)‘P0=B<2 fdr'Pel(f')|¢(rj+l")|2> . (34)
J

Here, the p,(r’) is the effective density of molecular elec-
trons available for annihilation and B is a constant which,
in principle,?® could be computed from field theory. The
density-functional formalism provides an avenue for ex-
pressing Apg in terms of ). Employ the canonical proba-
bility “density” to write

hpo=B(1/Zy) [ D 8((¢le) — 1) expl — B (B 2/(2m) 910y (¥) [ dr’ [ drpy(r')|dir+1) (x| )

=B(1/Zy) [ D8 y|9) —Dexp(—B@y) [ dr' [ drpy(r)g(r+r)p(rly) (35)
[

where we have used the fact that Apg involves a sum over _ of . . (f/p)

. . . P=p-——f=pd , (37)
single-particle terms to express the average in terms of dp dp
the conditional local fluid density p(r|i). To the extent . . .

that we are willing to ignore the effects of fluctuations in which can be integrated to obtain
.the local density aqd wave function, or, if possible, simply Flo—Fo/po=— fpodp"(P/p"z) ) (38)
incorporate them into the constant B, we may use the P

mean-field theory derived in Sec. III to write
Apo~B [ p(r)fir)idr=Bp,(p' /I, )fo“’dx xpp? .  (36)

We expect the mean-field approximation to be adequate
when @ has a stable minimum at ¥. Similar to ®/cp,,
Apo/Bp,. is a scaled decay rate which depends solely on €
and p’. The normalization condition determines
e=¢e(p’,T'), and hence Apg/Bp., when a trap exists in a
given system.

D. Thermodynamics

All of the thermodynamics necessary to perform the
mean-field analysis of self-trapping described above can
be obtained directly from the equation of state. From
Egs. (25) and (30) we note that the only function required
in addition to the hydrostatic pressure is the difference in
chemical potential, u,—u. This is easily obtained by re-
calling that =3/ /dp and appealing once more to the
first law in the form pp=f + P. Eliminating u from this
pair yields

Substituting back into the first law yields the required
functions,

Po
to—n=Py/po—P/p+ [ "dp"(P/p"?), (39)
P

S(p(r),B)— f(po,B)—polp(r)—pol
=Py(1=p)—p [ “dp"(P/p"?),  (40)
P

for use in (25), (29), and (30).

Below we will illustrate the predictions of trapping ob-
tained from the van der Waals equation of state,
(P +ap?)(1—bp)=pkT. Carrying out the necessary in-
tegration over density yields

Bluy—p)=2a(p—py)/kT
—kT Inlp(1=bpy) /[po(1—bp)]|
+b(po—p)/[(1=bp)(1—bpy)] . 41)

The critical point, defined as the density and temperature
where the compressibility goes to zero (0P /dp=0,
3%P /3p*=0), defines the relation between the parameters
a and b, and the density and temperature at the critical
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point, p. and T,. This operation gives a =9kT, /(8p,)
and b =1/(3p.) where T, and p,. are the temperature and
density at the critical point, respectively. If we insert
these relations into (28) it takes the form

Bluo—w)=9"(p—1)/(4T")+1n|(3—p")p/(3—pp')l
+3/(3—p")=3/(1—p'p) , (42)

which demonstrates the law of corresponding states for
this simple case. Similarly, to compute ®, we require

(B/ep IS —fo—rolp—p)]
=—9'(p—1)/(8T")—(p—1)/(1—p'/3)
+pIn|p(1—p'/3)/(1—pp'/3)|, (43)

which is also free of any dependence on the system pa-
rameters.

IV. NUMERICAL METHOD OF COMPUTATION

A modified shooting method?’ was employed to numer-
ically construct spherically symmetric solutions of (24)
and (25) on the half space 0<x < w. To remove the
singularity at the origin, (24) was transformed to
—d?u /dx2+ﬁu =¢u, where, as usual, u=x¢. The
second-order equation was then written as the system of
first-order equations du /dx =v, dv /dx =(p—¢)u.

Since we were interested in obtaining solutions for a
range of € at a large number of points in the thermo-
dynamic phase space (p’,T’) of the fluid, we required a
very efficient algorithm to iterate the first-order system.
Starting at x =0, the fourth-order Runge-Kutta scheme
was used to obtain the first four iterations. This provided
sufficient information to shift to the equally precise, but
much faster, fourth-order Adams-Bashfourth algo-
rithm.?” The initial value of u is fixed at zero. Using
bisection, the initial value of v was systematically adjust-
ed until convergence to a solution with the desired num-
ber of nodes was obtained, i.e., no nodes for the ground
state, one node for the first spherically symmetric excited
state, etc. Simpson’s rule was then used to compute
properties of interest, such as the reduced normalization
integral, free energy, effective trap size, number of dis-
placed molecules, and decay rate.

The procedure was tested for self-consistency by using
the usual technique of reducing the step size and looking
for significant changes. A further test consisted of com-
puting f[(du /dx)*+pu?)dx /fuzdx, and comparing
the result with .
tered.

The single most problematic aspect of the numerical
procedure was the inversion of (25) to obtain g from the
current value of ¢? (=u?/x?). The difficulty occurs be-
cause, near the critical point, where trapping is most like-
ly, ou/dp becomes small and the standard inversion
methods (Newton, Newton-Raphson, etc.) fail. We found
that the most effective method consisted of simply con-
structing a large table of values of B(u,—pu) for a fine par-
tition of p. The singularity in B(po—u) at =0 had to be
treated carefully.

No unusual problems were encoun-
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The required code was written in rorTran 86 and the
computations were carried out in double precision on an
Intel 360 minicomputer. The table for inverting (25) was
constructed by partitioning the unit interval for p into
10000 segments. The step size for iteration in x was
chosen as 0.005, and the initial value of v was located to
within one part in 10*. This yielded an error of less than
0.5% for all quantities of physical interest. At each
phase point (p’, T") the unit interval for € was partitioned
into 100 segments and the solution for ¢ was obtained at
each boundary point. Linear interpolation was carried
out on In(7,) to fix the final value of € from the normali-
zation requirement.

V. RESULTS

A. Normalization and existence of solutions

To explore the predictions of this model, we used the
van der Waals equation to explicitly close (24) and (25),
and solved the coupled equations using the numerical
methods described in Sec. IV. The normalization in-
tegral, as well as the energy, free energy, displaced mole-
cules, effective size, and decay rate were computed for
100 values of € between 0 and 1.0 in increments of 0.01 at
each temperature and density. The values of 7’ con-
sidered were 1.0, 1.2, 2.0, and 6.0. At each temperature,
the allowed range of p’ (the van der Waals equation is
nonsingular for 0 <p’ <3) was divided equally into 30 in-
tervals. Thus 12000 iterations for the normalization
were calculated.

As explained above, the existence and stability of
trapped states depends entirely on values of the reduced
normalization integral. Except at the critical point, plots
of I, versus € exhibit a single minimum. At a given tem-
perature and density, the sole permissible value of I, is
determined by A (19) yielding none, one, or possibly two
values for € where trapping may occur. Where two
values occur, the higher-energy state has a positive value
of ®.° Thus A, T”, and p’ determine the particular solu-
tion of the nonlinear eigenvalue problem for ¢ and p.
The remaining properties of the trapped state, such as the
free energy, displaced mass, mean size, and decay rate,
can then be determined for each p’ and 7' in the fluid
phase where trapping exists.

In Fig. 2 we have plotted In(Z,) versus € both for the
ground and spherically symmetric first excited state at
the critical point (p'=7'=1.0). In contrast with all oth-
er p’, T’ values, they are monotonically decreasing and
fail to exhibit a minimum on the open ¢ interval. This
phenomenon has not been previously reported. It
demonstrates that the critical point is unique in that
trapped solutions always exist there for A>0. To verify
this feature in more detail, first solutions were obtained
for 100 values of € in the region 0.99<e<1.0. Even
here, the negative slope persisted. Second, the behavior
of I,(g) was studied on the critical isotherm for nearby
values of p’. In each case, the slope turned positive as
€ =1 was approached. The horizontal line corresponds to
A =35 and shows a single solution for each state. Natu-
rally, the energy eigenvalue of the excited state is consid-
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FIG. 2. Natural logarithm of the normalization integral vs scaled energy at the critical point for the ground and first excited
states. The straight line represents the log of the universal constant A. Its intersection with the normalization curve determines the
particular solution. At the critical point, plots of the normalization are strictly decreasing.

erably larger than the ground state. less likely as we move away from the critical point. In
Plots of In(I, ) versus € are given for three values of re-  the ideal gas regime, the minimum occurs near ¢ =0. 8.6
duced density p’ on the critical isotherm in Fig. 3. They
illustrate the characteristic minimum near the right-hand
boundary of the interval. Two features to note are (1) the Stability is investigated by computing the scaled free
minimum is more pronounced and (2) trapped solutions  energy (or grand potential) ®/cp.. The dependence of

B. Stability and the free energy

20
18- - p' =.2
16 - p‘ = 1.7
14 - p'=2.

In normalization

-2 v T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0
scaled energy

FIG. 3. Natural logarithm of the ground-state normalization integral vs scaled energy at the critical temperature for three reduced
densities (0.2, 1.7, and 2.6). In contrast with Fig. 1, all three plots have a minimum. The location of the minimum shifts to the left
with increasing density.
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FIG. 4. Plots of the free energy vs reduced density for two different temperatures. The stability of the trap decreases with increas-

ing temperature.

the free energy on the universal constant A is illustrated
in Fig. 4, where plots of ®/cp, versus p’' are shown for
A=35. Back of the envelope estimates indicate that
these A values span a realistic range for a number of
fluids. These curves show a pronounced minimum, indi-
cating maximum stability, near the center of the interval
in which traps are possible. It is clear that larger values
of A produce more stable traps over a wider range of den-
sity. The plots shown in Fig. 5(a) were computed on the
critical isotherm (7'=1.0), where trapping is most likely
to occur, and those on 5(b) at 7'=1.2. Although most of
the solutions are stable (®/cp.<0), the existence of
metastable solutions is evident near the boundaries of the
allowed density range. Gersch has pointed out that the
increase in entropy due to the translational motion of the
bubble as a whole should stabilize the localized state with
respect to propagating modes.”® For the present pur-
poses ® provides a useful measure of relative stability
among different trapped states. In Fig. 5, we see that the
density range and stability of trapped states decrease as
we move away from the critical isotherm. For the two
values of A considered in this study, there was one solu-
tion at 7'=2.0 (A=35) and no solutions at 7'=6.0.

The mean number of molecules excluded by the trap,
Np, was computed for the van der Waals fluid by evaluat-
ing (¢|1—plé). The ratio S of the spontaneous root-
mean-square fluctuation of the molecular population in a
sphere of radius R to N, was determined by evaluating
{(¢|x|d), the additional integral appearing in (33). S is
plotted on isotherms for various values of reduced tem-
perature T’ in Fig. 6. The plots indicate that over a large
density range on the critical isotherm, spontaneous fluc-
tuations are much smaller than the displaced popula-
tions.

C. Decay rate

The reduced local density which develops with the on-
set of trapping decreases the number of electrons avail-
able to the positron for annihilation. The enhanced life-
time which results is the key experimental signature of
self-trapping. The reduced decay rate, Apy/Bp,, is plot-
ted versus density on isotherms in Fig. 7 for A=35 at
T'=1.0, 1.2, and 2.0; and in Fig. 8 for A=5 at T'=1.0
and 1.2 (there are no trapped solutions at 7'=2.0 when
A=5). As expected, Fig. 7 reflects the fact that deeper
traps form over a wider range of average density as the
critical temperature is approached. Figure 8 illustrates
the same phenomenon, but to a lesser degree, due to the
smaller value of the universal constant A. In each figure,
the straight line indicates the extrapolated low density
behavior in the absence of trap formation.

VI. CONCLUSIONS

We have outlined a mesoscopic model for describing
the properties of trapped light-particle states in fluids.
The model is formulated from a consistent dynamical
evolution which includes the response of the fluid to the
presence of the light particle. It naturally leads to a state
space in which equilibrium statistical mechanics can be
formulated via a functional integral, and ordinary
(mean-field) density-functional theory arises from a varia-
tional principle. Applying mean-field theory to the
dynamical equations results in a complete set of hydro-
dynamic equations which couple the LP wave function to
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the local fluid velocity and density.?

Under the approximations of local equilibrium, and a
contact LP-fluid interaction potential, the trapped state is
defined, in mean-field theory, by a pair of coupled equa-
tions for the LP wave function and local fluid density.
We have shown that scaling the coordinates, wave func-
tion, and thermodynamic variables reduces the equations
to a universal form in which all of the system-specific
quantities appear in a single dimensionless parameter.
The parameter, A, depends on the thermodynamic prop-

0.5

0.0

scaled free energy

-0.5
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erties of the fluid at its critical point, which are known,
and the scattering length of the LP-molecule interaction,
which is generally not known. Since A varies as the 3
power of the scattering length, it is sensitive to small vari-
ations in L,. For the compounds in which trapping has
been indicated experimentally (see Sec. I), we estimate
that A varies from about 5 to 1900, with values above 50
only occurring for the quantum fluids H, and H,. Above

the critical temperature, the constant determines the

0.4 9
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0.0

-0.2 A

scaled free energy

-0.4

-0.6

038 T

-
4

reduced density

FIG. 5. Free energy vs reduced density for A=5 and 35. (a) 7'=1.0, (b) T"=1.2. The larger A value manifests deeper trapping
over a larger density interval indicating increasing trap stability with A. Typically, maximum stability occurs near the center of the
density range, while the end points are metastable.
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FIG. 6. Plot of S vs reduced density at 7'=1.0. S is defined as the ratio of the root-mean-square fluctuation in population in a
sphere of radius R (the effective trap radius) of the normal fluid to the number of molecules displaced by the trap.

response of the system to the light particle as well as the
range of density and temperature where stable localized
states are found.

A numerical algorithm was developed to rapidly solve
the coupled equations with good precision. The method
was used to investigate the existence and stability of the
self-trapped state in a van der Waals fluid. Plots of the
normalization integral versus energy demonstrate that lo-
calized states always exist at the liquid-vapor critical
point. An open question is whether this feature occurs in

models which explicitly include the nonlocal effects of
correlations.

As an application of the method, the pick-off decay
rate of trapped orthopositronium was investigated. The
predictions are qualitatively similar to experimental mea-
surements on ethane (see Fig. 1) and argon, which indi-
cate that trapping occurs over a similar range of reduced
temperature (1 < 7' < 1.5) and density. However, the ob-
jective was not to represent a particular set of data, but
rather to test the usefulness of the model and the sensi-
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0 1 2 3

reduced density

FIG. 7. Decay rate vs reduced density for A=35at T'=1.0, 1.2, and 2.0.
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FIG. 8. Decay rate vs reduced density for A=5at 7'=1.0 and 1.2.

tivity of its predictions to changes in the value of A. The
theoretical decay rates are smaller than those observed
experimentally, indicating a predicted average density in
the trapped state that is too low. They also show a
smoother increase with density than the experimental
data near the critical isotherm. The apparent elbow (or
kink) found for ethane (see Fig. 1) is missing. On the oth-
er hand, they compare favorably with the most recent
theoretical calculations of Tuomisaari et al.,'* for argon,
based on the earlier work of Nieminen et al.,’ which fail
to account either for the finite density range of the pla-
teau, or rapid increase in the decay rate at higher densi-
ties.?®

A peculiarity of this, and other, density-functional
models is the existence of a lower bound for the normali-
zation integral I,(e) (except, as we have shown, at the
critical point). The result is that nonvanishing solutions
of the Euler equation®® (here the nonlinear Schrédinger
equation) for an infinite system only exist for specific re-
gions of density and temperature, say A4 (p,T). Thus
mean-field theory taken by itself suggests that, in the
complement of A, the optimum states are propagating
waves of infinitesimal amplitude.® There are two conse-
quences of this behavior for the positronium annihilation
rate as predicted by density-functional methods. First,

there is a discontinuity in the annihilation rate at the
boundary of 4. Second, in the complement of A4 the an-
nihilation rate varies linearly with density. Neither of
these features is even approximately observed in experi-
ments. The statistical theory outlined in Sec. II does not
suffer from these problems. The optimized state is simply
an approximation to the true phenomena under condi-
tions where fluctuations play a minor role. In future
work we plan to study the role of fluctuations in the tran-
sition region, i.e., that part of the complement of A4
where the decay rate lacks linearity, as well as (1) the re-
lation of the path-integral formulation to regular quan-
tum statistics, (2) its usefulness for describing the role of
fluctuations, and (3) improvements to the mean-field
theory garnered from a more realistic equation of state.
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