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A new formulation of the weighted-density approximation (WDA), as currently applied in the
theory of nonuniform classical liquids, is presented. This modified weighted-density approximation
retains a key feature of the original approximation by including correlations, at least approximately,
to all orders in the functional expansion of the excess free energy. It continues to require as input
only the two-particle direct correlation function of the uniform liquid. In contrast to the original
WDA, however, practical implementation of the modified WDA demands considerably less compu-
tational e6ort. When applied to the freezing of the hard-sphere liquid, the results obtained previ-
ously with the original WDA, already in good agreement with simulation, are reproduced quite ac-
curately. It is concluded that in its new formulation the WDA is now just as simple to implement as
the widely used Ramakrishnan-Yussouff' theory. But as with the original WDA the new formula-
tion more accurately describes the freezing of hard spheres and is more soundly based in the sense
of including correlations to all orders.

I. INTRODUCTION

Over the past decade the density-functional method
has gained wide recognition as a fruitful approach to the
study of freezing transitions and other phenomena in-
volving nonuniform classical liquids. The basic assump-
tion of all density-functional theories is that the thermo-
dynamic potential of a nonuniform system may be ap-
proximated using known structural and thermodynamic
properties of the corresponding uniform system. What
distinguishes the various theories from one another is the
detailed manner in which each formulates the approxi-
mation. A widely known density-functional theory is
that of Ramakrishnan and Yussouff' (RY), which is based
upon a functional Taylor series expansion of the excess
Helmholtz free energy about the density of a uniform
liquid. The essential approximation made in the RY
theory is a truncation of this expansion, for practical
reasons usually at second order, all succeeding higher-
order terms being ignored entirely. In applications to the
freezing transition in a variety of systems this theory has
had mixed success. Although an appealing feature of
the RY theory is its computational simplicity, the trunca-
tion approximation upon which the theory is based has to
date been given no a priori justification in the context of
highly nonuniform systems, and in fact there are good
reasons to doubt its general validity.

Other density-functional theories have been pro-
posed, " all of which are characterized by the use of a
uniform reference system whose effective" density is
chosen according to varying criteria. One such theory is
the weighted-density-functional theory of Curtin and
Ashcroft" (CA), which, as its name suggests, is based
upon a "weighted-density approximation" (WDA). A
key feature of the WDA is its implicit inclusion of a sub-
set of exact terms to all orders in the functional expan-
sion of the excess Helmholtz free energy. Although gen-

erally more accurate than the RY theory, " ' the
weighted-density-functional theory also requires
significantly more computational effort to implement. It
is the purpose of this paper to present a modified formu-
lation of the WDA, which retains the key features of the
original formulation, but which makes the weighted-
density-functional theory just as simple to implement as
the RY theory.

The remainder of the paper is organized as follows. In
Sec. II we briefly review the WDA as originally formulat-
ed in the CA theory, and then describe our modified for-
mulation. In Sec. III we apply the modified weighted-
density-functional theory to the freezing of hard spheres
and demonstrate that it accurately reproduces the results
obtained previously with the original formulation. In
Sec. IV we compare both the original and the modified
formulation of the weighted-density-functional theory
with the RY theory on the basis of the terms that each in-
cludes in the functional expansion of the excess free ener-
gy, and point out a similarity between the modified for-
mulation and another recently proposed theory. Finally,
in Sec. V we summarize and conclude.

II. THEORY

A. Weighted-density approximation

The excess Helmholtz free energy F,„[p], a unique
functional' of the one-particle density p, can be ex-
pressed quite generally in the form

F,„[p]=fdrp(r)f(r;[p]), (I)

which serves to deftne a local excess free energy per parti
cle f (r;[p]). The CA theory is based upon a weighted-
density approximation (WDA) for F,„[p]. In the follow-
ing we review only the essential features of this approxi-
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mation and refer the reader to Ref. 11 for further details
and a discussion of the physical motivation.

The WDA for F,„[p]can be expressed as

F„[p]=fdrp(r)f„(p(r)), (2)

where fo denotes the excess free energy per particle of a
uniform liquid and P(r) is the "weighted density, " defined
as a weighted average of the one-particle density p(r) with
respect to a weight function w, according to

p(r)= f dr'p(r')w(r —r', P(r)) . (3)

The self-consistency with respect to p(r) in this definition

is a crucial feature of the WDA, a point we return to
below after specifying the form of the weight function.
To ensure that the approximation becomes exact in the
limit of a uniform system [p(r) ~po, where po is the den-
sity of the uniform system], the weight function must
satisfy the "normalization condition"

fdr'w(r —r', P(r))=1 . (4)

A unique specification of w follows from requiring that
the defining relationship between the n-particle direct
correlation function (DCF) c'"'(r„. . . , r„;[p]) and the
nth functional derivative of F,„[p]with respect to p,

5"F..[p]c'"'(ri, . . . , r„;[p])= —P 5pr, . 5pr„) (5)

where P= 1/king T, is satisfied exactly for n =2 in the uni-
form limit. Explicitly, F,„[p]is required to satisfy the
relation

52FwDA [
co '(r —r';po)= —P lim

p-p, 5p r 5p r')

where co ' is the two-particle DCF of the uniform system.
Thus, by substituting F,„[p][from Eq. (2)] into Eq. (6),
one obtains the equation

—
/3 'coI '(r —r';po) =2fo(po)w(r —r', po)+pro (po) f dr" w(r —r";po)w(r' —r";po)

+pafo(po) f dr"[w'(r —r";po)w(r' —r";po}+w(r —r";po)w'(r' —r";po)], (7)

in which primes on fo and w denote derivatives with
respect to density. In Fourier space Eq. (7) takes the
form of a differential equation:

I

dependent weighted density p(r). Then the modified
weighted-density approximation (MWDA) for F,„[p]/N
can be expressed as

'co '(k 'po) =2f0(po)w (k 'po)+pof 0'(po)w(" 'po) FMWDA[ ]/N f (P) (10)

+2pof o (po ) w '( k;po) w ( k;po)

Assuming that co ' and fo are both known for the uni-
form interacting liquid, Eq. (8) can be solved numerically
for w. As noted above, the self-consistency requirement
in Eq. (2) is crucial. The reason is that it can be shown to
guarantee that the identity

Qn 2

co (k 0 0 po), — co (k ipo) i
Bpo

relating the Fourier transforms of the n-particle uniform
liquid DCF co"' and the two-particle function eo ', is
satisfted exactly

Taken together, Eqs. (2), (3), (4) and (8), constitute the
WDA as formulated in the CA theory. We turn now to a
computationally simpler reformulation of the WDA.

B. Modified weighted-density approximation

The reformulation of the WDA involves essentially one
new concept ~ Whereas the original WDA is an approxi-
mation for the quantity f (r; [p]},interpreted as the local
excess free energy per particle, the new formulation
focusses instead directly upon the global excess free ener-
gy per particle F„[p)/N, where N is the number of parti-
cles in the system. Since F,„[p]/N is independent of
position —in contrast to f ( r; [p) )—the new formulation
must necessarily involve a position-independent weighted
density. We denote this new weighted density by the
symbol p to distinguish it from the original position-

where, by analogy with the definition of P(r) [Eq. (3)], we
define p by

p=——f drp(r) f dr'p(r')w(r —r', p) .
N

fdr'w(r —r';p)=1 . (12)

A unique specification of w now follows by imposing the
same requirement as in the original WDA —namely, that
F,„[p]satisfy Eq. (6) exactly. This results in a very
simple expression for I [cf. Eq. (7)], specifically, '

Since, as will be seen below, the weight function that ap-
pears in Eq. (11) actually differs somewhat from the origi-
nal weight function, we also assign it a new symbol w. As
was the case in the original WDA, the requirement of
self-consistency —now with respect to p —in Eq. (11} is
again a crucial feature of the MWDA as it ensures that
Eq. (9) remains satisfied exactly. From a comparison of
Eqs. (3) and (11), it may be observed that p can be
identified as a form of further averaging of the original
weighted density p(r). It is important to emphasize,
however, that this identification is only approximate,
since (i) the weight function w that appears in Eq. (11)
differs from the weight function w in Eq. (3), and (ii) the
density arguments of w and w are actually different. '

To ensure that the approximation in the MWDA again
becomes exact in the limit of a uniform system, the new
weight function w must also be normalized [cf. Eq. (4)]:
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—1
w(r —r';po) =, P 'co"(r —r';po)

2fo(Po)

+ ~Pd'o'(Po) (13)

where V is the volume of the system, or in Fourier space
[cf. Eq. (8)],

—1+(k Po)=, [f3 'co '(k 'Po)+~k, oPofo'(Po)] .
2fo(Po)

p(r)(~/ir)3/2 ye
—air —R

R

with Fourier components

(17)

point it is important to note that to date all density-
functional theories of freezing require the lattice symme-
try of the solid phase to be specified, ' as will be done
here. Following Ref. 11, we then assume an fcc lattice
and parametrize the solid density p, (r) as a sum of nor-
malized Gaussians, centered about the lattice sites at po-
sitions R. Thus, we take

(14) 2—6 /4a (18)
In a given application, of course, the density argument of
$(k) will be determined by the crucial self-consistency
requirement [see Eq. (11)]. For k =0, the 5-function
term in Eq. (14) ensures that the compressibility rule,

co (k =0 po)=2fo(po)+pofo (po) (15)

is satisfied identically, as in the original WDA. For k&0,
$(k) is simply proportional to co '(k), the Fourier trans-
form of the (Ornstein-Zernike) two-particle direct corre-
lation function, which, as noted previously, is assumed
known.

Together, Eqs. (10), (11), (12), and (14) constitute the
MWDA. They correspond directly to Eqs. (2), (3), (4),
and (8), respectively, in the original WDA. There are two
reasons why this new formulation of the WDA will be
much simpler in practice to implement than the original.
First, in the MWDA the weight function S is simply pro-
portional to the two-particle DCF, whereas in the WDA
the weight function w is obtained only by solving a
differential equation [compare Eqs. (14) and (8)]. Second,
in contrast to F,„,the computation of F,„does not
require the evaluation of a volume integral [compare Eqs.
(10) and (2)]. These aspects will be illustrated in Sec. III
where we test the MWDA by applying it to the freezing
of hard spheres.

The "localization parameter" a determines the width of
the Gaussians. It is thus a measure of nonuniformity,
a=0 corresponding to the limit of a uniform liquid
(infinitely wide Gaussians), and increasing values of a
corresponding to increasing localization of the atoms
about their respective lattice sites (increasingly narrow
Gaussians). In particular, at freezing a directly deter-
mines the Lindemann parameter L, which is defined as
the ratio of the rms displacement of an atom from its lat-
tice site to the nearest-neighbor distance in the solid at
coexistence. For the fcc lattice, L =(3/aa )'~, where
a =(4/p, )' is the fcc lattice constant. Substitution of
p& [from Eq. (18)] and tUG [from Eq. (14)] into Eq. (16)
results in the expression

p(p„a) =p, 1 — g e co '(G;p), (19)
2/3fo(P) G

where co '(G;p) denotes the Fourier component at RLV
Cx and density p of the uniform liquid two-particle DCF.
Note that this is an implicit equation for p, with p appear-
ing both on the left side and on the right side as the den-
sity argument of fo and co '. As in Ref. 11, we adopt for
fo and co ' the Percus-Yevick (PY) approximations

III. FREEZING OF THE HARD-SPHERE LIQUID fo(i)) =—3 1 —1 —ln(1 —i) )
(1—i))

(20)

1
P =P, + X Po~o(P»

ps @~0
(16)

where p, is the average solid density, and p& and S&
denote the Fourier components at RLV G of the solid
density and the weight function, respectively. At this

We begin by repeating the analysis of Ref. 11 of the
hard-sphere-liquid —fcc-solid transition, but using the
MWDA instead of the WDA. To do this, we determine
the excess free energy of the hard-sphere fcc solid in the
MWDA, add to this the exact ideal-gas part of the free
energy, minimize the total with respect to a single varia-
tional parameter, and then compare with the "known"
liquid free energy to determine the characteristic parame-
ters of the freezing transition.

The first step is to compute the weighted density p of
the solid. This computation is most easily performed in
Fourier space, where the volume integrals of Eq. (11)
transform into summations over the reciprocal-lat tice
vectors (RLV's) of the solid. Thus,

and

co (k;i))= a(y cosy —siny)
4'

+6i)—(y cosy —2y siny —2 cosy +2)b

3'

+ —,'i) (y cosy —4y siny —12y cosy

+24y siny +24 cosy —24)

(21)

where ri=(vr/6)po, a =(1+2') /(1 —i)), b. = —(1+re/
2) /(1 —ri), and y =kcr with cr being the hard-sphere di-
ameter. For given average solid density p, and localiza-
tion parameter a, Eq. (19) is now easily solved for p by
iteration. ' As Fig. 1 illustrates, for fixed p, , p(p„a) is a
monotonically decreasing function of e. Thus, the more
localized the atoms, the lower the corresponding density



4704 A. R. DENTON AND N. W. ASHCROFT 39

I.O

I I I I
I

1 I I 1

I
I

I I I I
I

I I I I

I

I I

b OS
&. Q

)
b

0.0
0

I I I I I I I I I I 1 1

IOO 200
0

IOO 200

FIG. 1. Weighted density p vs localization parameter a for
three different average densities of the fcc hard-sphere solid.

of the uniform reference liquid. It should be noted that
although the PY approximation is known to become in-
creasingly inaccurate with increasing density, in the
MWDA fo and co

' are evaluated at the density p, which
near the freezing transition turns out to be relatively
small (see Fig. 1). Thus, use of the PY approximation for
f„and co is in fact quite justified.

Having computed p, the next step in the freezing
analysis is to substitute p into Eq. (10) to computeF„.The total free energy F of the solid is then ob-
tained by adding to F,„anonuniform-ideal-gas con-
tribution of the form

F;d[p,. ]=133 ' f dr p, (r) [ln[p, (r)A, . ]—1] (22)

where k is the thermal de Broglie wavelength. In the lim-
it of negligible overlap between neighboring Gaussians
(ao. ) 50), which is certainly the case near freezing, F;d
is very accurately approximated by

/3F;d(p„a)IX==,'1n(aIm)+3 1n(k) ——,
' (23)

Figure 2 illustrates the dependence on a of the excess,
idea1-gas, and total free energies of the solid. Notice that
F;d increases monotonically with o., favoring delocaliza-
tion of the atoms, while F„decreases monotonically
with u, favoring localization. Evidently, the average
solid density p, o. = 1.0 is sufficiently high that at a
nonzero value of a the total free energy of the solid ex-
hibits a minimum below the liquid free energy, indicating
that the solid is indeed the thermodynamically stable
phase.

Figure 3 exhibits the density dependence of the liquid
and solid total free energies and of the localization pa-
rameter o; which minimizes the solid free energy. As in
Ref. 11, the liquid free energy has been computed using
the Carnahan-Starling approximation, which is known
to be highly accurate even at densities near freezing.
Since the two free energy curves cross, the theory pre-
dicts a freezing transition. The densities of the coexisting

FIG. 2. Excess, ideal-gas, and total free energies vs localiza-
tion parameter o; for the fcc hard-sphere solid at average solid
density p, o'= 1.0.
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FIG. 3. Total free energies of the liquid and fcc solid phases
of the hard-sphere system.

phases are easily determined from Fig. 3 by a common
tangent construction. They are presented in Table I to-
gether with the results of Ref. 11 and simulation. Also
compared in Table I are the results for the latent heat
and the Lindemann parameter, two quantities which are
rather poorly predicted by the RY theory. Table II gives
a further comparison of the free energy and the pressure
over a range of densities near freezing. It is apparent that
the results of the MWDA for the freezing of hard spheres
are very close to those of the original WDA, and that
both are in quite good agreement with simulation. The
largest discrepancies between the two approximations are
seen to be in the pressure, but these are still no more than
a few percent. What is especially significant is that the
MWDA gives results of essentially the same accuracy as
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TABLE I. Freezing parameters for the hard-sphere-
liquid —fcc-solid transition: average solid density p„ liquid den-
sity p(, change in density Ap, latent heat per particle As, and
Lindemann parameter L =(3/aa')' ' for the fcc solid, where o.

is the hard-sphere diameter and a is the fcc lattice constant.
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Simulation"
MWDA
WDA'
RY'

1.04
1.036
1.045
1.147

'See Ref. 24.
bSee Ref. 23.
'See Refs. 4 and 5.
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0.097
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FIG. 4. Modified weighted-density approximation for the
one-particle direct correlation function c~M~o„(r;[p]) of the fcc
hard-sphere solid along the three symmetry directions of the cu-
bic unit cell.

=fo(P")+fo (P")

2 p, + X p (p) ' ' —
p

G~O

XPG+ G (P )
Ps

(25)

the WDA, but requires considerably less computational
eA'ort.

A feature of the MWDA particularly worth mention-
ing is that it also provides a simple approximation for the
one particle -DCF (or excess chemical potential)
c'"(r;[p]) of the nonuniform system. According to Eq.
(4), c" (r;[p]) is defined by

6F,„[p]
c ' (r;[p])—:—

/3
5p r

Thus, by substituting F,„[p]into Eq. (24) we obtain
the approximation

'cMwn~(r [P])

which is easily computed. In comparison, the WDA also
gives an approximation for c "(r;[p]), but in a form
which is numerically intractable. Figure 4 shows a typi-
cal plot of —

/3 'cMwo~(r;[p]) for the hard-sphere fcc
solid along the three symmetry directions of the cubic
unit cell. Notice that —P 'cMwr~~(r;[p]) is lowest at the
lattice sites where the density is highest, and highest in
the interstitial regions where the density is lowest. This
qualitative behavior is in accord with the physical inter-
pretation of —

/3 'c" (r;[p]) as an "effective one-body
potential" which acts to self-consistently determine the
equilibrium density p, (r), the latter interpretation fol-
lowing from the fundamental relation'

p,„(r)=z expI —PP,„,(r)+c ' (r;[p, ])], (26)

where z is the fugacity and P,„,(r) an external potential, if
present.

We conclude this section with some remarks on the ap-
plication of the MWDA to systems with other-than-
hard-sphere pair potentials. As illustrated above, appli-
cation of the MWDA (as of the original WDA) requires
knowledge of the functions co ' and fo over a wide range
of densities of the uniform interacting liquid. For a sys-
tem whose pair potential is purely repulsive (e.g. , the
hard-sphere system) these functions are well defined at all
densities below the freezing transition. It may be ob-
served, however, that for a system whose pair potential

TABLE II. Free energy per particle F/N and ratio of pressure P to average solid density p, for the
hard-sphere fcc solid over a range of average solid densities.

1.000
1.025
1.050
1.075
1.100

MWDA

4.412
4.629
4.853
5.090
5 ~ 347

PF/N
WDA'

4.449
4.674
4.908
5.156
5.423

Simulation

4.661
4.868
5.099
5.354
5.663

MWDA

8.51
8.96
9.61

10.58
11.90

/3P /p,
WDAa

8.83
9.40

10.09
11.06

Sirnulationc

10.25
10.81
11.49
12.30
13.26

'See Ref. 23.
bSee Ref. 11.
'See Ref. 25.



4706 A. R. DENTON AND N. W. ASHCROFT 39

includes also an attractive part, there could exist a range
of densities, characterized by equilibrium two-phase
(liquid-vapor) coexistence, over which co ' and fo are
undefined. As demonstrated in Refs. 6 and 12, however,
it is possible to treat such a system by expanding the ex-
cess free energy F,„about that of a reference system with
a purely repulsive potential (e.g. , the hard-sphere system).
The MWDA can then be applied solely to the reference
system, with the attractive contribution to F,„ treated as
a perturbation and approximated by independent means
(e.g. , by a mean-field approximation).

IV. DISCUSSION
The results of Sec. III demonstrate that in their quanti-

tative predictions the MWDA and the WDA are practi-
cally equivalent —at least in the case of the freezing of
hard spheres. A formal basis for comparing the two
approximations —with each other and with the RY
theory —is provided by the functional Taylor series ex-
pansion of the excess Helmholtz free energy about the
density of the uniform liquid. Using the definition of the
n-particle DCF c'" from Eq. (5), the expansion can be ex-
pressed in the form

PF,„[p]=PF,„(p& )
—co '(p& ) fdr[p(r) pI ]——

—,
' fdr f dr'co '(r —r', pI )[p(r) —

pI ][p(r') —
p&]

——f dr fdr' fdr"co '(r —r", r' —r";pr)[p(r) p, ][p(—r') —p&][p(r")—pI]— (27)

where pl is the liquid density. As noted in the Introduc-
tion, expansion (27) is the basis of the RY theory, where
F,„[p) is approximated by a truncation of the
expansion —usually at second order, since until recently
very little was known about c0

' and higher-order
DCF's. Although the MWDA and WDA are not ex-
plicitly based upon expansion (27), it is nevertheless possi-
ble to formally expand the approximate functionals
F,„and F,„by evaluating the approximate
higher-order DCF's from Eq. (S). From Sec. II, it is
clear that the pair of resulting expansions must be alike in
two important respects. First, both are "exact" to second
order —that is, to the extent that co ' is known exactly-
as ensured by the requirement that Eq. (6) is satisfied ex-
actly. Second, both include a subset of exact higher-
order terms, specifically those terms that can be derived
from co ' via Eq. (9). In addition, both expansions in-
clude approximate higher-order terms that cannot be de-
rived from co ', and it is only in the precise form of these
approximate terms that the two expansions differ. In
contrast, in the RY theory the expansion —though also
exact to second order where it is usually truncated —does
not systematically include any of the higher-order terms.

Finally we point out that an approximation rather
similar to the MWDA has recently been proposed by
Stoessel, but on the basis of quite a different
motivation —namely, the desire to generalize to nonuni-
form systems the Carnahan-Starling approximation for
uniform liquids. Stoessel approximates the excess free
energy per particle of the nonuniform system by

q[p]—:— fdr p(r) f dr'p(r')f(r, r'),8X
where f (r, r') is the Mayer function, given by

(29)

f(r, r') =exp[ —PP(r, r')] —1,

(2&)

where fo is the Carnahan-Starling uniform liquid free
energy and q[p] is a "generalized" packing fraction,
defined by

and P(r, r') is the pair potential. Notice that the
definition of q[p] is of precisely the same form as the
definition of P in the MWDA [see Eq. (11)]. The
specification of the weight function in the two approxi-
mations, however, is quite different. Whereas in
Stoessel s approximation the weight function is propor-
tional to the Mayer function, in the MWDA the weight
function is proportional to the two-particle DCF [Eq.
(13)], but with a carefully prescribed density argument
[see Eq. (11)]. It is worth noting, however, that in the
lou-density limit the two-particle DCF reduces to the
Mayer function and the two approximations then become
equivalent. Since Stoessel's approximation does not in-
volve a self-consistency requirement —in the sense that
the weight function does not depend upon the generalized
packing fraction —the corresponding functional expan-
sion of F,„[p] does not include the exact higher-order
terms that are included by the MWDA and WDA. Nev-
ertheless, when applied to the hard-sphere fcc and amor-
phous solids, Stoessel's approximation gives pressures
that agree surprisingly well with simulation. The results
for the free energy, however, are rather poor: indeed the
free energy of the solid is consistently lower than that of
the liquid, and thus no freezing transition is observed.
For comparison, we have computed the pressure and free
energy of the hard-sphere fcc solid in the MWDA using
Stoessel's form of the weight function. In the case of
hard spheres, Stoessel's weight function is simply a nor-
malized step function (constant for ~r —r'~ (o, zero for
~r —r'~ ) cr), which differs significantly from the MWDA
weight function [Eq. (13)] at densities as high as those
near freezing. We confirm that when this form of the
weight function is used the pressure of the solid is only
slightly affected, whereas the free energy is indeed
significantly reduced relative to the results presented in
Sec. III, to the extent that, as noted, no freezing transi-
tion is actually observed.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a new formulation of
the weighted-density approximation (WDA) as embodied
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in the weighted-density-functional theory of Curtin and
Ashcroft. The new modified weighted-density approxi-
mation (MWDA) considerably simplifies the practical im-
plementation of the theory, yet maintains good agree-
ment with simulation when applied to the freezing of
hard spheres. Furthermore, on the basis of the functional
expansion of the excess free energy, the formal
justification for the new approximation is in fact just as
strong as for the original, since in both cases the expan-
sion includes the same subset of exact higher-order terms.
The two approximations di6'er in the precise form of the
approximate higher-order terms which each includes. (In
fact, at third order the MWDA actually includes only ex-
act terms, whereas the WDA includes both the same ex-
act terms and additional approximate terms, and conse-
quently the WDA is better able to approximate the
three-particle direct correlation function. ) These ap-
proximate higher-order terms, however, apparently are
not important for describing the freezing of hard spheres,
as evidenced by the close quantitative agreement between
the two approximations demonstrated in Sec. III.
Whether or not this same level of agreement holds more
generally can be established only by comparing the re-
sults of the two approximations for a variety of phenome-
na and systems. In particular, though the MWDA can
be easily applied to most bulk phase phenomena, applica-
tion to interfacial phenomena, where the density nonuni-

formity is ofPnite range, may not be as straightforward.
We mention that we have already generalized the new ap-
proximation to binary mixtures and applied it to the
freezing of hard-sphere mixtures with favorable results.
This work will be the subject of a future publication.
Finally, we reiterate that compared with the
Ramakrishnan- YussouF theory, the weighted-density-
functional theory is evidently more soundly based, more
accurately describes the freezing of hard spheres, and-
with this new formulation of the weighted-density
approximation —is now just as simple to implement.
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