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We derive the probability density function for the nearest-neighbor distance of the closest
Brownian particle to an isolated trap in one and three dimensions. The asymptotic (in time) den-
sity of the nearest-neighbor distance in one dimension is a time-dependent skewed Gaussian func-

tion and the mean value of this distance increases asymptotically as

t'%. The large-distance form

of this function is a simple exponential. In three dimensions the analogous result in the presence
of an absorbing sphere is shown to resemble the Hertz density closely at large distances. The

asymptotic reaction rate goes as ¢ (density) in three dimensions but as cz

=2 in one dimension.

The results are related to exciton fusion and reaction kinetics.

Diffusion-controlled reactions play an important role in
various branches of biology, chemistry, and physics.! >
There has been considerable recent interest in the theory
of reacting systems in low and/or fractal dimensions. In
these, the global kinetics laws will differ from ones tradi-
tionally used in physical chemistry. It has been conjec-
tured that deviations from classical kinetics result from
the fact that the density in space of the reacting particles
is not uniform. Quite recently,® calculations have been
published that establish and quantify the macroscopic
segregation of 4 and B particles for the reaction
A+B— 0. Nonuniform densities have also been found
by simulation for nearest-neighbor distances between par-
ticles for the simplest binary reactions 4 +A4— 0 and
A+ A— A in one dimension’® which is of interest for the
description of exciton homofusion (4+A4— A4) experi-
ments. The probability density function (PDF) for the
nearest-neighbor distance x, at time ¢, as found from
simulations’® of the 4 + 4— A reaction (transient) are
well described by the skewed-Gaussian form fg(x,?)
=2ac*xe %" where ¢ is the (time-dependent) instan-
taneous density and a is a constant, rather than the Hert-
zian density fy(x,1) =2ce ~**. Similarly, for the reac-
tion A+A— 0 it is found”® that the PDF of nearest-
neighbor distances at time ¢ has the form f(x,t)
=(Ac)2xe ~** in steady state, where again c is the instan-
taneous concentration and A is a constant. The density
fc(x,1) is consistent® with an anomalous®'' reaction
rate, k, that varies with density as k~c?, in contrast to
the classical dependence' k ~c? which implies a Hertz-
like density? (or the equivalent radial, or pair-correlation
distributions) for nearest-neighbor distances. The Hertz
density is the probability density for the distance from an
arbitrary point in an infinite space to the closest of an
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infinite set of points uniformly distributed throughout
space with a density equal to ¢. Thus, in one dimension
the Hertz density is given by the negative exponential den-
sity, fy(x,t), that was mentioned earlier, while in three
dimensions the Hertz density is known? to have the form
Su(r,t) —ancr?exp(—4ncr®/3), where r is the distance
from the point. In the original formulation of this prob-
lem there are no time-dependent processes taking place so
that the Hertz densities are independent of the time.

In this paper we derive the probability density function
for the distance to the nearest particle from a static isolat-
ed trap located at the origin in one dimension. Our calcu-
lation will be partially extended to three dimensions for
which we calculate the PDF of the distance to the nearest
particle to a sphere with an absorbing surface. This con-
stitutes a generalization of the Hertz density which has
found explicit application in astrophysics? and implicit ap-
plication to the study of the kinetics of trapping prob-
lems, "> but differs from it due to the trapping process.

The classical trapping problem, in the language of
chemical kinetics, can be characterized as the reaction
A+ B— B where A represents a random walker and B a
trap. We solve for the PDF of nearest-neighborhood dis-
tances for an initially randomly distributed ensemble of
Brownian particles (4) diffusing in a uniform field in the
presence of a single trap (B). The function of specific in-
terest in the analysis of reacting particles is the PDF,
f(L,t) of the nearest-neighbor distance, L, to a trap at
time ¢. We find that in three dimensions the average dis-
tance from the surface of the trapping sphere to the
nearest-neighboring particle is asymptotically constant as
is the trapping rate. In one dimension, the average dis-
tance from the trap to the nearest neighbor will be seen to
increase as ¢ '/* and the trapping rate to decrease as ¢ ~ /2
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The PDF of the nearest-neighbor distance from the trap is
not a pure exponential as is the Hertz form of the PDF in
the absence of a trap but rather has the form of a skewed
Gaussian density. There is, however, a transition to the
exponential form if one calculates the PDF of nearest-
neighbor distance from a point sufficiently far removed
from the trap.

Consider first Brownian motion in one dimension in the
presence of a trap. Let q(x,7|xo) be the PDF for the po-
sition of a particle initially at xo, and let Q,(L,t) be the
probability that at time ¢ the nearest neighbor to a point,
y, is to be found at some distance = L from that point.
We will assume that the initial probability that a diffusing
particle is found in the interval (xo,x0+dxo) is equal to
cdxoy, where ¢ is a constant density. The PDF of the
nearest-neighbor distance from an arbitrary point is there-
fore equal to 2cexp(—2cx) at =0 which is just the one-
dimensional Hertz density. Let us find the PDF of the
nearest-neighbor distance of a particle from a trap at the
origin, f(L,t), by calculating Qo(L,?) and making use of
the relation f(L,?) = —38Qo/dL. 1t is possible to derive
the form of Qo(L,?) by restricting our attention to
Brownian particles on one side of the origin, say x >0,
since particles do not cross the origin. Let g(x,7|xo) be
the PDF for the position, x, of a particle at time ¢, given
its initial position, xo. The two-sided Qo(L,t) is then

Qo(L,t)-cxp[—ch;dej;mq(x,tIxo)dxo] , (D

where

(x,t]x0) = 1 [ex [_(x-_xo)z_]
v 7 i ST

_ _(x+xo)2

exp[ Dt H 2)

The double integral in Eq. (1) is readily evaluated, lead-
ing to the result

Qo(L,t)-exp[-2c{L 2P 2LDt ]—l]
1/2
—z[l’ni} (1—e—“/401)}] A3)

in which ®(x) is the error function

1 X _2
D(x)=—— e " dy . ()]
N5Y e
The long-time limit (D¢>>L?) of Qo(L,t) is found to be
2
Qo(L,t) = exp [ — <L ] (5)
rDt

from which it follows that the asymptotic value of the
mean distance to the nearest neighbor is

w= . Lrw.nde = f,” oL ndL

/4
x4 | Dt :
-T —~ (6)

Thus, the effect of the trap in one dimension is to slowly
repel the Brownian particles. A similar calculation
suffices to show that the standard deviation of this
nearest-neighbor distance also has the same order of mag-
nitude as the result in Eq. (6). Figure 1 shows the time-
dependent development of the function f(L,?) plotted as a
function of L. The asymptotic (in time) PDF of L,
f(L,t), to the same approximation can be expressed as

2cL exp | — cL?
~nDt nDt

In consequence, the most likely value of L, i.e., the value
of L that maximizes f(L,t) also varies as (Dr) 4. Notice
that when L 2> Dt the tail of Qo(L,?) is not described by
the Gaussian shown in Eq. (5) but rather by the exponen-
tial Qo(L,t) =exp(—2cL). A somewhat more involved
calculation can be made to find approximations for the
more general distribution Q,(L,t). These serve to
confirm that, in the limit y — oo, Q, (L,?) is approximate-
ly given by Q, (L,t) = exp(—2cL) which is just the Hertz
distribution in one dimension.

The three-dimensional density for nearest-neighbor dis-
tances differs from that in one dimension because of the
restricted geometry in the lower dimension. To define the
three-dimensional problem we assume that a sphere of ra-
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FIG. 1. Comparison of the exact result (line) for f(L,?) cal-
culated from Eq. (3) with the asymptotic skewed Gaussian form
in Eq. (7), plotted as a function of the dimensionless parameter
L/{L). The two cases are (a) Dt =1000, ¢ =0.5; (b) Dt =2000,
¢=0.5. Notice the improved fit at the longer time.
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dius ro centered at the origin has an absorbing surface and
that the diffusion of point particles in the space external to
the sphere is radially symmetric. In analogy to the one-
dimensional case we examine the form taken by the PDF
of the distance to the nearest particle in the neighborhood
of the surface of the sphere. If we define dimensionless
variables p=r/ro and t=Dt/rd, the diffusion equation
whose solution is required in our calculation of the PDF of
nearest-neighbor distances can be written as

28p
dp

S _ 1.8

o ®)

which is to be solved subject to the initial and boundary
conditions

p(p,0) =0o=cri, p(1,7)=0, )

¢ being the initial concentration of Brownian particles and
p=1 being the surface of the sphere. Notice that the den-
sity is expressed in terms of a dimensionless initial density,
o0, to insure that 4zp%p(p, 7)dp represents the probability
that there be a particle at a distance between p and p+dp
from the origin. Standard techniques can be used to show
that the solution for p(p, ) is

p—1
=1

Let @ be a dimensionless radial coordinate measured
from the origin. The probability that at time  all parti-
cles are at a distance greater than Q from the origin,
0:(q,1), isequal to

p(p,r)=%)~ p+20d

0:(Q,1) =exp [—47rflnp2p(p,‘r)dp] . an

An evaluation of the integral with p(p,7) given in Eq.
(10) leads to a quite complicated expression for Q,(9,7),
but it is relatively simple to examine the form of Q,(Q, )
in the limit of large 7. In this regime one finds that

1 0’—1 _a%-1
= - + -
0:(0,17) =exp 47rao{1 I }{ 3 5 }

(12)
which reduces to the Hertz form without trapping only at
large distances, i.e., when Q>>1. Notice that since the
factor (r7) ~"2is negligible in the present approximation,
0:(0,7) can be regarded as being asymptotically in-
dependent of time. In the immediate neighborhood of the
absorbing sphere, i.e., for Q slightly greater than 1, we
have

Ql(ﬂ,r)zexp[—hro-o(n—l)z] (13)

which resembles the Hertz distribution in two dimensions.
The asymptotic form of the PDF of nearest-neighbor
distance is found in the approximation of Eq. (12) to be

expressible as

0’—1_0’-1
3 2 '
(14)
The important feature of this result is that it is indepen-
dent of time. We conjecture that in two dimensions the
repulsion due to the presence of the trap will lead to a re-
sult like (Q (7)) ~Int.

The one-dimensional nearest-neighbor density, f(L,),
in the long-time limit given in Eq. (7) has a skewed-
Gaussian functional form similar to the conjectured densi-
ty for the nearest-neighbor distance for the reaction
A+ A— product. The analogy goes even further. For
the reaction (or trapping) rate, R, one can show, by calcu-
lating the flux, J, at the trap,

"9q L dxo as)
=0

flQ,r) =4ncoia?— Q}exp[—4oo{

J 2Dc e
that R ~cr ~'/2 at long times. In three dimensions, on the
other hand, R ~c at long times, which is the classical re-
sult. This explains results on exciton heterofusion
(4+B— B) in ultrathin naphthalene wires. With an
empirical formula'> R~t ~%c the experimental results
have been found to give the value h=0.49 while for thick
wires h=0.02, in agreement with the theoretical results.
The analogous results for the reaction 4 +A4— product
are R~c2t ~'2 in one dimension® ™' and R ~c¢? in three
dimensions.! All of these results can also be found by
making the ad hoc assumption”® that the time de-
pendence of the reaction probability is proportional to
¢f(L,t) in the limit L — 0, where f(L,t) is the probabili-
ty density defined earlier. In the simple trapping model of
this paper this assumption leads to an asymptotic time
dependence proportional to ¢ ~'/2 in one dimension and to
a constant in three dimensions.

In summary, we have shown that the probability density
function for the nearest-neighbor distance to the trap is
asymptotically independent of time in three dimensions,
but not in one dimension where both the average and the
most probable nearest-neighbor distances increase as 1 '/,
Concomitantly, the global trapping rate reaches a stable
long-time limit in three dimensions but decreases as ¢ ~ /2
in one dimension. These results have been shown to mim-
ic aspects of the kinetic behavior of the diffusion-limited
A+ A— A reaction in one and three dimensions and also
to account for experimental reactions with dilute traps.
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