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Stochastic resonance in a bistable ring laser
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Stochastic resonance was recently observed in a bistable ring laser. It is a phenomenon in which
the response of a bistable system to a periodic modulation is enhanced by the injection of noise
along with the modulation. So far, comparisons of the experimental observations with theory have
been made only for models that are much simplified compared with the more realistic two-mode
equations that describe the ring laser. We report here the results of numerical simulations of the
stochastic differential equations for the laser with periodic modulation of the asymmetry between
the two modes and injected noise. The simulations reveal the phenomenon of stochastic resonance
in a manner closely resembling the experimental observations. The appearance of second-harmonic
frequencies in the output power spectrum and the role of the colored nature of the pump laser noise
are studied. Finally, we discuss the relation of the recent experimental measurements of hysteresis
in a ring dye laser by Gage and Mandel fJ. Opt. Soc. Am. B (to be published)] to the observation of
stochastic resonance.

I. INTRODUCTION

The response of a bistable system to a periodic modula-
tion may be enhanced by the injection of random noise.
The measure of the system's response to the modulation
is the signal-to-noise ratio at the modulation frequency
obtained from the power spectrum of the output of the
bistable system. This phenomenon, called stochastic res-
onance, was invoked by Benzi et al. to explain the more
or less periodic occurrence of the earth's ice ages. ' The
effect of a small periodic change in the eccentricity of the
earth's orbit, by itself insufficient to cause large tempera-
ture changes, was shown to be enhanced in the presence
of random perturbations. The mathematical problem of
a dynamical system subject to both a periodic forcing and
stochastic noise was examined by other authors as
well; see, for example, Refs. 2 and 3. Experiments on a
Schmitt trigger, and more recently, on a bistable ring
laser, demonstrated this phenomenon clearly in the labo-
ratory. The problem has since received intense theoreti-
cal attention. ' Yet the models studied in Refs. 6-10
have always been much simplified so as to allow analytic
solutions to be obtained. Thus, though some features of
the experiments have been explained, other interesting as-
pects of the observations have not received much atten-
tion. Digital and analog simulations have also been per-
formed, ' but these, too, have been restricted to the
simplified one-dimensional models. The only study of the
two-mode laser equations that relates to stochastic reso-
nance is the recent interesting work of Czage and Mandel
on hysteresis in a ring dye laser. " They do not study the
effect of injected noise, however, or the question of
enhancement of the signal-to-noise ratio. The emphasis
in our work is on these latter issues, and we will elucidate
the connection between the observation of hysteresis and
the phenomenon of stochastic resonance in this paper.

Our aim here is to obtain numerically the solution of

the stochastic differential equations for the two-mode
laser model with periodic modulation and injected noise.
We will examine and interpret the experimental observa-
tion of stochastic resonance on the basis of equations that
actually model the bistable laser accurately. These equa-
tions are analytically intractable and no analytic solutions
are known at present.

Before we present the equations for the two-mode laser
and describe their solutions, we summarize the basic
features of stochastic resonance and the conditions for its
occurrence, The appropriateness of the nomenclature
has been discussed by a number of authors, ' ' and we
will not enter into a further discussion here. The basic
scheme for observation of this phenomenon is shown in
Fig. 1(a). A periodic modulation signal and noise are
simultaneously input into a dynamical system. The out-
put of the system, which could be a voltage, light intensi-
ty, displacement, or any other suitable variable, is spec-
trally analyzed. The response of the system to the
periodic signal is measured by the height of the peak at
the signal frequency in the power spectrum. The noise
level is determined as shown in the figure. A linear sys-
tem would then show the behavior for the signal-to-noise
ratio shown in Fig. 1(b) as the noise level (measured, for
example, by the standard deviation of the noise fluctua-
tions) is increased, the signal level being maintained con-
stant. In contrast, the phenomenon of stochastic reso-
nance is characterized by the behavior shown in Fig. 1(c),
where the qualitatively different behavior of a bistable,
nonlinear system is depicted in a schematic fashion. The
surprising feature is that the signal-to-noise ratio actually
increases as noise is injected into the system, experiences
a maximum, and then decreases with further increase of
the noise strength. Obviously, this type of behavior can-
not occur in a linear system.

A qualitative picture of the effect of a periodic modula-
tion signal on a bistable system in the absence of injected
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noise is presented in Fig. 2. for the case of overdarnped
motion of a particle in a double-well potential. The
periodic signal distorts the shape of the generic bistable
double-well potential in the sequence as shown. The posi-
tion of the particle in the potential well determines the
output of the system. When the particle is in the left
well, the system is "off," and when it is in the right well,
the system is "on." As the signal increases, the potential
well distorts until the particle finally rolls over from the
left well to the right one. The signal reaches its max-
imurn value and then decreases. The particle is now
trapped in the right well, however, and stays there until

Vi

FIG. 1. (a) The effect of input modulation and noise on the
output of a dynamical system is observed through spectral
analysis. {b) Signal-to-noise ratio as a function of input noise for
a linear system. (c) Signal-to-noise ratio as a function of input
noise for a bistable, nonlinear system.

the signal reaches the opposite extreme value, when it re-
turns to the off state. We translate the sequence of pic-
tures to an input-output characteristic of the bistable sys-
tem in Fig. 3. The presence of hysteresis is clear from
these qualitative considerations. The width of the hys-
teresis loop in the absence of noise is determined by the
barrier height between the two wells of the potential.

In these considerations, the amplitude of the periodic
signal was large enough to cause transitions from the on
to the off state and back during a cycle. What happens if
the amplitude is too small to cause these transitions? The
answer is clear; the particle stays trapped in either the off
or on state forever. Thus, for a small enough signal, the
output of the bistable system displays no response to the
input modulation. It is easily seen that if the signal am-
plitude is less than the width of the hysteresis loop, this is
indeed the situation. A bistable system is unable to
detect the presence of a modulation of amplitude smaller
than the width of the hysteresis loop associated with the
system if there is no noise present in the system. We have
assumed in this discussion that local motion of the parti-
cle in a single well is not detectable. We will see later
that this is not strictly true.

The question now is whether the injection of noise
could possibly make the bistable system respond more or
less periodically to the input signal, so that its presence
could be detected in the power spectrum of the output. It
is shown in Fig. 4 how this is in fact the case. The
periodic signal amplitude is now insufficient to cause
transitions from one well to another, but the injected
noise induces transitions with good likelihood at the ex-
tremes of the periodic modulation, when the barrier
height is reduced to a minimum. This would result in a
peak at the modulation frequency in the output power
spectrum. Of course, if the noise introduced is extremely
strong, transitions may occur not only at the extremes of
the modulation, but at other times as well, reducing the
strength of the signal in the output.

With this qualitative picture of stochastic resonance
and the connection between modulation of a double-well
potential and hysteresis, we will proceed to the analysis
of the two-mode laser equations. These are introduced in
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FIG. 2. Schematic illustration of the effect of periodic modu-
lation on a double-well potential and the overdamped motion of
a particle in the absence of noise. The modulation amplitude is
large enough to cause transitions of the particle from the off to
the on state and back. The input modulation values V& —V4 cor-
respond to those shown in Fig. 3 where the hysteresis cycle as-
sociated with the modulation of the bistable system is depicted.

V4 V3 Vg V2,

INPUT MODULATION

FIG. 3. Hysteresis cycle associated with the modulation of
the double-well potential and the motion of the particle are
shown. Motion internal to the wells is assumed negligible. The
width of the hysteresis loop is determined by the height of the
barrier between the wells.
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well established, and their predictions have been tested
experimentally for a number of years. ' ' The equations
are often augmented with noise sources to account for the
effect of spontaneous emission and pump noise (which
may arise from the fluctuations in the intensity of the
pump laser) and take the form

dE, /dt =[a+ba+p(r)+ IE~ I glE2I']E, +q, (t) (1)

oN OFF

and

dE2/dt = [a —&a +@(&)+IE& I' —glE~ I']E~+q2(t),

(2)

FIG. 4. Modulation amplitude is now insufticient to cause
transitions of the particle from one well to another in the ab-
sence of noise. When noise is introduced, it is possible for the
particle to make more or less periodic noise-induced transitions
from the on to the off state and back. These transitions would
be detected in the power spectrum of the output as an enhance-
ment of signal-to-noise ratio.

Sec. II, and the method of numerical simulation is out-
lined. The results of the numerical simulations are
presented in Sec. III and compared with experimental re-
sults. In Sec. IV we discuss the role of pump noise, and
its colored nature, and issues that should be investigated
in future experiments and theoretical treatments.

II. TWO-MODE I.ASER EQUATIONS
WITH IN JECTED NOISE AND MODULATION

The experiments of Ref. 5 were performed on a two-
mode ring laser, with a homogeneously broadened dye
medium. Such a laser is bistable in operation, since
strong coupling exists between the waves (of the same fre-
quency) traveling in opposite directions. This bistability
manifests itself in either one of the beams (clockwise or
counterclockwise) being on at a given time. Random
switching of the beam intensities occurs, initiated by
spontaneous emission in the active medium. The average
dwe11 time of the laser in a given mode or direction in-
creases rapidly with pumping, and the laser will remain
on in a given direction for tens or hundreds of seconds
even when it is pumped at a few percent above threshold.
The experiments of Ref. 5 were performed for such a situ-
ation, where the bistable nature of the laser is clearly
defined, and random switching plays a minimal role.

Associated with this bistable behavior is a double-well
potential model of the laser that will be described shortly.
The connection of the qualitative models described in
Sec. I to the behavior of the two-mode laser can thus be
put on a mathematical footing. The asymmetric rnodula-
tion of the double-well potential corresponds now to the
introduction of a periodically variable anisotropic loss
element into the laser. The introduction of noise corre-
sponds to a random variation of this anisotropic loss.
Both periodic modulation and noise were introduced by
means of an acousto-optic modulator in the experiments
of Ref. 5, while in Ref. 11 a Faraday rotator device was
used to create a periodic modulation of the potential.

The semiclassical equations for a two-mode laser are

where E, and E2 are complex, scaled, dimensionless
fields of the two modes. The pump parameters of the two
modes, a, and az, have been written as (a+A, a) and
(a —b,a), respectively. The noise sources q, and q~ are
complex and Gaussian, with zero mean and correlation
functions

(q,*(r)q,.(t')) =45,,5(r r') (i,j=—1,2),
while the pump noise p (t) is an Ornstein-Uhlenbeck pro-
cess with zero mean and correlation function

(p(t)p(t') ) =(Pk)e (4)

P and A, specify the strength and time scale of the pump
fluctuations. The laser is assumed to be homogeneously
broadened, and the value of the coupling constant for the
two modes is /=2 (strong coupling).

In the experiment of Ref. 5, an acousto-optic modula-
tor was used to introduce an asymmetry between the net
gains of the two counterpropagating modes, i.e., a period-
ic modulation of the acoustic frequency was converted to
a modulation of the asymmetry of the pump parameters.
The injected noise was added to the periodic modulation
by a summing amplifier. The effect of both the periodic
modulation and the injected noise are included in the
laser equations as follows:

dE, /dt = [a+ha(t)+r(t)+p(t)

+ IE I' —glE I']E +q (&)

and

dE2/dt =[a —ba(t) —r(t)+p(t)

where b,a(t) =b,a sin At, A is the modulation frequency,
and r(t) is the injected white noise. This noise is Csauss-
ian and 5 correlated with strength 2R. We note that
though the pump noise enters the equations similarly, the
injected noise differs in sign in the two equations. The
modulation frequency 0 is assumed to be slow in com-
parison to growth and decay rates of the laser field in the
cavity.

In the absence of the periodic modulation, injected
noise, and pump noise a "potential" associated with the
steady-state solution of the Fokker-Planck equation may
be obtained. This potential V(I, ) is determined by in-

tegration of the joint steady-state probability distribution
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tic resonance clearly. The signal to noise ratio is small

for R =1, reaches a maximum around R =16, and then
subsides again for R =169. References 7 and 9 have dis-
cussed in detail the technicalities involved in the
definitions of signal-to-noise ratio and fast Fourier trans-
formations. We will not discuss these further here; it is
sufficient for our purpose to use the simple definitions of
signal-to-noise ratio as is evident from the plots, and note
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FIG. 5. "Potential" of Eq. (7) plotted as a function of the in-

tensity of mode 1 for a =60. It is seen that at the extremes of
the modulation (ha =15 and —15), the barrier height is re-
duced and noise-induced transitions can occur from one well to
another.

P(I, ,I2) over the intensity Iz of mode 2. The analytic
expression for the potential is'

V(I, ) = —
—,'(g —1)I, + [—,'a(g —1)—,'ha( g+ 1)]I, —

—in[1 —erf( —,'(I, —
—,'a+ —,'Aa )] .

In Fig. 5 we have plotted this potential for three values of
b,a. As ha is modulated, the potential V(I,

~
changes adi-

abatically in response to the modulation. The potential
has two wells, one at I] —0 and the other approximately
at I, =a, . The potential V(I, ) is the one appropriate for
the discussion of stochastic resonance in a two-mode
laser. If the asymmetry ha is modulated over a
sufficiently large range, the laser will switch from opera-
tion in one direction to the other, demonstrating the cor-
responding hysteresis cycle. In the experiment of Ref. 5
the amplitude of the modulation of the asymmetry was
smaller than the width of the hysteresis loop. The laser
does not switch directions under the inhuence of the
modulation alone in this case. Injected noise is necessary
to initiate switching from one direction to the other. The
detector on which one of the beams is incident responds
to the on-off intensity variations. The power spectrum of
its output is then obtained and the signal-to-noise ratio
plotted as a function of the noise input.
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III. NUMERICAL SIMULATIONS 0=
The numerical integration of the stochastic differential

equations (5) and (6) is straightforward, and has been de-
scribed in the literature. ' The values of the intensity I&
of mode 1 are stored at each step in time and a fast
Fourier transform (FFT) is performed to obtain the
power spectrum. A very large number (131072) of time
steps (At =0.001) were taken for a given trajectory. Pa-
rameter values were a =60, ha =15, P=100, A. =1, and
0=2m/4. 096, while the injected noise strength was
varied. Power spectra for R =1, 16 and 169 are shown in
Figs. 6(a) —6(c). These show the phenomenon of stochas-

1Q I 'I I I

FREQUENCY 0.8

FIG. 6. Power spectra for three different values of the inject-
ed noise strength R. (a) R =1. (b) R =16. (c) R =169. There is
clear evidence of stochastic resonance, and the second-harmonic
peak observed in the experiment of Ref. 5 is clearly seen in the
simulations.
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FIG. 7. Signal-to-noise ratio profile as a function of injected
noise strength. The stochastic resonance profile is markedly
similar to that experimentally observed.

FIG. 9. Stochastic resonance profile from simulations of the
laser equations without pump noise. A large peak is seen for
small R that was suppressed by the presence of pump noise in
Fig. 7. This large initial peak is due to internal motion in a sin-
gle well of the potential. This is obvious also from the shift of
the right-hand-well minimum in Fig. 5.
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that signal-to-noise ratios are dependent on the time step
and the precise manner in which FFT's are performed
(windowing, etc. ) These details do not affect the overall
behavior of the signal-to-noise ratio as a function of the
input noise strength. In Fig. 6(b) it is very clear that sig-
nals are present at the second-harmonic and third-
harmonic frequences as well. This feature, also present in
the experimental observations, has not been previously
explained in the literature. It is notable that Eqs. (5) and
(6) contain a cubic nonlinearity in the field. When con-
verted to intensity equations, a quadratic term in the in-
tensity is generated, and thus we may expect to see a
second-harmonic signal in the power spectrum. The
physical situation in the two-mode laser corresponds in a
one-dimensional model to the case where the modulation
is multiplicative; Debnath, Zhou, and Moss also find

peaks at the harmonic frequencies for this system in their
analog simulations.

The noise strength R was systematically varied and the
signal-to-noise ratio (SNR) obtained from the power spec-
tra was plotted as a function of the square root of R.
This plot is shown in Fig. 7. The SNR first decreases to a
minimum and then increases sharply by at least 10 dB to
reach a maximum. There is then a more gradual decrease
in the SNR as R is increased further. Apart from the
small initial regime when the SNR decreases, this behav-
ior closely resembles that observed experimentally, which
is shown in Fig. 8. We have seen from our simulations
that with an appropriate choice of the pump noise
strength this initial peak can be suppressed. It was in-
cluded in Fig. 7 since it serves to clearly point out the
role of the pump noise in the observation of stochastic
resonance in the ring laser.

It is very pertinent to ask what we would observe if we
were in an ideal situation and could eliminate pump noise
from our laser completely. This is easy to do in our simu-
lations, though not possible in the experiments. Figure 9
shows the SNR profile versus the square root of R. An
enormous sharp peak is visible for very small values of R.

q0.
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MP 15

FIG. 8. Experimental observation of stochastic resonance in
a bistable ring laser. The data are taken from the experiment in
Ref. 5.

FIG. 10, Signal-to-noise profiles with no injected noise
present. The time scale of the pump noise has been varied. (a)
—-—-, k = 1; (b) ~ . , k = 100;(c),white noise.



39 STOCHASTIC RESONANCE IN A BISTABLE RING LASER 4673

FIG. 11. Effect of reducing the modulation amplitude on the
signal-to-noise profile. (a) - . , Aa =15; (b) —- —-, Aa =10;(c),Aa =5.

5
0 hA

FIG. 12. Signal-to-noise ratio as a function of modulation
amplitude when there is no injected noise present.

This initial peak corresponds to Inotion within a single
well that is detected in the power spectrum of the output.
In a strictly bistable device, where the on and off states
are precisely defined, this sharp initial peak would be ab-
sent. The rest of the profile looks very much similar to
that of Fig. 7.

What causes the initial sharp peak to be suppressed in
the experimental data? The answer to this question is ob-
tained as soon as we examine the behavior of the bistable
system when pump noise is present together with the
periodic modulation, but the injected noise strength R is
set to zero. Figure 10 shows the effect of pump noise as
its strength is varied. A glance at Eqs. (5) and (6) reveals
that pump noise and the injected noise occur very simi-
larly in them. The only real difference is that the pump
noise appears with the same sign in both of the modes,
whereas the injected noise appears in an asymmetric
fashion. We may then expect the behavior of the SNR
profile to be very similar to that of Fig. 9. Indeed, the
solid curve in Fig. 10, drawn for the case of white pump
noise, does resemble Fig. 9 closely. However, when the
pump noise is colored (A. =100 and A, = 1), the SNR
profile changes qualitatively. In fact, when the pump
noise is strongly colored (X= 1 ), the maximum for inter-

mediate values of P has virtually disappeared. We note
that for P=100 on this curve, the signal-to-noise ratio
has a value close to 16 dB, which is exactly the initial
value of the SNR in Fig. 7. The high initial peak of Fig.
9 is thus seen to be suppressed by the presence of the
pump noise. What is indeed remarkable is that even
though the presence of the large colored pump noise term
suppresses the signal, the injected noise is able to
resurrect the SNR to values as large as 25 dB.

When the amplitude of the modulation is decreased,
stochastic resonance is still observed, though the
enhancement becomes smaller in magnitude. Figure 11
shows the SNR profiles for three different values of Aa.
The peaks of all three curves lie at about the same value
of the input noise strength.

It is also interesting to study the SNR response of the
bistable system as a function of the amplitude of the
modulation when there is no injected noise. This is
shown in Fig. 12. A definite kink appears in this curve at
just about the amplitude that is sufficient to observe the
complete hysteresis loop. We conjecture that this pecu-
liar behavior is representative of bistable systems with
hysteresis that are modulated by a periodic signal in the
presence of noise.

IV. DISCUSSION

We have presented an analysis of stochastic resonance
effects recently observed in a bistable ring laser based on
the equations for a two-mode laser. Our work is also
closely related to the recent study by Gage and Mandel"
of hysteresis effects in a ring dye laser. We have clarified
the connection between the observation of hysteresis and
the phenomenon of stochastic resonance. In the experi-
ments of Gage and Mandel, the modulation amplitude Aa
was held fixed. Aa(t) was varied between —20 and +20
(note the diff'erence of a factor of 2 in our definition of b,a
with regard to the definition in Ref. 11), the only noise
sources being pump noise and spontaneous-emission
noise. Figures 2 —5 explain clearly what was seen in their
experiment. The modulation amplitude ha =20 is large
enough to observe hysteresis even in the absence of the
noise sources, for an average pump parameter of about 60
or smaller. When the pump parameter is much smaller
than 60, i.e., about 25, the area of the hysteresis loop is
very small, since the barrier height is low, and the spon-
taneous noise present is sufficient to cause frequent hop-
ping over the barrier. It would be interesting to check
whether the area of the loop changes with modulation
frequency in this regime of operation. From Fig. 5
(a =60, maximum b,a =15) we can see that if a is in-
creased much further, the barrier height would not be
sufficiently depleted by the modulation to cause a hys-
teresis loop to appear in the absence of noise. It is in this
regime, where the width of the hysteresis loop (without
noise) is greater than the amplitude of the periodic modu-
lation, that stochastic resonance occurs.

The experiments of Gage and Mandel and those of Ref.
5 are performed in different regimes of experimental pa-
rameters; in the former, the modulation amplitude of the
periodic signal is greater than the width of the hysteresis
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loop (without noise), while in the latter, the reverse is the
case. Stochastic resonance makes visible the effect of a
periodic modulation of amplitude smaller than the width
of the hysteresis loop, which would normally be invisible
in the output of the bistable system. It is this effect that
has been studied in Ref. 5.

The main features of the experiment of Ref. 5, includ-
ing the observation of a peak at the second-harmonic fre-
quency, are explained by our simulations. The role of
pump noise is clearly revealed and the remarkable fact
observed that the injected noise in the asymmetry is able
to resurrect the SNR to high values even though it is ini-
tially (in the absence of the injected noise) suppressed by
the pump noise. The effect of the colored nature of pump
noise was investigated. The time scale of the pump noise
is seen to have a definite effect on the response of the
bestable system, changing the SNR profile from non-
monotonic to monotonic when the noise is highly
colored. These simulations show that it is certainly possi-
ble to explain the phenomenon of stochastic resonance on
the basis of realistic equations that describe the laser sys-

tern. They also indicate that the phenomenon of stochas-
tic resonance exists in a wide variety of systems; the one-
dimensional models that have so far been used in the
literature do represent (qualitatively) a widespread behav-
ior characteristic of a number of systems. The fundamen-
tal issue of whether stochastic resonance can be utilized
to obtain signal-to-noise ratios in the output that exceed
the input signal-to-noise ratio has yet to be addressed.
But even in the limited form that stochastic resonance
has been demonstrated so far (where it enhances the
response of a bistable system to a periodic signal), there
are, doubtless, many applications to be discovered.
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