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The thermal transport properties of mixtures can be formulated in a number of ways, depending
on the choice of driving forces for the transport of heat and matter, without violating the Onsager
conditions. Here we treat transport in mixtures based on the driving forces —7' ln T and
—T V'(p, /T), with T the temperature and p„ the specific chemical potential, to obtain the Green-
Kubo expressions and the Enskog theory for the corresponding transport coefficients which seem
most amenable to molecular-dynamics evaluation. The transport properties of a hard-sphere mix-

ture (mass ratio of 0.1, diameter ratio of 1.0, at a volume of three times close-packed volume), calcu-
lated by a Monte Carlo, molecular-dynamics method based on the Green-Kubo formulas, are com-
pared with the predictions of the Enskog theory. The long-time behavior of the Green-Kubo time-
correlation functions for shear viscosity, thermal conductivity„ thermal diffusion, and mutual
diffusion are found to be in good agreement with the predictions of mode-coupling theory. Except
for viscosity, the contribution of the long-time tails to the transport coefficients is found to be
significant. We obtain values, relative to Enskog, of 1.016+0.007 for shear viscosity, 1.218+0.009
for thermal conductivity, 1.267+0.026 for thermal diffusion, and 1.117+0.008 for mutual diffusion.

I. INTRODUCTION

The theoretical study of the transport properties of
mixtures has had a striking resurgence in recent years,
arising at least in part from the need to understand the
behavior of the multicomponent fluid mixtures which are
important in a great variety of natural and industrial sys-
tems. This intensified interest has been manifested in
both analytic theory and computer simulations. Our aim
in the present series of papers is to focus the mainstream
of these developments onto simple model systems so as
(1) to develop a comprehensive assessment of analytic
theory and the extent to which it can describe transport
processes, and (2) to explore the power and limitations of
computer simulations with respect to transport in mix-
tures.

Hard-sphere models are prominent in the kinetic
theory of fluids in that an explicit theory of transport
properties, beyond the low-density limit, has been
developed only for such models. For single-component
fluids, the high-density theory developed by Enskog'
was based from the outset on a hard-sphere model. Ex-
tensions to soft interactions have thus far proven elusive,
although ad hoc methods for applying the Enskog theory
to arbitrary systems exist, viz. , the so-called modified En-
skog theory.

The Enskog theory was revised by van Beijeren and
Ernst ' who resolved certain ambiguities in the earlier
versions. The extension of the theory to mixtures result-
ed in the correction of the earlier applications to binary
mixtures by Thorne and to multicomponent mixtures by
Tham and Gubbins. The van Beijeren —Ernst develop-
ments, the so-called revised Enskog theory, yielded a
theory consistent with the Onsager reciprocity relations

in all cases.
Explicit calculations for the revised Enskog theory

were made by Lopez de Haro, Cohen, and Kincaid in a
series of papers giving the general development, the mu-
tual diffusion constant, and the thermal diffusion con-
stant. Our principal aim is to test that theory quantita-
tively.

In a test of the accuracy of the Enskog theory for
single-component fluids, Alder and Wainwright first
used the molecular-dynamics method to evaluate the
equilibrium time-correlation functions which occur in the
Green-Kubo theory of transport coefficients. It was
through these studies that the long-time tail of the veloci-
ty autocorrelation function was first observed and ex-
plained hydrodynamically, ' subsequently being com-
pared''' with the theoretical predictions of the kinetic
theory' ' and mode-coupling theory. ' ' While the
effect of these long-time tails was to cause a rather sub-
stantial increase in the self-diffusion constant beyond the
Enskog value at certain intermediate fluid densities, the
effect was rather minor at other densities. In any case,
the existence of slow, algebraic decay of the time-
correlation functions which appear in the Green-Kubo
formulas makes it essential that the tail contributions to
the transport coefficients be explicitly taken into account.

For other transport coefficients, the comparison be-
tween theory and molecular-dynamics calculations has
been only partially understood. Alder and Wainwright
reported values of the thermal conductivity' of hard
spheres in substantial agreement with the Enskog theory
over the entire fluid regime. For shear viscosity, these
authors reported similar agreement for densities well
below the fluid-solid phase transition, near which the
viscosity increases substantially above the Enskog value.
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The mode-coupling theory predicts only small long-time
contributions for shear viscosity. Only through the ex-
tension of the theory to shorter wavelengths in the so-
called extended mode-coupling theory' has it been possi-
ble to understand the long-time effects associated with
the enhanced viscosity at high densities.

For mixtures, the study of transport properties
through molecular-dynamics calculations has quite a lim-
ited literature. Surprisingly, perhaps, the most extensive
work has been concerned with soft interaction potentials
rather than hard-core potentials. The self-diffusion con-
stant in a mixture of Lennard-Jones particles was studied
by Jacucci and McDonald ' and by Hoheisel and
Deiters using methods based on the Green-Kubo for-
malism. The self-diffusion of mixtures of hard disks was
the subject of a molecular-dynamics study by Clifford and
Dickinson. The first investigation of the "thermal"
transport coefficients was the Green-Kubo calculation of
Jolly and Bearman who studied the mutual diffusion
constant for the same mixture studied by Jacucci and
McDonald. Schoen and Hoheisel ' extended these cal-
culations to greater precision and to a wider range of pa-
rameters. Vogelsang and Hoheisel calculated the
thermal conductivity of Lennard-Jones mixtures, also us-
ing the Green-Kubo method. Finally, MacGowan and
Evans used a nonequilibrium molecular dynamics to
calculate the coefficients for mutual diffusion, thermal
diffusion, and thermal conduction, also for Lennard-
Jones mixtures. Their mutual diffusion coefficients ap-
pear to disagree with the earlier results rather substan-
tially.

The aim of the present study is rather different from
the previous work. Here our principal goal is the com-
parison between theory and numerical simulations not
only for mutual diffusion but also for shear viscosity,
thermal conductivity, and thermal diffusion. While such
a comparison may seem straightforward, it is well-known
that the separation of energy transport into a thermal
and a diffusive part is not unique for mixtures, a fact that
has led to great confusion among both theorists and ex-
perimentalists. In his classical monograph, de Groot
discusses at least three distinct systems of phenomenolog-
ical fluxes and gradients. Other such separations and
other definitions of transport coefficients have been made
to accommodate either theory or experiment or both.
Evidently, then, some care must be exercised in selecting
the system of fluxes and forces, in adopting the correct
Green-Kubo expressions for that choice, and in obtaining
theoretical results for both the revised Enskog theory and
for the long-time tails of the time-correlation functions
for that same choice. In view of the ample opportunities
for confusion in this field, it is hardly surprising that the
literature is replete with disagreements, both real and ap-
parent.

In view of the above, we initiate our study with an out-
line of the theory, beginning in Sec. II with the phenome-
nological description of transport in multicomponent
mixtures, turning to the microscopic Green-Kubo theory
in Sec. III, and providing the specialization of the revised
Enskog theory for our choice of fluxes and forces in Sec.
IV. In Sec. V, we quote the results of mode-coupling

theory for the long-time behavior of the Green-Kubo
time-correlation functions, which is the subject of a
separate paper. Finally, in Sec. VI, we discuss the re-
sults of a Monte Carlo, molecular-dynamics calculation
of the various transport coefficients and a brief compar-
ison with the theory. Subsequent papers will deal with
more extensive calculations.

II. PHENOMENOLOGICAL TRANSPORT THEORY

As mentioned in the Introduction, de Groot intro-
duced three distinct choices of the fluxes and forces for
energy transport in a multicomponent mixture. For the
present purpose, our choice is dictated principally by our
desire to optimize the molecular-dynamics calculations of
the transport coefficients (via the Green-Kubo formulas)
in the sense that our choice should lead to the greatest
accuracy. Indeed, we find the choice of fluxes and forces
to be particularly critical in this respect. Nonetheless, us-
ing our results and the values of the partial specific
enthalpies and chemical potentials, say, from an approxi-
mate analytic equation of state, one can readily transform
to the other systems of fluxes and forces.

A. Conservation equations

Summation of the continuity equation over all species
yields the overall continuity equation

Bp = —V.(pv),at
(2)

in which p is the overall mass density and v is the mass-
averaged flow velocity

v=p ' y p. v. . (3)

The equation of motion is

Bv
p +pv Vv= —V.P,

at
(4)

in which P is the pressure tensor. Finally, the entropy
transport equation is written as

Bs
p +pv Vs= —V J +0,

at

in which 0 is the entropy production and J, is the entro-
py current, which can be written in terms of the heat
current J and the diffusion current J, as

We consider a d-dimensional (d =2 or 3), nonequilibri-
um fluid system consisting of n, distinct species. At posi-
tion r and time t, let the system have pressure p, tempera-
ture T, and specific entropy s, with mass density p, , and
flow velocity v, of each species. Consider the conserva-
tion laws, in the absence of chemical reactions and exter-
nal forces. The "continuity" equation for species a is

Bp = —7'(p v ).a a
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in which we use sums over Roman indices, a, b, . . . , for
sums over the n, species. The specific chemical potential

p, of species a is defined in terms of the (extensive) Gibbs
free energy G ( T, p, [M, ) ) of a system having masses

[M, (
= [M, , M2, . . . , M„) of the various species

and J, with corresponding forces

1X = ——7'T

(14)

dM, qp )M

in which we define the thermodynamic state by T, p, and
the n, —

1 independent mass fractions, t c, ]= [c, , cz, . . . , c„,). The currents are defined by
S

respectively. In the prime system used, for example, by
Green' in his study of the Green-Kubo relations for mix-
tures and by Pomeau" in his theory for the long-time be-
havior of the time-correlation functions for mixtures, the
forces

J, =p, (v, —v),
J =J, —(pev+P. v),

(8)

X'„=X„,
X,'= —Vp, =X, +p, X„,

(15)

where e is the total specific energy, e = —,'U +u, u is the
specific internal energy, and J,, is the total energy current,
which satisfies the energy continuity equation

have canonical fluxes

B(pe)
Bt

(9)
(16)

By virtue of the assumption of "local equilibrium, "
u is

taken to be a known function of the local thermodynamic
state T,p, [c, ).

B. Linear phenomenological laws

The hydrodynamic equations are completed by ex-
pressing the heat current and pressure tensor as linear
functions of the gradients. The pressure tensor in the
Newtonian approximation for a d-dimensional Auid is

Finally, the double-prime system is based on forces

X,", =X„,
X,"=X,+h, X, ,

= —(Vp, +s, V T),
in which h, is the partial specific enthalpy,

h, = (18)

P =pl —i)[Vv+(Vv) ]+[(2/d)il —g](V v)1, (10)

in which i) is the shear viscosity coefficient, g is the bulk
viscosity, (Vv) denotes the transpose of the dyadic ten-
sor, and 1 denotes the unit tensor.

In nonequilibrium thermodynamics, the heat and
diffusion fluxes are written as linear functions of their
"canonical" forces, i.e., fluxes J, and forces X, such that
the entropy production has the Onsager form

10=—$J.X
z I 1

I

For the heat and matter transport, de Groot details
three distinct choices of cruxes and forces which we desig-
nate as "mainstream, " "prime, " and "double prime" cor-
responding to his unprimed, singly primed, and doubly
primed choices. In each case, the viscous contributions

remain the same, so the entropy production takes the
form

[with H(T, p, ) M, ) ) the enthalpy], and s, is the partial
specific entropy

S
dM„

(19)

It is perhaps worth noting that L," can also be written,

Xg — V y-pa (2, 1)

in which the isothermal gradient for any intensive ther-
modynamic function g is defined by

Vzg(T p, [c, ) )=Vg- a)g
(22)

in which S is the total (extensive) entropy. It follows that

J"=Jq —g h, J, ,

A=A„+0„, (12)

in which '

fl„=—{i)[Vv+(Vv) ]—[(2/d)iI —g](V.v)1):Vv .
1

In the mainstream system, de Groot uses the fiuxes J

Thus, in the double-prime system the diffusion force has
no contribution from the temperature gradient in the
sense that the term arising from the temperature depen-
dence of the chemical potential has been subtracted off.

The hydrodynamic modes, which are used in mode-
coupling theory for the long-time behavior of the time-
correlation functions, can be formulated in terms of any
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of the three forms of the forces and fluxes. The prime set,
used for example by Pomeau, would appear to be par-
ticularly unfortunate for the present calculations in that
the fluxes and forces (and thence the transport
coefficients) contain properties of the system which are ei-
ther difficult to evaluate or undesirable to specify. The
latter can be seen from the expression for the chemical
potential of a three-dimensional ideal gas,

3k~ T
2 3k~ T

ln(2rriri )
— lnm,

2ma 2m

L.'b ——L.„,
Lua Lua g I bLba

b

L„'„=L„„—2g p, L„,+g gl",I"IL,
a b

(27)

of the prime forces through Eq. (15). Using the second of
the Onsager relations, Eq. (25), and comparing the result
with the prime version of the linear laws, we thereby ob-
tain

sk, T k~T
ln(k~ T)+ ln(x, p),

2m' ma
(23)

One can readily obtain the inverse relations in a similar
manner as

Lab L
in which 2~% is Planck's constant and x, is the mole frac-
tion of species a. Thus I,', Eq. (15), contains a term in
the temperature gradient involving Planck's constant.
Not surprisingly, Planck's constant also appears explicit-
ly, for example, in the Green-Kubo expression for the
prime thermal conductivity, resulting, as it turns out, in a
dependence of the transport coefficient on the thermal
wavelengths of the particles. On the other hand, neither
L, nor X," contains this term in A. While clearly there is
nothing wrong with this property of the prime set, it is
clearly advantageous to avoid reporting results which ap-
ply only for specific values of the thermal wavelengths.
As a result, our considerations will be limited for the
most part to the mainstream and double-prime systems.

The linear transport coefficients are defined in the stan-
dard fashion,

L„=L„+g p'bLb
b

L~~ =L~~+2 g poL~o+g g p, p&Lob .

Similarly, the double-prime set is found to be

L,b
—L,b

L„'g=L„,—g hI, LI„,
b

L„"„=L„„—2 g h, L„,+g g h, hI, L,t, ,
a b

which can also be readily inverted.

III. MICROSCOPIC THEORY

(28)

(29)

J, =g L,~XI, +L,„X„,
b

J =gL„,X, +L„„X„,
(24)

in which the L,b are the mutual diA'usion coefficients, the
L,„and L„, are the thermal diffusion coefficients, and

L„„ is the thermal conductivity. Similar expressions
define the prime and double-prime transport coefficients.
The Onsager reciprocity relations for the mainstream
transport coefficients are

Lab Lb

Lua=Lau ~

(25)

while the definition of the diff'usion current, Eq. (8),
whereby g, J, =0 yields

L„=g L,b .
b~a

(26)

For the case of a binary mixture, these relations reduce
the number of independent thermal transport coefficients
to three, viz. , L „,L,„,and L„„.

The relationships among the various sets of transport
coefficients can readily be obtained by writing the fluxes
in the target system in terms of the fluxes in the source
system. Thus, to obtain the prime coefficients in terms of
the mainstream, we write the prime fluxes in the form Eq.
(16), substitute the linear relations, Eq. (24), for the main-
stream fluxes, and write the mainstream forces in terms

The microscopic calculation of transport coefficients is
based on Green-Kubo theory. Unfortunately, the litera-
ture on the subject is untrustworthy for the most part so
that considerable care must be exercised in the use of so-
called standard references. For the present purposes, we
refer to the development by Green, although some
minor correction is needed in this case also. Because
Green derived expressions for the transport coefficients
based on the prime fluxes and forces, we shall further
transform these to obtain expressions appropriate to the
mainstream and double-prime systems.

A. Dynamical system

UD=Q u, , (r, ), "
i &j

r =r —rij i j
(30)

We consider a fluid system at the temperature T con-
tained in cubic volume V =L . The system consists of N
particles, N, having mass m, , N2 having mass m2, . . . ,
and N„having mass m„.

The system is assumed to evolve with time under the
Newtonian equations of motion, subject to a two-body,
central interaction potential u, i, (r) acting between parti-
cles of species a and b at a separation r. If we denote the
particle positions by r =

I r, , rz, . . . , r~ I and the particle
velocities by U =

I vi, vz, . . . , vz t, then the potential en-

ergy is the sum of pairwise additive terms,
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in which we denote the species index of particle i by s,-

and in which r, = ~r, ~. To simplify the notation, howev-
er, for the i,j interaction, we write, hereafter,

(31) in which

(36)

For the case of hard-disk or hard-sphere mixtures, which
will be our principal concern, the interaction potential is
singular,

0 ifr o
u r)=

oo otherwise,

tr, b
——(g, +o b )/2, (32)

in which the prime on the i,j sum denotes the omission of
the j =i term for v=0, as in Eq. (30).

In order to be specific in the face of periodic-boundary
conditions, we further define the position r, (t) to be the
integral of the velocity v, (t) This de.finition is sometimes
called the "infinite checkerboard" description in which
the r, (t) move continuously throughout the periodic
cells. It is to be distinguished from the discontinuous
definition whereby the particle remains within the "pri-
mary" or v=0 cell.

B. Green-Kubo formulas

Green derived the Green-Kubo formulas for a mul-
ticomponent mixture. These can be written in the usual
form of a sum of kinetic, cross, and potential terms as

in which cr, is the diameter of species a. (In the discus-
sion which follows, we shall speak of the hard-sphere in-
teraction to indicate the two- or three-dimensional case.
Only in Secs. IV and VI will we specialize to three dimen-
sions. )

In numerical calculations, the system typically is far
from macroscopic size. In order to minimize surface
effects, we employ the usual periodic-boundary condi-
tions in which the N-particle system is replicated
throughout space through translation by vL. for all d vec-
tors v having integer components. Thus the total poten-
tial energy of the system becomes

U(r )=g U (r"),
(33)

U„(r ) = g ' t(( )~ r;, +vL
~ ),

—y(K)+ y(P)
I I I

are microscopic currents, p=1/(kaT), and n =d, ex-
cept for the case of the viscosity for which n =1. The

7l

subscripts a& and cz2 denote the first and second sub-
scripts of a, respectively, except for the case of shear
viscosity for which both 0. , and o.'2 are g. The angular
brackets denote an average over an equilibrium,
statistical-mechanical ensemble.

Analogous relations relate the prime transport
coe%cients, the prime time-correlation functions, and the
prime microscopic currents, as well as the double-prime
quantities.

The microscopic currents for the prime system reduce,
for an equilibrium ensemble (Green treats a generalized
ensemble), to

8.'(t)=8', ( '(t),
(a)

=g m, v (t) c, pm, v (t—),'J J
J J

4'„( '(t) =B(")(t)—g p. d', (t) ,hg m,—v, (t), (37)

g (0)( )
—IB($)( )

y( )(t) —T(A)(t)

B ~)=
—,
' g g'(r, , +vL)F,, (r, +vL) v, ,

V I,J

e, =
—,
' m, U, +g g'P, (~r, +vLt)

V J

(38)

e, is the energy of particle i, T is the microscopic stress
tensor,

in which g,"denotes the sum over particles of species a
and in which B is the total microscopic energy flux,

B B(K)+ B((t~)

I =L (&&) +g (&4) +L (&&) +I (&4)
a a a a

in which

L' ' = lim tlimL' '(t),

'(t)= J ds ( )(s),

(34)

(35)

T(K)+ T(d )

T' '=pm v v
I

T'~ =
—,
' g g'(r, +vL)F,, (~r,, +vL

~ ),
V I, J

(39)

with A, 8 E I E,P I, for transport coefficient
aE I ah, au, uu, iII representing the mutual diffusion con-
stant, the thermal diffusion constant, the thermal conduc-
tivity, and the shear viscosity, respectively. Here tlim
denotes the thermodynamic limit of large system size and
p (t) are time-correlation f'unctions of the form

and F, (r) is the force,

F, (r)= —VP,, (r) .

Both B and T are written as sums of kinetic and potential
parts. Our calculations have not included the bulk
viscosity so we do not consider it here.
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8'„(t)=B' (t) —h g m, v, ,
I

(40)

y ( ltl )
( t )

—B( l)) )
( t )

We note that the microscopic heat current no longer con-
tains the chemical potentials and is therefore more readi-
ly computed than the prime version. Moreover, for the
so-called molecular-dynamics ensemble, having fixed
volume, energy, and linear momentum, the latter normal-
ly being set to zero, the term in the specific enthalpy van-
ishes, whence the heat current is dependent only on the
phase, x' '(t)

For the double-prime transport coefficients, the micro-
scopic currents follow from substituting the double-prime
versions of Eqs. (35) and (36) into Eq. (29). We obtain

4, (t)=+,(t),
8'„'K)(t)= cP(„K)(t)—g h, cP, (t),

To obtain the microscopic currents appropriate to the
mainstream transport coefficients, we substitute the
prime versions of Eqs. (35) and (36) into the relation be-
tween mainstream and prime transport coefficients, Eq.
(28). With suitable rearrangement of the microscopic
currents, we obtain the following:

4.(t) =4.(t),

velocities, and

L(AB)(t)= P (d(A)(0). g(B)(t})
n Va

g( A)(t) = dS d(( A)($)
Q I

(43)

While the kinetic and the (KP) cross terms are seen to no
longer contain 5 functions, the potential terms and the
(PK) cross terms do. To evaluate these, we consider the
so-called Einstein functions,

g(AB)(t) — I (g(A)(t). g(B)(t))
2tn V

(44)

Observe that

d tS( A A)(t) =M( A A) (t)Q A

Av, =v,' —v, .

While it is not possible to directly compute time-
correlation functions involving the potential terms be-
cause of the 5 functions in the time, one can readily com-
pute time integrals by interchanging the t&me integral
with the ensemble average. We write the time-dependent
transport coefficients, defined by the second of Eq. (35), as
a time-correlation function by taking the time integral
within the ensemble average in Eq. (36), where

y" ( ()( tll) —B(l(l)( t)
d tg(Ktl) ( t) —( [M(K$) ( t)+M(PK) ( t) ]a (45)

We see that the double-prime heat current is similar to
the mainstream in not containing the chemical potentials
but is complicated by the presence of the partial specific
enthalpies which would normally be a little difficult to
evaluate with precision. Indeed, Vogelsang and
Hoheisel in their calculation of the double-prime
thermal conductivity of the Lennard-Jones fiuid simply
estimated the magnitude of this contribution to be small.

For the case of hard-sphere interactions, Eq. (32), the
potential terms in Eqs. (38) and (39) are singular. Expres-
sions suitable for hard spheres can be obtained by calcu-
lating the energy current and the momentum current
across an elementary area in the X-particle system, tak-
ing into account the periodic-boundary conditions. One
obtains

B'~'=
—,
' g 5(t t )[r, (t —)+v L)m, bv;(t )

@=1

X[v, (t,, )+v,'(t )+v, (t~)+v,'(t~)],
for the potential part of the energy fiux and

(41)

T ~'= g 5(t —t,, )[r;,(t )+v L]m, bv, (t~)
y'=1

for the potential part of the stress tensor. Here t~ is
defined to be the time of the yth collision and i and j
denote the particles involved in that collision. In general,
these particles need not be in contact, but periodic image
r, +v L is defined as being in collision with r at time t
The symbols, v, and v,', specify the pre- and post-collision

M( AB)
( t )

—L ( AB)
( t )a a (46)

Thus, for hard spheres, we are forced by the presence of
the 5 functions in the potential parts of the energy
current and the stress tensor to evaluate the time-
dependent transport coefficients through differentiation
of the Einstein functions.

IV. ENSKOG THEORY

The revised Enskog theory was applied to hard-sphere
mixtures by Lopez de Haro et al. , referred to as LCK
hereafter. In view of the various possible choices for
fluxes and forces, it is essential that we ascertain the
choice made in that paper. By substituting the energy
current J, from Eq. (8) and the total energy e into the en-
ergy continuity relation, Eq. (9), and observing that for
hard spheres the specific internal energy is given by

d
u =—nk~ T/p,

one readily obtains the energy equation, Eq. (9c), of LCK.
Therefore, the LCK heat current J is identical with
ours.

The Enskog theory, specialized to the d =3 case, yields
the following expressions for the fluxes of mass, momen-

M(AB)(t)= P (d(A)(t) g(B)(t}).a ai a
a

It can be shown using the Liouville theorem and the dy-
namic reversibility of the trajectory that
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turn, and heat in terms of the gradients of velocity, tem-
perature, and number density:

J = — ' 'y dt b'd, —a,"V ln T
n b

n, kBTP= — g K,' b '+
—,', C ((Vv))

2kB T—C+ g g pb, bMb, y,bn, h'(' (V v)1,9 n b

perimental comparison; except for the viscosity for which
no ambiguity exists, these are not the same transport
coefficients defined in Sec. III. As a result, we derive here
the Enskog values of the transport coefficients, particu-
larly for the mainstream system. Given, for example, an
approximate analytic equation of state, one can readily
obtain the prime and double-prime sets from these. Our
aim, then, is to write Eqs. (47) in the form of Eqs. (24),
with forces, Eqs. (14). We begin by eliminating the gra-
dient of the number densities by rewriting d, in terms of
gradients of chemical potential and temperature

J = ——k~TQ

—4k~T g

K, n, aI' V lnT —g d 'db
b

1/2 42vrm, mbkB T n, nbo, bg, b
V lnT

m, +mb m, +mb

d, =Z, + . TV(p, /T)
nkBT

Bp+ p, —T VlnT . (49)

maa b

5 J,+kii T g —+g pb, by, b
a 2

b ma

+k Tyy P ab ab ba ab J
b (M —M )y

(47)

For the hard-sphere fluid, we can write

p. =p."+kii Tq(I nb I ),

p' '= ink.
kBT

p, — n

(50)

The last term has been corrected by removing a numeri-
cal factor of —,

' from the final gb. " In Eq. (47) we have
the definitions

M, b =m, l(m, +mb),
' 1/2

27Tm mb kB TC=XX n nb(7 bg b
b ma +mb

in which the function q is independent of the temperature
and A., is the thermal wavelength,

2~%

,k T

Thus the term in the chemical potential appearing in Eq.
(49) becomes

K =1+—'2 g pb bM bMb y b
b pa 3kB T

2m
(51)

K, =1+', gpb bMb y b,
b

blab 27mb 0'gb l3P
(48)

Substituting Eq. (51) into Eq. (49) and thence into the ex-
pression for J, in Eq. (47), and using the expression for
Z, from the same equation, as well as the identity,

1
d =Z + —gE bVnb

n b y d(bI p
b

(52)

Pa n
Z, = Vp+ g (5,b+2pb, bM, by, b )V lnT,

npkBT b n
to eliminate the term in the pressure gradient, we obtain
the first of Eq. (24), with mutual diffusion constant,

Pa
ab kBT

Bp

T, I,~. b I

p p
'b (53)

in which n, is the number density of species a, g, b is the
pair-correlation function at contact, and 5,b is the
Kroeneker 5. The symbol ((X)) denotes the traceless,
symmetrized form of the tensor X. (Note that our ex-
pression for E,b differs from LCK in the presence of an
additional factor of m, because LCK uses the chemical
potential per particle rather than per unit mass. ) The
a,", b,", d,'",', and h ' are expansion coefficients in the
Sonine polynomial expansion. We observe that LCK
specify the thermodynamic state through the tempera-
ture T and the n,. number densities.

In the LCK development, Eqs. (47) were used to find
explicit transport coefficients in forms convenient for ex-

and thermal diffusion constant,

in which

5

4n b 2n
(54)

K"= 1+ ) g Pbgb Mob
b

We note that no assumption of vanishing pressure gra-
dient has been introduced.

In similar fashion, Eq. (47) yields an equation of the
form of the second of Eq. (24), with thermal diffusion
constant,
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5 „
L„.=—,g (K,n„db, ii K—, nbdb 0 )

4n b

(55)

and thermal conductivity

L uu

5kB T Kb'nb
y K,n„a,' ——g — d„",'

4k T+, XX
1/2 42~m, mb kB T n, nb o.,by, b

m +mb ma +mb

SkBT+
2

K,"L,„
m,

(56)

For completeness, we also give the shear viscosity
coefficient,

coupling results depends on the form of the starting hy-
drodynamic equations, it is evident that the long-time
tails for a given set of time-correlation functions will have
different forms when expressed in terms of the different
set of transport coefficients.

Wood considered the case of a binary mixture in d di-
mensions, assuming that the equation of state and trans-
port coefficients are known. In addition to confirming,
except for numerous apparent misprints, the results of
Pomeau for the long-time tails in the prime system of
fluxes and forces, he also obtained relatively simple ex-
pressions for the tails for the double-prime system and
somewhat more complicated expressions for the main-
stream system. In this section we display the mode-
coupling results for the latter.

The general form of the long-time tail for transport
coefficient L is

K,'n, k T
Q a B b(a) + 4

n I5 (57) p (t) kt- (59)

d(b) =d(a)
a, O bo

(.)00 — g Kbnbdb i2n

(58)

It should be noted that the Onsager reciprocity rela-
tions evidently require that

It is perhaps simplest to write the coefficient k„ in terms
of the double-prime transport coefficients rather than the
mainstream coefficients. For mutual diffusion, then, the
coefficient is

d —1 L„'„'/c T—

d13 p, (g+ —g ),=+ [4~(g+q, )/p]di'
While we have not proven these equations, they evidently
are true in that the Onsager relations were established in
general. Our numerical calculations, described below,
also are consistent with these relations.

in which

(60)

V. MODE-COUPLING THEORY

The long-time behavior of the time correlation func-
tions for mixtures was first studied by Pomeau using the
Landau-Placzeck theory. Wood has revisited the prob-
lem using the mode-coupling theory, as developed by
Ernst et al. ,

' ' and considered the mainstream and
double-prime systems in addition to the prime hydro-
dynamics of Pomeau. Because the form of the mode-

q+= ,'(p„,LII +L—„"„/cT 2)'i ),
II '2

pL I'1 +4 —(L„"i )

~(P| Pz)

(61)

and in which c is the specific constant-pressure heat
capacity. For thermal diffusion, the coefficient is

Cp T
k„,=

dp. 13 (n+ n )L."1,=+,——-
(g, L„"„/c T)[q, —

p, „L",, +(h, ——h~)L„", /c~T]
7

[4m(q+ g, )/p)
(62)

For thermal conductivity, the long-time tail coefficient is

c 1 d 1 cpT

dg (4vrr, )"i dp g (g+ —g ) L„",

(q, L„"„/c T)[g, p—, LI'i+(h, —h—q)L„", /c T]

[4~(g+g )/p]"

in which c is the adiabatic sound speed

C
2— 0p

a

and I, is the acoustic damping constant

(64)

1 2(d —1)r, =— q+g +r,„,
p d

2

I = L" —2 L" + L"c T c T
su T uu u1 1]

Pcp

(65)
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in which

T Bp

p BT
(66)

is related to the usual volume coefficient of thermal ex-
pansion and

V=3VO,

Vo = ,' &2—Ncr
(68)

A. Numerical methods

The system is the same one treated earlier by Kincaid
and Erpenbeck for mutual diffusion.

T, c
l

(67)

By virtue of Eq. (29) relating the double-prime transport
coefficients to the mainstream coefficients, we regard
these expressions as providing the mainstream long-time
tails in terms of the mainstream transport coefficients.

VI. MONTE CARLO MOLECULAR-DYNAMICS
CALCULATIONS

In this section, we discuss the evaluation of the trans-
port coefficients directly from the Green-Kubo formulas
for a 50-50 binary mixture of hard spheres (d =3), each
species having diameter o, but the particles of species 2
having a mass of O. lm~. Because the thermodynamic
and transport variables have a trivial dependence on tem-
perature for hard spheres, we specify the state through
the volume relative to close-packing for which we have

The numerical calculation of the transport coefficients
has been described in some detail in previous publica-
tions " dealing especially with self-diffusion in one-
component systems. The present calculations are entirely
analogous, except that different time-correlation func-
tions are evaluated. We compute Monte Carlo estimates
for the various time-correlation functions discussed in
Sec. III in the "molecular-dynamics" ensemble, i.e. , the
submicrocanonical ensemble characterized by vanishing
total linear momentum and specified values for the num-
ber of particles N& and N2, the volume V, and the energy
E. The Monte Carlo procedure yields a sequence of ini-
tial phases Ix&, k = 1,2, . . . , N„ I sampled from the ap-
propriate distribution function. The molecular-dynamics
method is used to generate a trajectory beginning at each
x&, from which values for the various time-correlation
functions can be obtained for a sequence of times, using
the expressions for the microscopic currents cP' and

I

their integrals g given in Sec. III. In our calculations,
I

the time-correlation functions are computed at times as

to, to+k, bt, . . . , to+n, k&ht, to+(n&k&+kz)bt, . . . , to+(n~k~+nzk&)bt, . . . , (69)

in which to denotes a "time origin, " the n, and k,- are integers, and the time step At is chosen relative to the Boltzmann
mean free time too to be

At =0.05too,

N(N —1)

g, Qb N, (Nb 6ab)oab((m +mb)I2m, mbl
(70)

For the present calculations we choose k& =1, n
~
=30,

k2 =5, n2 =14, k, =15, n3 =60, so that the final time tf
for which the time-correlation functions are calculated is

50too, which corresponds roughly to 100 actual mean free
times at the present density.

For each trajectory the values of the time-correlation
functions are averaged over time origins which are
spaced at five time-step intervals. Because each trajecto-
ry is generated out to a time Ns, „ht which far exceeds tf,
the extent of time averaging on a given trajectory is large.
The time-averaged values are then averaged over the N, „
trajectories providing the estimates for the ensemble
averages, as well as their statistical uncertainties by vir-
tue of the statistical independence of the starting phases
for successive trajectories. This independence is achieved
by the use of independent sampling for the velocities of
the particles, coupled with a Metropolis Monte Carlo
procedure in configuration space consisting of 200 at-

tempted moves per particle between phase x; and x, +&.
The parameters N, „and N„„ for the present calculations,
as well as the total number of collisions X„are listed in
Table I, which also includes results to be discussed below.

B. Evaluation of theoretical results

In order to evaluate the theoretical results for the
hard-sphere mixture at V/Vo=3, we observe that the
calculation of the long-time tails requires both the equa-
tion of state (including the free energy) and the transport
coefficients. For the latter we use the Enskog approxima-
tion which also depends on the equation of state. While
for the present isotopic mixture, whose thermodynamic
properties are just those of the single-component system,
an extremely accurate equation of state is available, for
the general hard-sphere mixture no comparable represen-
tation exists. Therefore, we follow Lopez de Haro
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TABLE I. Parameters and results for the Monte Carlo molecular-dynamics calculations in the sub-

microcanonical ensemble having zero linear momentum for the transport properties of 50% mixtures of
hard spheres having equal diameters and a mass ratio of 0. 1 at a volume of three times close-packed
volume. N is the number of particles, N„ is the number of distinct trajectories, N, is the total number
of collisions, in millions, N„„ is the number of time steps, in thousands, for each trajectory, each step of
length 0.05too, with too the Boltzmann mean free time. The results include the mean free time, to, and

the time-dependent transport coefficients, f. (tf ), reduced by the Enskog transport coefficients, for the

shear viscosity (a =g), the thermal conductivity (a= uu), the thermal diffusion (n = u 1), and the mutu-

al diffusion (a=11). The time, tf =50too, is the longest time for which the time-correlation functions
were evaluated. The values in parentheses denote the statistical uncertanties (one standard deviation) in

the low-order digit of the mean.

108
500

1372
4000

Ntr

60
95

217
100

N,

40
205
184
103

N„p

120
84
12

5

to ~too

0.480 93(9)
0.485 34(6)
0.485 54(4)
0.485 86(5)

L„(tf )

1.007( 13 )

1.007( 12)
1.024( 23 )

1.085( 58 )

L„„(tf)

1.038( 14)
1.115(16)
1.133(27)
1.004(64)

L„,(t~ )

1.177(20)
1.186(35)
1.094( 76 )

L„(t) )

0.988( 14)
1.054( 14 )

1.054(24)
1.133(60)

1
1 3

oaob4
1 —

g3 (o, +o.„)(1—g3)

+2 ~a~b 2

(o +o b )(1 (3)

2

et al. in using the Carnahan-Starling ' approxima-
tion which applies for arbitrary diameters, masses, and
volumes

where U, is the partial specific volume. The latter can be
evaluated in the Carnahan-Starling approximation using
the identity

Bp

T, V, I M

Bp
BV

0o

1 —
g3

ma pa na ~a ~p ~a=ln + +g o,'f;,
kBT 1 —

3 6k' T

in which

M, o,'
g;(v, IM, I)=

a

32
1—

3

(71) with the pressure from Eq. (71). We have used the
highest "Enskog approximation" (i.e., highest degree
Sonine polynomial expansion) for which the FORTRAN
package was designed, namely, the tenth approximation.

In similar fashion, we determine the long-time tails of
the time-correlation functions from these double-prime
transport coefficients, obtaining the required thermo-
dynamic quantities from Eq. (71). For example, to obtain
p we use

Bp dnb

(3nb T, I, „ I
BC (

90z+
2(1 —(, )'

dn&

BC)

ap
Jo Bn2 T„

+ ln(1 —g3)+
g2

f3 = — 21n(1 —g3)+

g2

2(1 —g3)

an 2 1 ap
Bc, J Bn,

m&m2Jo=-
(m, n, +m2n2)

Bp
na

T I b

(73)

3k~ T
ha — +pva

2m
(72)

Kincaid provided us with the FORTRAN programs which
LCK describe for computing the Enskog transport
coefficients. We modified these so as to yield the main-
stream transport coefficients, Eqs. (53)—(57), as well as
the double-prime coefficients, Eq. (29), using the partial
specific enthalpies, Eq. (18), which become for hard
spheres,

3
pa pa po a /ma

which can be readily evaluated from Eq. (71).

C. Numerical results

Our calculations include the study of systems of 108,
500, 1372, and 4000 particles. The parameters for each
of these calculations are given in Table I, including the
time steps per trajectory N„and the number of trajec-
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tories N, „. Observe that for the larger systems the trajec-
tories are relatively short on the basis of the number of
collisions per particle. Because the number of trajec-
tories for the larger systems is not proportionately larger,
the calculations for the larger systems, especially the
4000-particle system, are relatively less extensive when
applied to the calculation of time-correlation functions
for the transport properties studied here.

Our results consist of the time-dependent transport
coefficients, either evaluated directly from Eq. (43), as in
the case of mutual difFusion and thermal diffusion, or
through differentiation, Eq. (45), of the Einstein function,
Eq. (44), as in the case of the thermal conductivity and
the viscosity. We define reduced transport coefficients
relative to the Enskog values (in the tenth Sonine approx-
imation) by adding a caret over the symbol, e.g. ,

1.2

CI
CI

CI

p

CI

0. 9

p pp

p pCI

ppoop(-ICII lpp ppp

g
p

L =L /L (74)

The Enskog transport coefficients are evaluated as out-
lined above, yielding

Q

0.0 20. 0 40. 0 60. 0 80. 0 100.0
t/tp

L„„=3.919 743 0
(m, p)'"~', '

L„i = —0.054992 8
p)1/2 2

m, (m, p)'/
L

& &

=0.002 1 1 6 4
0-2

i

(75)

FIG. 1. Time-dependent thermal conductivity L„„(t),relative
to the Enskog value, for a 50-50 binary hard-sphere mixture
having mass ratio of 0.1 and diameter ratio of 1.0 at a volume of
three times close packing, as a function of the time t, relative to
the observed mean free time to, for a 500-particle system. The
arrow shows the acoustic wave traversal time for the system.
The error bars represent +1 standard deviation about the mean.

E —0 2937862
p) I /2 2

In similar fashion we define a reduced time relative to the
mean free time

t =t/tp,
which we estimate numerically from the collision rate

t, N N —1

(76)

(77)

in which N, is the number of collisions on a trajectory ex-
tending to time t, . The observed values of tp relative to
the Boltzmann expression, Eq. (70), are given in Table I.

The time-dependent thermal conductivity for the 500-
particle system is shown as a function of time in Fig. 1.
The arrow in the figure marks the time t, =L /c required
for an acoustic wave to transverse the 500-particle sys-
tem. For self-diffusion, finite-system eft'ects were found to
become important for larger values of the time. " The
form of the dependence on time is similar to that shown
by the other transport coefficients, except at early times.
(The fact that, for hard spheres, the time-dependent
transport coefficients for certain transport properties are
nonzero at t =0 is related to the presence of 5 functions
in the corresponding microscopic current; we will discuss
this further in a future article. ) The values of L (tf ), the
transport coefficients at the longest times considered in
these calculations, are given in Table I. For each trans-
port coefficient, these values are plotted against 1/N in

Fig. 2 to show the approach to the thermodynamic limit.
The least-squares fit of the results to a 1/N form yields
values for the thermodynamic limit given in Table II.
The least-squares lines are also shown in Fig. 2.

In addition to the time-dependent transport co-
efficients, we also compute the various Green-Kubo
time-correlation functions, Eq. (36). For the case of
thermal conductivity, these are plotted against t in
Fig. 3 for time greater than 16tp for each of the four sys-
tem sizes. Also shown are the mode-coupling predictions
for the long-time tail. We observe that statistical uncer-
tainties associated with the 4000-particle results are rela-
tively large and do little to substantiate the mode-
coupling result. While the 108-particle data appear to lie
somewhat below the theoretical prediction, the 500- and
1372-particle results appear to agree well with the theory
for times greater than 35tp.

For the thermal diffusion, a similar comparison is
shown in Fig. 4. The 108-particle calculations did not in-
clude the thermal diffusion, however, so only three sets of
data are plotted. Again, the results for N =500 and 1372
appear to support the mode-coupling results for times
beyond about 35 collisions.

For the mutual diffusion coefficient, the Monte Carlo
molecular-dynamics (MCMD) results are compared with
the theory in Fig. 5. The agreement appears qualitatively
reasonable perhaps for somewhat earlier times, say, for
t & 26tp.

Finally, for the shear viscosity coefficient, we show the
comparison between theory and MCMD results in Fig. 6.
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1.2
U1

I

a=uu
a=U1
a=11

0 a=q

2. 0
50 40 30

t/tp
20

I

o 108
o 5QQ

1372
o 4000

Uu

1 0

0.9
0.0 0. 2 0.4 0. 6

100/N
0. 8 1.0

FIG. 2. Reduced transport coefficients L (t&) for a 50-50
binary hard-sphere mixture having mass ratio of 0.1 and diame-
ter ratio of 1.0, evaluated at a time t& (see Table I) of approxi-
mately 100 mean free times, as a function of the reciprocal of
the total number of particles N, showing the dependence on sys-
tem size. The various transport coefficients are o. =uu for
thermal conductivity, u1 for thermal diff'usion, 11 for mutual
diA'usion, and q for shear viscosity. The lines are a weighted
linear least-squares fit for each set of data. To avoid confusion,
the error bars (+1 standard deviation) are not shown for all of
the N =4000 data; see Table I for the values.

-1.0
0.0 0. 5 1.0

10' (t/tp)
"' 1.5

FIG. 3. Reduced autocorrelation function for thermal con-
ductivity p„„(t) for a 50-50 binary hard-sphere mixture having
mass ratio of 0.1 and diameter ratio of 1.0, plotted against
(t/to) ' -', where t is the time and to is the mean free time, for
systems of N =108 to 4000 particles. The line shows the long-
time tail predicted by mode-coupling theory. The arrows show
the acoustic-wave traversal time for the systems, with the right-
most arrow for the fewest particles. The error bars represent
+1 standard deviation about the mean and are found to be
essentially independent of time, for a given value of N. Only a
few of the data are shown for the 4000-particle system because
of their relatively large error bars.

Except for the relatively imprecise X =4000 results, the
agreement remains adequate. Note that the theoretical
tail is quite small in this case and that the tirne-
correlation function appears to be indistinguishable from
zero over most of the range of time which is displayed.

To estimate the complete transport coefticient, we add
the mode-coupling long-time tail contribution, starting at
a time t, to the infinite-system extrapolation for I. (t ),
where t is su%ciently large so that the di6'erence be-
tween the mode-coupling prediction and the large-system
limit of the actual tail is negligible. Our comparisons in
Figs. 3 —6 suggest that t should be at least 35tp. In
Table II, we show the results for two choices for t, viz. ,
about 35tp and the longest time tf for which I. (t) is
computed, as previously discussed. In each ease, we as-
sign a statistical uncertainty to the final estimate, based
on the uncertainty in L (t ). Because this uncertainty
increases with time, it is evident that the choice,
t =35to, will lead to a smaller uncertainty. Nonetheless
the results from these two choices are in statistical agree-
ment. In view of the agreement suggested by Figs. 3 —6,
the t =35to estimate would appear to be justified al-
though the magnitude of the systematic error cannot be
estimated by this simple approach.

50 40 30
I I I

t/tp
20

1

500
~ 1372
o 4QQQ—

P 0

-1.0
0.0 0. 5 1.0

]O2 (t/t )-3/2
1.5

FIG. 4. As in Fig. 3, but for the thermal-diff'usion time-
correlation function p „,( t ).
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TABLE II. The transport coefficients L, relative to the Enskog values, evaluated by least-squares
extrapolation of the Monte Carlo molecular-dynamics values to the thermodynamic limit. Results for
two choices for t„, are given. In each case, the values L (t ) are incremented by the theoretical long-
time tail contributions to form the estimates L " of the full transport coefficients; i = 1 corresponds to a
t„, =35t& and i =2 to t =t&. The y values are the goodness-of-fit parameters for the least squares,
having three degrees of freedom except for the thermal diffusion coefficient, which contains two degrees
of freedom. The values in parentheses denote the statistical uncertainties (one standard deviation) in
the low-order digit of the mean.

'9

MM

M1

11

L (35to)

1.00012(74 )

1.1009(88 )

1.1168(263 )

1.0426( 75 )

0.3
6.0
1.1
0.2

L(l)

1.0156(74 )

1.2181(88 )

1.2670( 263 )

1 ~ 1170(75)

1.0158( 130)
1.1294( 165 )

1.1591(474)
1.0719( 146)

1.9
4.0
1.1
1.3

L(2)
a

1.0240( 130)
1.1966( 165 )

1.2451(474)
1.1143(146)

VII. CONCLUSIONS

We list here what seem to be the most important con-
clusions that can be drawn from this work.

(1) The transport coefficients for mixtures can be
defined in a variety of ways by virtue of the fact that the
separation of the heat current into a thermal and a
diffusive part is not unique, even when subject to the On-
sager conditions. From the point of view of molecular
dynamics calculations, the mainstream choice of fiuxes
and forces, with driving forces of —T 'V T and—TV(p, IT), yields Green-Kubo expressions which do
not require knowledge of the partial specific enthalpies
for the system and are, therefore, more easily applied.

(2) For the mass and diameter ratio studied here at a
volume of three times close packing, the long-time behav-
ior of the time-correlation functions for shear viscosity,
thermal conductivity, thermal diffusion, and mutual
diffusion appears to agree (within their statistical uncer-

tainties) with the predictions of the mode-coupling
theory. Except for the strong evidence for agreement in
the case of one-component self-diffusion, "' the present
evidence seems to be the first to support mode-coupling
theory for other time-correlation functions. Whether this
agreement holds for other densities and for other mass
and diameter ratios remains to be seen.

(3) The results for the hard-sphere transport
coefficients for the isotopic mixture show significant devi-
ations from the Enskog theory. These deviations arise
principally from the long-time tails of the time correla-
tion functions, as can be seen from Table II. The values
of L (35t„) show quite modest deviations from unity,
even though the time is long compared to the Enskog de-
cay time. The additional contributions for longer times
are small for shear viscosity, but increasingly large for
mutual diffusion (7%), thermal diffusion (11%), and
thermal conductivity (15%). This result contrasts with
the conclusion of Alder, Gass, and Wainwright' for the

1.0
50 40 3Q

I I I

t/tp
20

o 108
o 5QQ

1372
o 4QQQ—

2. 0
50 40 30

t/tp
20

I

o 1P8
o 5PQ

1372
O 400P

0. 0

0.0

0 0 + o "+o

1

0

o

0
0.0 0. 5 1.0

]p2 (t/t )-3/2
1.5

-1.0
0.0 0. 5 1.Q

tp' (t/t, )
"' 1.5

FIG. 5. As in Fig. 3, but for the mutual-diffusion time-
correlation function p, 1 ( t ).

FIG. 6. As in Fig. 3, but for the shear viscosity time-
correlation function p„(t).
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thermal conductivity of a single-component, hard-sphere
fluid but agrees with their observations for shear viscosi-
ty.

(4) The present results suggest that further study of the
parameter space for hard-sphere mixtures is in order.
Calculations for other densities and for a number of other
mass and diameter ratios are now in progress.
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