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The dynamical scaling of the chain-chain aggregation model is investigated in three dimensions.
Monte Carlo simulations are performed on a cubic lattice with a dift'usion coe%cient proportional
to k" for a chain of mass k. At large times the mean chain mass grows like t' and the mean-

square radius of gyration like t 'f, where D is the fractal dimension of the chains. The relation
z (1 —1/D+p —y) ', obtained when one assumes that the sticking probability between two
chains of mass k is proportional to k ", is checked numerically with w(3D) =0.72.

A model for linear polycondensation in which the chem-
ical reaction is simulated on a lattice by the aggregation
of randomly diffusing chains has been recently intro-
duced. ' In two dimensions (2D) the dynamic scaling of
this model with a diffusivity coefficient proportional to k"
for a chain of mass k has been investigated with the re-
sult that the chain-mass distribution function changes
from monodisperse to polydisperse at a value yd, (2D) =0
when y is increased. This change is also observed for the
aggregation of ramified clusters with y,1(2D) = —0.25
and y,1(3D)= —0.5 (Ref. 3) although there exists a
qualitative diff'erence between the two models: chain-
chain aggregation is not only diA'usion limited but also re-
action limited because two chains stick only when their
two tips meet. In 2D, our numerical results support the
assumption that the sticking probability is a homogeneous
function of degree —y so that two chains of mass k stick
with a probability proportional to k ~; we got p(2D)

0.36 ~ 0.02, independent of y. We present here a series
of 3D simulations for six values of the mobility exponent y
in the range —1.8~ y~0.25. The results are analyzed
in close analogy with the 2D case to which the reader is
referred for further details.

A simulation is started with 8000 monomers of unit
mass (one-particle chains) randomly distributed on
nonadjacent sites of a 100X100x100 cubic lattice with
periodic boundary conditions. Each Monte Carlo step is
performed as follows.

(1) Randomly select a k-particle chain with a probabil-
ity proportional to k " and increment the physical time.

(2) Choose at random one of the six possible directions
on the lattice and translate the selected chain by one lat-
tice unit in this direction, only when the new position is
free.

(3) If the tips of two different chains arrive on first-
neighbor sites, make the two chains merge.

n(k, t) -t "g(x) -k 'f(x),
/2(k t) ~t2z&Dr(x) k2IDq(x)

(la)

(lb)

where D is the fractal dimension of the chains and z the
dynamic exponent entering the scaling parameter
x k/t'. The asymptotic behavior of the two scaling
functions f(x ) and g(x ) may be predicted in the frame-
work of the Smoluchowski theory: when x&)1, both
functions decrease exponentially and when x&(1, three
classes of kinetics are possible. In classes I and II we have

f(x)-x' ', g(x)-x ' (2)

with the scaling relation w (2 —r)z, and in class III, f
and g are both exponentially decreasing functions of x.
Defining the mth moment of the distribution function as

p ~oo

M (t)- g k n(k, t) (3)

and introducing the asymptotic form of g(x) for x «1, we
obtain the large-time behavior of the total number of

For fifty values t; of the physical time, regularly distri-
buted on a logarithmic scale, the number of k-particle
chains per unit volume n(k, t;) and their mean-square ra-
dius of gyration R (k, t;) are stored; the results presented
here are averages over fifty simulations for each y value
considered.

The scaling assumption that both n(k, t) and R (k, t)
are generalized homogeneous functions of the chain mass
k and the time t has been checked numerically for chain-
chain aggregation in 2D (Ref. 2) and also for cluster-
cluster aggregation in 2D (Ref. 4) and 3D (Refs. 3, 5, and
6). From this assumption, the following relations result:
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chains

N(t)-t ', class III or r( 1,

N(r) —r ", r) 1,

-5

-10

-1.8

and the mean chain mass

(k) -M2(t)/M|(t) —t'. (5)
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At large times lnN and ln(k) become linear functions of
Int and the slopes of both curves have the same absolute
value within the error bars so that we always have r ~ 1

or a class-III kinetics for —1.8~ @~0.25. We also
define a mean square radius of gyration, averaging
R (k, t) over all the chains present at time t, with the fol-
lowing asymptotic behavior:

(R 2) r 2zlD (k) 2ID
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Plotting ln(k) as a function of ln(R )'i, we get straight
lines at large (k) whose slopes give the chain fractal di-
mension D near to the self-avoiding walk value. These es-
timates, together with those of the dynamic exponent z,
are given in Table I. Larger chains are obtained when y is
increased and the variation of D with y is essentially due
to finite-size eA'ects.

Another test of the scaling assumption is directly pro-
vided by the time and mass dependence of the distribution
function (la). Because of mass conservation, the curves
inn(k, t;) against ink obtained at different times r; all have
a common tangent with slope —2. On the other hand,
fixing the chain mass at given values k;, the set of curves
Inn(k;, t) against Int have an envelope with a slope —2z,
when r (0 or in class III only. Such sets of curves are
displayed in Figs. 1 and 2 for three typical values of y. It
can be seen in Fig. I that the chain-mass distribution
function which is monodisperse for y(0 becomes po-
lydisperse above y,h(3D) =0 like in 2D (Ref. 2) to be
compared with y,l(3D) = —0.5 for the aggregation of
clusters. For the same y value we also observe that the
common tangent of the curves in Fig. 2 disappears, sug-
gesting a qualitative change for the scaling function g(x)
at small x: for y~ 0 we expect a power law with 0 ~ i ~ 1
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FIG. 1. Log-log plot of the distribution function n(k, t;) as a
function of the chain mass k for three values of the mobility ex-
ponent y. For a given y value all the curves obtained at different
times t; have a common tangent with a slope close to —2. The
mass distribution is monodisperse when y & 0 and polydisperse
when y~O.

0

TABLE I. The chain fractal dimension D and the dynamic
exponents z and r for the different y values considered here. A
slight increase of D with y is observed and z ' appears to be a
linear function of y. The exponent z has been estimated for

y ~ 0 only, when the scaling function g(x }is monotonic.
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FIG. 2. Log-log plot of the distribution function n(k;, t) as a
function of the time t for three values of y. When y (0 the
curves for the different values k; of the chain mass have a com-
mon tangent with a slope —2z and when y~O this envelope

disappears.
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FIG. 3. Log-log plot of the scaling function g(x) against the
scaling variable x k/t' This f.unction is monotonic when y~0
and the slope at small x gives the exponent ~; it is bell-shaped
when y &0.

FIG. 4. Inverse of the dynamic exponent z as a function of
the mobility exponent y. The straight line is a least-squares fit
of the numerical data (black squares) with a slope —0.97. The
sticking exponent y is deduced from z '( —1/D) I +p.

and for y&0 either a decreasing exponential or a power
law with z & 0. Figure 3 gives a log-log plot of g(x) as a
function of x for all the y values studied; the reasonable
dispersion of the results supports the scaling assumption.
On the small x side, the slopes of the curves for y~ 0 give
the exponent z (see Table I) but when y& 0 the mean-
square fits do not allow to discriminate between an ex-
ponential decrease or a negative z value. To decide re-
quires the knowledge of the reaction kernel K(i,j) (Ref.
7) entering the Smoluchowski equation

Bn(k, t) K(i,j)n(i, t)n(j, t)
8t I+j k

(7)

which gives the time variation of the k-mers. For chain-
chain aggregation K(i,j) is obtained multiplying the ker-
nel valid for cluster-cluster aggregation by the sticking
probability h(i, j) between two chains of mass i and j
which is not known. We intend to determine this quantity
numerically, which requires much more extensive simula-
tions than we have done here. Finally, let us consider the
variation of the dynamic exponent z with the mobility ex-

ponent y. For the cluster-cluster aggregation model the
relation

z '-(2 —d)/D+I —
y

has been proposed and verified by numerical simula-
tions. Since in our case two chains stick only when their
two tips meet this relation has to be modified, and assum-
ing that the sticking probability between two chains of
mass k is proportional to k "one gets the following linear
relation:

z ' -(2 —1)/D+ I ++—y.

A straight line with a slope close to —1 is effectively ob-
tained when z ' is plotted as a function of y (Fig. 4) and
we find y(3D) 0.72+'0.04 for the sticking exponent, to
be compared to the value va 2(1 —1/D) -0.78~0.05
predicted by a simple scaling argument based on the mu-
tual transparency of the chains.
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