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Fourteen realizations of Saffman-Taylor flow at small-viscosity contrast have been measured un-
der nearly identical flow conditions. With control-parameter fluctuations <0.15%, we observe fluc-
tuations of 20% in the crudest measures of the patterns and much larger fluctuations in the
strengths of individual wave numbers of a modal analysis of the patterns for this broadband instabil-
ity. The initial disturbance can be observed as it propagates toward the center of the cell from the
side walls. As the patterns go over from the linear to the nonlinear regime, several quantitative
measures show abrupt change. In the nonlinear regime the patterns not only fail to show progress
toward a single-finger steady state but the individual fingers actually show a tendency to evolve to-

ward a narrower distribution of lengths.

I. INTRODUCTION

Saffman-Taylor fingering represents the simplest of
pattern formation problems,' ~* yet its only currently un-
derstood feature is its fully developed single-finger
steady-state pattern."*”® While the earliest stages of the
development of the fingering pattern are at least qualita-
tively predicted by linear-stability theory, the patterns
rapidly develop into a complex nonlinear regime for
which the few available calculations”® have not given
close agreement with observations.”'® While these pat-
terns are widely assumed to go over eventually to the
single-finger steady state, under some conditions it is not
possible to observe the pattern long enough to see any
progress in this direction. In fact, only in cells which are
not much wider than A, the wavelength of the fastest-
growing mode from the linear-stability analysis, is it gen-
erally possible to observe the pattern long enough to see
the steady-state solution.

Of the two control parameters for viscous fingering
flow, only one, the dimensionless interfacial tension B,
scales out of the dimensionless Hele-Shaw equations.’
The other, the dimensionless viscosity contrast A4, ap-
pears explicitly in the equations; therefore, even though a
single-finger steady state should still exist and linear-
stability analysis predicts patterns which can be mapped
onto each other for all A4, the early and late mappings are
different and the dynamical path between early and
steady-state patterns could be 4 dependent in a nontrivi-
al way. With one exception,” previous work on Saffman-
Taylor flow has concentrated on large values of 4.

We have performed an extensive set of measurements
on this instability at very small values of 4 in the linear
and early nonlinear regime, using a critical binary-liquid
mixture to allow convenient and precise determination of
the control parameters (as will be discussed in detail
below.) In this paper we report on our study of the fluc-
tuations in the viscous fingering patterns we observed and
on the regular and highly reproducible features of the
flow. Just as computer simulations can frequently show
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noisy behavior in parameters which one might originally
have expected to be stable, it is important in experimental
nonlinear physics to check carefully to see which experi-
mental observations are easily reproducible and which in-
volve strong fluctuations. Beyond mere checking for
reproducibility, it is interesting to quantify which
features of a nonlinear system are stable and contribute
to the recognizeable pattern and which provide the varia-
tions. We have measured a small ensemble of 14 realiza-
tions of a Saffmann-Taylor flow under ‘‘identical” flow
conditions and have subjected the observed patterns to
extensive statistical analysis. Section II contains a very
brief description of the experiment. In Sec. III the data
are presented and their most obvious regularities dis-
cussed. Then, in Sec. IV we discuss several attempts at
using statistical and modal analyses to produce a quanti-
tative characterization of the patterns and their fluctua-
tions.

II. THE EXPERIMENT

The Saffman-Taylor instability' arises at the initially
planar interface between two fluids flowing in a Hele-
Shaw cell (a cell formed by parallel plates with a gap be-
tween them of thickness b where b is smaller than any
other length scale in the problem). It is driven either by a
pressure gradient advancing the less viscous fluid against
the more viscous, or by gravity as a result of a density
difference between the fluids. For the case of gravity-
driven flow in a closed rectangular cell where the average
velocity of the interface is zero, the dispersion relation,
from linear stability analysis,"? takes the form

io(2u/K)—(p,—p,)gk +o*k*=0, (1)

where K =b2/12 is a mobility. The average shear viscos-
ity, the effective interfacial surface tension, the density of
fluid n, and the acceleration due to gravity are represent-
ed by i, 0%, p,,, and g, respectively. This dispersion rela-
tion predicts broadband instability for all wave numbers
k below a critical value
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ke=[(py—p))g/a*1""*. )

Tryggvason and Aref (TA) (Ref. 7) have shown that the
problem can be recast in terms of two dimensionless con-
trol parameters 4 and B, where A4 is a dimensionless
viscosity contrast

—p
Hot

B is a dimensionless surface tension (or inverse capillary
number)

B=0*b*/[6U*Wu,+pu,)], @)

with W the width of the Hele-Shaw cell, and U* a
characteristic velocity

(p,—p,)gh?

12(p,+pu,)
TA show that B can be scaled out of the two-dimensional
Hele-Shaw equations by adopting the dimensionless time

t'=U*t/1.84WB'"? (6)
and the dimensionless length
x'=x/7.70WB'/? . 7

We have added the factors 1.84 and 7.70 in Egs. (6) and
(7) to make the fastest growing wavelength (in the linear
stability analysis) and its growth rate both equal 1. As
was mentioned above, the viscosity contrast 4 cannot be
scaled out of the equations. Wall effects are known® to
modify the Hele-Shaw equations, and we will not discuss
attempts at empirical scaling in this paper. The present
paper focuses on fluctuations observed at one definite
combination of A4 and B.

The central experimental feature of this work is to ex-
ploit the well-known features of critical binary liquids to
vary the control parameters of the Saffman-Taylor flow.
This eliminates the need to change liquids when varying
the control parameters and also provides enormous pre-
cision in the knowledge of values of and changes in the
control parameters. We used a critical mixture of isobu-
tyric acid and water (IBW) which has its nominal critical
temperature'' 7., at 26.12°C. The exact value of T, for a
given sample is known to depend quite sensitively on the
exact composition of the isobutyric-acid source, but the
critical properties of the system are not affected. Our
typical sample showed T, =26.21°C. Our samples were
made up to phase separate never more than 10 °°C
below T., and we remeasured 7. before each of the
several major sets of measurements to be presented
below.

Our Hele-Shaw cell consisted of a commercially avail-
able 45X 45X 1 mm?® spectrophotometric cell.!?> The cell
gap b =1 mm is smaller than, but not much smaller than
the ~5-mm wavelength observed in the patterns to be
discussed below. Other than for wetting corrections to
the two-dimensional equations,® it is difficult to estimate
the length-scale ratio at which three-dimensional effects
should become important, but a previous study’® suggests
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that a 5-to-1 ratio produces results which are similar to
flows at much larger ratio and that observable three-
dimensional effects set in very gently near a ratio of 3 to
1. The sealed cell was immersed in a temperature-
controlled water bath, and temperature fluctuations were
restricted to be less than 0.3 mK over periods of hours
and 1 mK over days. This temperature control allows
one confidence in calculating the viscosity and density
contrasts and the interfacial tension between the two
liquid phases. Unstable flows were realized by setting the
temperature of the system at the desired value in the
two-phase region of the liquid mixture’s phase diagram,
mixing the liquids to achieve equilibrium composition, al-
lowing the system time to form a stable, flat meniscus,
and then inverting the cell to put the denser, higher-
viscosity fluid on top. The flow was measured by a 35-
mm camera whose motor drive was set to advance film
frames at a rate appropriate to the speed of the flow. We
were always able to measure at least several frames in the
linear regime (interface oscillation amplitude less than
wavelength) with a typical camera rate of 2 frames/sec.

The data measured in the earliest version of this exper-
iment were quite tedious to analyze because the interface
between the two fluid phases is not easy to see and be-
comes progressively more difficult to see as the critical
temperature is approached (and the physical difference
between the two phases vanishes). We have circumvent-
ed this difficulty by learning to dye the isobutyric-
acid-rich phase with a sensitive red pH marker."® The
addition of such an impurity would be expected to shift
T, but not to change the critical properties of the liquid
mixture in any important way, but to be certain of this
we performed a series of duplicate measurements, com-
paring the Saffman-Taylor flows between dyed and un-
dyed samples, and found no significant differences in the
averages and standard deviations of the stable features of
the flow. Most of the data presented below were mea-
sured on a dyed sample.

The photographs of the developing interface were digi-
tized with a GTCo digitizing tablet'* and processed by
computer. The digitized interface represents a one-
dimensional object (a long stream of addresses, each of
which is specified by two numbers). As such, it lends it-
self to retaining very great spatial resolution, far greater
than would be convenient with a two-dimensional array
of pixels. During digitization the magnified images of the
photographic slides could be measured to a precision lim-
ited only by the experimenter’s hand jitter (typically 0.5
mm). With this precision it has been possible to be
confident in extracting the spatial measures discussed
below, including the curvature which involves a second
derivative of the spatial distribution. (For further discus-
sion of spatial resolution, see Ref. 15.)

When the temperature of the IBW sample is changed,
both control parameters 4 and B are changed. The con-
trast in shear viscosities for the binary-liquid mixture is
proportional to the contrast in mass densities p,—p;,
since the kinematic viscosities of the two liquid phases
are equal to a very good approximation. The mass-
density contrast is known to vary as €, where
€e=(T,—T)/T, and $=0.33. Similarly, interfacial ten-
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FIG. 1. Fingering pattern development for one flow in the
ensemble. Dimensionless time ¢’ is indicated for each frame.
Positions x and y are in units of cell width W=4.5 cm.

sion is known to vary as €, where u=1.25. These prop-
erties give A4 =0.027¢” and B =0.022¢*"P. The uncer-
tainty in A is presumably very small. The critical
coefficient for the mass-density contrast has an uncertain-
ty of about 2%. Further contributions to the uncertainty
arise merely from the very small temperature fluctuations
discussed above and from the uncertainty in the assump-
tion that the kinematic viscosities of the two fluid phases
are identical. These latter effects give a relative uncer-
tainty in 4 of £0.03%. The uncertainty in the absolute
value of B is estimated to be 25%, because of the uncer-
tainty in the critical coefficient of the interfacial tension.
However, the reproducibility of B on our laboratory ap-
paratus is limited only by our temperature control and
our ability to align the cell with the vertical, and so the
fluctuations in our B are AB /B =0.15%.

Using the temperature control just described, we have
studied flows with characteristic finger widths from 1 to
- the width of the cell, W. Most of these results will be
presented in a future paper. Here, we limit our discus-
sion to the “ensemble” measured at 4 =5.56X103,
B =2.13X107%, and we concentrate on the intrinsic fluc-
tuations and their importance in comparison with aver-
age properties of the flow. Figure 1 shows the pattern de-
velopment for one realization of the ensemble. Other
realizations would look quite similar to the eye, just as an
array of 14 snowflakes grown under similar conditions
might look similar to the eye, while differing significantly
in detail.

III. RESULTS OF MEASUREMENTS

To address the issue raised in the Introduction above
concerning the role of noise in setting up the Saffman-
Taylor flow and the identification of ‘“‘noisy’’ observables
in both early and later stages of the flow, we have selected
the arbitrary point 4 =5.56X 1073 B =2.13X 10" * and
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FIG. 2. Ensemble average of the dimensionless length of the
mixing zone O’ vs dimensionless time, as discussed in text.

then measured and extensively analyzed a small ‘“‘ensem-
ble” of data— 14 flows whose flow conditions are as close
to identical as our apparatus would allow. In this section
we present these data in the various forms which will be
useful for the discussion in later sections. Since several of
the observable measures of the flow have not been defined
above, it is also convenient to define them here. The er-
ror bars shown on the data presented in this section come
from the standard deviations of the measurements in 14
realizations in the ensemble; the measurement errors
from photographing and digitizing any one realization
are so small that they do not contribute observably to the
stated uncertainties.

Figure 2 shows the dimensionless length of the mixing
zone O’ versus dimensionless time for the ensemble of
runs. ©’ is defined to be the length, along the direction of
flow, of the region of the cell in which a cut across the
width of the cell would find some of each phase of the
fluid. Figure 3 shows the dimensionless stretching length
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FIG. 3. Ensemble average of the dimensionless interface
stretching length L’ vs dimensionless time, as defined in the
text.
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FIG. 4. Ensemble average of the average dimensionless inter-
facial curvature «’ vs dimensionless time.

L’ of the interface versus dimensionless time. If the ini-
tial length of the interface is defined to be L, (in the
present work L is always identical to W, the width of
the Hele-Shaw cell), and the integrated arc length of the
interface at time ¢ is L (¢), then L'(¢)=[L (¢t)—L,]/L,.
Figure 4 shows the dimensionless average curvature of
the interface, k' as a function of dimensionless time. By
“curvature” we mean the absolute value of the curvature

_dT
ds ’
where T is the unit tangent vector. We evaluated the

curvature for the two-dimensional pattern; this does not
account for the curvature across the narrow gap of thick-
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FIG. 5. On the left, patterns for one flow realization at the
dimensionless times indicated. On the right, the y vs arc length
s representations of the patterns on the left. Positions x, y, and s
are in fractions of cell width.
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ness b but does capture the local detail of the two-
dimensional pattern. For each measured interface, the
average curvature is constructed as follows:

K= fKP(K)dK s

where P (k) is the observed value of the normalized prob-
ability density of finding a point on the interface with
curvature between k and k+d«.

The obvious next step in attempting a quantitative
analysis of the observed patterns would be to perform a
model analysis. This approach is frustrated by the rapid
ramification of the patterns which makes them mul-
tivalued functions of the position across the width of the
cell at very early stages of the flow. In our earlier work!’
on radial Hele-Shaw flow, we addressed this problem by
concentrating on curvature as a function of arc length
and its Fourier transform. The two-dimensional curva-
ture does indeed preserve all the local information about
the two-dimensional pattern and so is, in principle, an ac-
ceptable choice for avoiding the multivaluedness of the
direct pattern. This approach suffers, however, from an
excess of detail; no information is lost and the intuition
one might have about interpreting the complex details of
the patterns themselves is less applicable to the power
spectrum of the curvatures. For this reason, our earlier
work was able to interpret only the first moment of the
curvature power spectra. We have performed a curva-
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FIG. 6. Ensemble average of the squared dimensionless
Fourier amplitude vs wave number of the y vs s representation
of the patterns. Shown are the results for the same stages of de-
velopment shown in Fig. 5. Wave numbers are in fractions of
inverse total arc length.
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ture analysis of our ensemble and have presented its first
moment in Fig. 4 above, but for more extensive analysis
we present an alternative approach which allows a mean-
ingful model analysis to be applied to the ensemble while
retaining much of the intuition one has about the indivi-
dual patterns.

We generate single-valued functions which directly
represent the spatial patterns by displaying the coordi-
nates x and y versus the arc length s, where y is the inter-
facial position in the direction of flow and x is the posi-
tion across the width of the cell. Figure S shows patterns
from several stages of a flow realization on the left along
with y versus s on the right. Long, thin fingers turn into
sawtooth patterns in y, and when, at late times, the finger
tips swell to look rather like balloons on the ends of
strings; the effect is evident at the apexes of the sawtooth
patterns. Figure 6 shows “power spectra” for y versus s
at the same stages of development as are shown in Fig. 5.
These power spectra are squared Fourier amplitudes
versus wave number, and they result from averaging the
individual power spectra for all 14 realizations in the en-
semble. As always, the standard deviations shown in the
figure arise from real fluctuations in the flow realizations
with no significant effect from measurement uncertain-
ties. Two effects are obvious: (1) the uncertainty is very
large for any given wave number, and (2) the power spec-
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FIG. 7. Sums of the dimensionless power of neighboring
wave numbers vs dimensionless time for the y vs s representa-
tion of flow patterns.
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trum is dominated at early times by low wave numbers
and at later times by high wave numbers. The latter
trend is further illustrated by Fig. 7, where sums of
power in neighboring wave numbers are plotted versus
time. The sum of k =4, 5, and 6 dominates the power
spectrum at early times but the sum of kK =8, 9, and 10
catches up with it at later times. The bottom frame in
the figure compares the two sums without standard devi-
ations to illustrate this competition.

In Fig. 8 the same three patterns shown in Fig. 5 are
compared with their corresponding values of x versus s.
In this case the originally flat interface would appear as a
diagonal line in x versus s, and a finger causes the slope of
x to decrease. Structure on a finger adds ripples to the
region of low slope. In the figure one can easily see the
importance at early times of the disturbances near the
side walls. The side-wall disturbances gradually work
their way to the center of the cell as can be seen for the
two frames at later time. For each pattern in our ensem-
ble, we have subtracted from x the ramp which would
connect the initial and final values of x versus s and then
constructed a power spectrum. The averages of these
power spectra are shown in Fig. 9 for the same time
values shown in Fig. 8. Early time flows are dominated
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FIG. 10. Sums of the dimensionless power of the neighboring
wave numbers vs dimensionless time for the x vs s representa-
tion of flow patterns.
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by k =1, with the rest of the power also at low wave
number. As time increases, power shifts to progressively
higher wave-number. Figure 10 shows the sums of power
in the two important regions to illustrate the time evolu-
tion of the system. The power sum of k =1, 2, and 3 in-
creases at early times and later falls off. The power sum
of k =17, 18, and 19 starts late and eventually begins to
catch up. The latter sum includes the region predicted to
have highest growth rate by the linear-stability analysis.
The two sums are compared, without standard devia-
tions, at the bottom of the figure. In both Figs. 7 and 10,
the standard deviations do not change, whether one cal-
culates them from the set of all individual points or by
combining uncertainties of averaged powers for the indi-
vidual wave numbers.

IV. DISCUSSION

The various quantitative measures presented above for
our Saffman-Taylor patterns suggest several important
results of this investigation. These can be classified as re-
lating to (a) the importance of fluctuations, (b) flow re-
gularities in the linear regime, (c) characteristics of the
transition to the nonlinear regime, and (d) flow regulari-
ties in the relatively early nonlinear regime.

A. Fluctuations

The standard deviations for the data shown in Figs.
1-10 indicate a significant amount of “noise” in the flow,
but not such a great amount that the most important re-
gularities are obscured. We obviously cannot comment
on whether the noise level would continuously be reduced
if we were to continuously improve the control of the ex-
periment, but it has been demonstrated by several
groups'® that building in fluctuations by roughening the
cell walls produces an enormously noisier situation. In
our case, we measure the variation in the
spectrophotometric-cell gap to be less than 2%. As was
stated in Sec. II, by controlling the system temperature to
1 mK, we control the fluctuations in 4 and B to be less
than 0.03% and 0.15%, respectively. The most strongly
fluctuating quantities presented above are the contribu-
tions of individual wave numbers to the power spectra for
x and y. This is to be expected, since the instability is,
after all, broadband, and the surprising aspect is that the
fluctuations are not larger. If the laboratory apparatus
were as noisy as the algorithms for the computer simula-
tions® which are used to model flows like this one, an en-
semble of 14 realizations would be much too small to
show such great regularity. It will be interesting to see
whether plausible physical mechanisms can be added to
the computer models to produce the greater stability seen
in the laboratory patterns.

B. The linear regime

As was discussed above, in this paper we restrict our-
selves to observations of regularities which do not depend
on varying control parameters and which involve features
which clearly stand out above the fluctuations. For the
linear regime we can report two interesting observations.
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First, the pattern we set up at relatively late stages in the
linear regime is at least qualitatively in agreement with
the fastest-growing wavelength expected from the linear-
stability analysis. And second, the dominant disturbance
which supplies the energy to set up the linear pattern
comes from the side walls. Thus, even though the side-
wall effects are less prominent here than in the many pub-
lished cases with higher viscosity contrast,>®1? we always
observe the first fingers near the sides of the cell. These
fingers, even though they have a width characteristic of
the linear-dispersion relation, produce by their spacing
the initial domination of the power spectra by low wave
numbers. The x versus s curves clearly show the side-
wall disturbances propagating into the interior at an
average velocity v =0.4 cm/sec=~2U*, and thus presum-
ably supplying the energy to drive the interior unstable
much sooner than other available sources of noise would
otherwise have done. Theoretical calculations and com-
puter simulations normally impose periodic boundary
conditions and thus cannot comment on the wall effects
which are so important in virtually all experiments.

C. The transition from the linear regime
to the nonlinear regime

The normal arbitrary definition of the time of this tran-
sition chooses that time at which the amplitude of the
disturbance becomes equal to its wavelength. The situa-
tion is less obvious here because the amplitudes of the
side-wall fingers reach their wavelength when the many
central fingers are still quite small. If we ignore the am-
plitudes of the side-wall fingers, as we tacitly did in dis-
cussing the linear regime in Sec. IV B above, and use the
amplitude of the central fingers to define the transition,
we find that several of the features of the data discussed
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FIG. 11. Probability of occurence of a point of dimensionless
curvature «’ along the interface vs k’. These histograms are en-
semble averages for the dimensionless times indicated. The bin
size for «’ is 0.09.
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above show a dramatic break at the transition point.
Thus the average curvature (Fig. 4) increases throughout
the linear regime and is subsequently steadily reduced as
long, relatively straight sections become more important
features of the fingers. This break in the average curva-
ture occurs at the same time that the power spectra for x
and y (Figs. 7 and 10) cross over from being dominated
by low wave numbers. In Fig. 10, the low-wave-number
power actually declines after this time.

The decrease in average curvature after this transition,
appears not to be totally attributable to finger lengthen-
ing. This can be seen from Fig. 11, which shows histo-
grams of occurrences of various values of the curvature
along the interface at five times, including the same three
times shown for all other quantities above (one time in
the linear regime, one at the break point, and one well
into the nonlinear regime.) While it is clear that
lengthening fingers result in much higher probability for
very low values of the curvature at late times it is also
clear that the highest values of the curvature are seen at
and before the transition point and do not appear at all in
later stages of the flow.

D. The nonlinear regime

The most striking feature of the flow in the nonlinear
regime is the lack of progress toward the steady-state
single-finger solution. While this steady-state solution
should not appear for the completely symmetric 4 =0
case, there is no reason to believe that it should not ap-
pear eventually for all nonzero values of 4.4~® This ex-
periment reaches values of dimensionless time at which
larger- A systems have been seen to show dramatic pro-
gress toward the steady state, yet no sign of progress is
seen in the present case, as can be seen from the time
dependences of the power spectra shown above. In fact,
one very notable feature as the system goes into the non-
linear regime is that the central fingers tend to catch up
with the side-wall fingers and also tend to stay in line
with each other. This tendency to stabilize fingers rather
than have them compete is illustrated in Figs. 12 and 13,
which show, respectively, the relative standard deviation
in the length of fingers and the average length of the
fingers as a function of time (as usual, the averages are
taken over the entire ensemble). In each of these figures
the upper plot shows an analysis which includes the side-
wall fingers, while the lower shows an analysis which ex-
cludes one finger at each side of the cell.

While we cannot comment definitively on the question
of whether or not our system would eventually go over to
the single-finger pattern, we can make two interesting
and relevant comments. First, we do not believe that the
stabilizing of finger lengths can be attributed simply to
the small aspect ratio [(length/width)=1] of our cell: to
test this question we have recently constructed an annu-
lar Hele-Shaw cell by sealing the ends of two concentric
cylinders: this cell has outer circumference 13 cm, gap 1
mm, and length 25 cm. Flow is initiated by inverting the
axis of the cylinders (just as the flow in our smaller cell
was initiated). It will take some time to extract quantita-
tive detail from analysis of data from this cell, but we can
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say already that the flow in the longer cell is qualitatively
similar to that in the small cell over all flow stages which
can be observed in the smaller cell. We cite this
unfinished experiment here only because it is sufficient to
show that our observations made with our small cell are
not dominated by the nearness of the ends of the cell. It
is only when the fingers approach within about 5 mm of
the end walls of the smaller cell that one observes marked
differences between the flows in the two cells. Second,
the stabilizing of finger-length growth may well result
from the fact that the cell is closed. Since the cell is
closed, a mass-conservation constraint must be added to
the normal Hele-Shaw requirements, and this may make
a dramatic difference when a low-contrast 4 implies a
weak driving force for the instability. Grier et al.'” have
suggested a stabilizing mechanism for electrodeposited
tendrils which may carry over to the present case. They
argue that the tendrils obey a one-dimensional Laplace
equation rather than the two-dimensional equation which
governs the supersaturated solution and that this
difference can kill the Mullins-Sekerka instability if the
driving force is weak. Carried over to the present case
the argument would say that, when A is small, a longer
neighboring finger does not shield a finger very much
from the driving gradient, while mass already in the
finger cannot communicate effectively with mass in other
fingers. In such a scenario all fingers can plausibly keep
growing and being fed from the end reservoir. Such an
assumption is consistent with the results of the closed cell
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FIG. 12. Relative standard deviation of the finger length vs
dimensionless time. The top plot shows the result when all
fingers are included while the lower one shows the result when
the fingers along the side walls are excluded.
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FIG. 13. Ensemble average of the average dimensionless
finger length vs dimensionless time. The top plot shows the re-
sult including all fingers and the lower plot shows the result ex-
cluding the fingers nearest the side walls.

calculations of TA (Ref. 7) and with our observations, but
it would be very interesting to understand in detail the
extra physics needed to stabilize the fingers and to know
whether or not an extremely long closed cell would even-
tually go over to a single-finger steady state. We know
from Maxworthy’s work!® and from closed cells which
we have constructed for high-A flows (air and oil) that
the fingers do not stabilize when A is large; i.e., notice-
able progress is made toward the single-finger steady
state in a closed cell of small aspect ratio if 4 ~1.

A final feature of low- A4 flow in the nonlinear regime is
worth noting. Essentially all fingers tend to show ‘bal-
looning” finger tips, as was mentioned above. These bal-
loons form long before the fingers come near the ends of
the cell, and they are also seen at a similarly early stage
of the flow in our annular cell. Thus their appearance
cannot be a simple artifact of having a cell of low aspect
ratio, although they may well arise from having a closed
cell. These balloons also appear in the TA calculations
when A is small. We do not understand the mechanism
for the formation of these balloons, but they begin to
form just at the onset of the nonlinear regime and thus
coincide with the disappearance of points of very high
curvature (as seen in Fig. 11). While it is tempting to as-
cribe this tendency to an annealing of high curvature
(and thus high Gibbs-Thompson pressure drop across the
interface), we cannot confidently make such a claim, since
we cannot observe the presumably much higher contribu-
tions to the total curvature which occur in the narrow-
gap direction. As was mentioned above and in Ref. 15,
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the curvature we report codes all local information in the
two-dimensional pattern but does not bear any necessary
relation to the total curvature needed to calculate the
Gibbs-Thompson pressure drop.

V. SUMMARY AND CONCLUSIONS

We have measured 14 realizations of low-A4 Saffman-
Taylor flow under as close to identical flow conditions as
our apparatus would permit. We observe =~20% fluctua-
tions in the crudest quantitative measures of the interfa-
cial patterns (Figs. 2-4), whereas the control-parameter
fluctuations are measured to be only A4 /4 <0.0003 and
AB /B 50.0015, respectively. Fourier transforms of the
x versus s and y versus s patterns shown in Figs. 6 and 9
show significantly larger fluctuations for individual wave
numbers, but this is not surprising since the instability is
broadband. The disturbance which initiates the pattern
evolution clearly comes from the side walls and can be
observed to propagate toward the center of the cell while
the pattern is still within the linear regime (Fig. 8).

Without side-wall perturbation it would presumably take
other sources of random noise significantly longer to ex-
ploit the instability. As the interface enters the nonlinear
regime, several of the quantitative pattern measures show
a rather abrupt change (Figs. 4, 7, 10, and 11). In the
nonlinear regime no progress is seen toward the
presumed single-finger steady-state solution. (Large-A
flows show dramatic progress toward the steady state at
even earlier dimensionless times and even in closed cells
of small aspect ratio.) Thus the low-A4 flows may not
have the same (or any) steady state; rather than the
fingers competing with one another, the finger lengths
seem to evolve toward a narrower distribution of lengths
in the nonlinear regime (Figs. 12 and 13).
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