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We present a comprehensive theory for interference in an apparatus whose parts —source, detec-
tor, mirrors, beam splitters, and medium —are in general motion. Under the conditions prevailing
in all practical cases, geometrical optics is fully adequate to give the phases of the interfering waves;
therefore, our treatment is based on the Hamiltonian formalism. We assume that the speeds of all

moving parts are small with respect to the velocities of the waves, so that their motions can be
viewed as small perturbations to a stationary interferometer. A first-order perturbative expression
is given for both the Hamiltonian and the ensuing phase shifts. The results are applied to a wide

spectrum of cases, ranging from neutron interference experiments to gyro lasers.

I. INTRODUCTION

The theory of the so-called Sagnac effect, or more gen-
erally of the interference of light in moving interferome-
ters, is still based on the fundamental work of Post. ' In
more recent times the subject has grown in importance
due to developments in widely different fields. On one
side there have been technological applications, mostly
related to optical rotation-rate sensors (active and passive
gyro lasers); on the other side there is the experimental
and theoretical interest aroused by neutron inter-
ferometry.

While light and neutron interferometry share the same
theoretical bases, between the two systems there are
several significant differences, mainly (a) whereas light is
an extreme-relativistic physical system, neutrons are ex-
treme nonrelativistic and therefore characterized by com-
pletely different dispersion laws; (b) usually the dispersivi-
ty of the medium is not an important parameter in the
case of light, whereas for neutrons any medium is disper-
sive; (c) the peculiar nature of the dispersivity of the
medium for matter waves is sometimes responsible of
cancellations —at first sight mysterious —that wash out
the typical effects expected by analogy with the case of
light.

The results of Ref. 1 cannot immediately be applied to
neutron interferometry mainly because in that paper the
dispersivity of the medium is (deliberately) ignored, not
to mention the problem of translating its results to com-
ply with the different wavelength-frequency relation.
Partly as a consequence of this, the theory of neutron in-
terference experiments has been developed by several au-
thors taking different approaches: optical-path difference
in stationary systems, optical analogy, apparent-force
terms in the Hamiltonian, Doppler effect on moving sur-
faces, general relativity, analogy with the Bohm-
Aharonov effect, invariance of the phase under Lorentz
or Galilean transformations, ' scattering by moving
centers. Some of these are rather general and elegant

but do not apply to all experiments, while others are
simpler and more directly aimed at specific experimental
setups. ' In our opinion this state of affairs does not do
full justice to the basic unity of the underlying physics,
and we felt that an attempt to a unified treatment, en-
compassing the whole spectrum of interference phenome-
na, both for light and neutrons, would be welcome.

We have found that a unified treatment is possible un-
der some hypotheses, widely satisfied in present-day ex-
periments: (a) that a full wave-theoretical analysis is not
needed —apart for some special situations we shall dis-
cuss in due course —so that the phase in an interference
experiment can always be computed as a classical action
integral; (b) that the perturbing effect of the
interferometer's motion is so small that a first-order per-
turbative treatment is suKciently accurate. It should be
noted, however, that the latter is not a basic limitation of
our approach, which could always be pushed to second
order, " if the need should arise because of increased ex-
perimental accuracy.

The natural tool for the theory is then the Hamiltonian
formalism, and the main problem becomes the one of
finding the first-order form of the Hamiltonian for an in-
terferometer in general motion. Once this aim has been
accomplished, an almost automatic application of the
basic equation derived from perturbation theory will en-
able us to discuss straightforwardly the various experi-
mental situations (e.g. , moving interferometer with sta-
tionary or comoving medium in it, stationary interferom-
eter with moving medium, etc. ) with full generality, i.e.,
taking into account dispersivity, nonhomogeneity of the
medium, etc.

Along the same lines we are also able to compare the
results of experiments performed with source and detec-
tor at rest and a moving interferometer, with those per-
formed with source and detector comoving with the ap-
paratus. This problem is also discussed in Ref. 1 where,
however, due to the special geometry considered (both
light beams going around the same loop) the differences
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are shown to vanish at the first order in the velocity of
the apparatus. In the general case these differences are
not zero, and we show how they are related to the
geometry and calibration of the interferometer: the
knowledge of these effects is also relevant for a correct in-
terpretation of the experimental result of any interference
experiment.

Finally, we give a concise discussion of the basic equa-
tions for the beat frequency in a gyro laser. The theory of
the ring laser as well can be presented in several different
ways we show that in its elementary form (the one ig-
noring effects such as frequency locking) it directly fol-
lows from the Hamiltonian formalism, which again pro-
vides equations taking into account the possible effects of
whatever medium may be present in the light path.

II. THE EQUATIONS OF GEOMETRICAL OPTICS

In order to unify the treatment of light and matter
fields we use complex scalar" wave fields t((x, t) (with
positive frequencies) so that the wave equation is of the
first order in the time derivative and can generally be
written in the form'

i ' =H( iV, x—t)g(x, t) .. a (x, t)
r)t

In the eikonal (or time-dependent WKB) approximation
we put

(( ttx) = A ( xt)e'

with 3 a slowly varying function of its arguments, and
&0( x, t ) satisfying the equation

ac
=H(V&&, x, t) .

at

In the above equation the explicit dependence of H on x, t
is due to the possible presence of a moving nonhomo-
geneous medium, while the dependence on V@ (i.e. , on
the wave number) embodies both the behavior of the
wave in the vacuum and the possible dispersive nature of
the medium. For instance, for light in vacuum
H =c/VC /.

Geometrical optics is based on Eq. (3), which is well
known as the bridge between optics and mechanics,
where it is called the Hamilton-Jacobi equation. In opti-
cal problems —and specially in interference experi-
ments —the incoming wave is given at all times and in all
places preceding the optical apparatus, so that we may
choose a surface Xp before the entrance of the interferorn-
eter and assume N and VN known on Xp for all t. Equa-
tion (3) can then be solved as follows.

First let us transform it into the integro-differential
equation

&P( tx) =4&( txo)+oj k.dx H(k, x, t )dt, —(4)

where xo E Xo, and t p is arbitrary. The vector field
k(x, t )

—=V4 is of course as unknown as 4&. The integra-
tion can be performed along any curve y in the (x, t)
space joining (xo, to) to (x, t ). If for y' we choose the tra-
jectory (ray) yo obtained by solving Hamilton's equations

dx aH dk
dt dk dt

aH
ax

X(xo)=0 .

III. PERTURBATION THEORY

We now assume that H:Hp +H
&

where H
&

can be
treated as a perturbation. Here and in the following Ho
and H are the Hamiltonians for the stationary and mov-
ing interferometer, respectively, i.e., determine the behav-
ior of the wave field in the two cases. We are looking for
a perturbative solution of Eq. (3) under given boundary
conditions for 4, starting from the solution 4 ( otx) of
the equation

aeo
=Ho( V&bo, x)

at
(7)

for the stationary interferometer with the same boundary
conditions (incoming wave), which is supposedly known.
Setting

&b(x, t ) =&9()(x, t )+N, (x, t )

from Eqs. (3) and (7) to first order we get

ae, =v (x).V&V, ( tx)+H, (VN , otx)

where

BHO(kc, x)
vg(x)=, ko= V&„.

0

Then from the identity

ae,
4, ( t)x=4, (x t o)+oJ V&5, dx+ dt

at

and Eq. (9) we get

C&, (x, t) =N, (xo, to)+ f VN, dx

—[v V@,+H, (ko, x, t)]dt,

(10)

where the integration path y —and therefore its starting

then k is known along any ray, and Eq. (4) gives the re-
quired solution of Eq. (3) if the point (xo, t„) is determined
as a function of x and t from the assigned boundary con-
ditions for 4: xo (on Xo) and to are to be chosen in such a

way that the trajectory leaving xo at time to with
"momentum" k(xo, to) will reach the point x at time t

This of course is nothing but solving the Hamilton-Jacobi
equation via the equivalent Harniltonian system.

For instance, in the case of light propagation in a non-
dispersive medium the entire dependence of N on x and t
is through xo, to since in this case the integral in Eq. (4) is
zero along a trajectory (H =ck /n). For the sake of illus-
tration, let us consider a homogeneous medium, and let
X(xo) =0 be the equation of the surface Xo: then xo and
t„are determined by solving the system of equations

c k(xo)
x XA (t —t, ),

n k(x, )l
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point (xo, to) —is arbitrary. If, however, we integrate
along the unperturbed trajectory yo, where

dx=vs(x)dt (13)

and consequently xo, to are determined as discussed be-
fore, Eq. (12) simplifies to

iIi, (x, t)= —f H, (k o, xt)dt (14}
y

(4, vanishes on Xo) and we arrive to

C(x, t)=N, (x, t) —f H, (k„x,t}dt .
1'o

(15)

IV. THE HAMILTONIAN

The interferometer consists of macroscopic objects
such as mirrors, half-reflecting mirrors —i.e., beam
splitters —and refracting media. The derivation of the
macroscopic equation of wave propagation in a material
medium starting from its microscopic structure is due to
Foldy' and Lax. ' They obtained the (coherent) wave
field P(x, t) in the medium as an average of the multiply
scattered field g(x, t~x„s, x~, s~) over the different
configurations of the elementary scatterers described by
their positions x, and parameters s; (velocity, spin, etc.).
The average field P(x, t ) is shown to satisfy a wave equa-
tion

ary solutions it leads to the usual relation expressing n as
the ratio of the wave numbers in the medium and in the
vacuum, or as the ratio of the phase velocities. If N is
of the form

4(x, t) =8(x)—~t,
the Eq. (3) gives

co=H(k, x)=HEs(k/n ),

(22)

(23)

k
H(k, x)= + V(k, x),

2m

then from Eq. (20) we get

k2 2m V
n

k +2m V k'+2m V

or, for stationary waves, the well-known relation

(24)

(25)

where k=VB is the wave vector. When the wave goes
from the vacuum into the medium co stays constant, so
that also HEs(k/n) is constant. Since HEs depends only
on the modulus of k, we find k/n =const.

For dispersive and inhomogeneous media n is a func-
tion both of k and of x. In the case of matter waves Eq.
(20) allows to establish the relation between the potential

- and the refractive index n: if we consider, e.g. , a nonrela-
tivistic particle moving in a region of potential V(k, x),
i.e., if

(16) n =1—V/E, (26)

T(k, x —x', s) = T(k, s)5(x —x') (18)

and Eq. (17) reduces to

V(k, x)=fp( sx)T(k, s)ds .

Equations (17) or (19) give, in the appropriate cases, the
potential of the medium.

From the macroscopic point of view the medium is
usually characterized either by its refractive index (for
light waves) or by a potential (for matter waves). In both
cases the refractive index n can be defined by the follow-
ing relation between the Hamiltonian in presence of the
medium H and the one in empty space HEs.'

where for nonrelativistic waves' (the case considered in
Refs. 15 and 16) H is the sum of the Hamiltonian in emp-
ty space (kinetic term) and of a "potential" term V(k, x)
given, in terms of the scattering operator T(k, x, s) for a
scatterer with given values of the scattering parameters

18b

V(k, x)= fp(x', s)T(k, x —x', s)dx'ds,

where p(x, s) is the distribution function of the scatterers.
In the case of point scatterers'

where E is the value of H for the given stationary solu-
tion.

Therefore, for matter waves, the medium is normally
dispersive even if the potential is not velocity dependent;
however, the effects of the dispersivity of moving matter
will enter only through the difference between the group
velocity v and k/m, which is not zero only if the poten-
tial V depends on k. Conversely, for light waves Eq. (20)
formally allows to define the (macroscopic) potential as
V =H(k, x) —HEs(k) =ck(1 —n)/n.

Equality —up to a phase —of the incident and reflected
wave fields on the mirrors gives rise to a relation between
incident and refiected wave vectors k(x, t)=V@ identical
to the law of reflection of a particle by a potential barrier
(or a potential step of sufficient height); therefore, in
geometrical optics the mirrors can be represented by po-
tential terms in the Hamiltonian. Beam splitters have no
mechanical analog, and cannot be described in geometri-
cal optics. However, since they are devised to address
the wave field in two separated regions of space we can
use two different Hamiltonians for the two beams, such
that a beam splitter is represented as a mirror for one of
them, and as a transparent medium for the other.

H(k, x)=HEs(k/n) . (20)
A. The Hamiltonian of a moving interferometer

For instance, for relativistic particles

H(k, x)=[(ck/n) +m c ]'

Equation (20) is justified by observing that for station-

The above discussion enables one —in principle —to
construct the Hamiltonian (hereafter designated with Ho)
for a given stationary interferometer; our main concern,
however, is the Hamiltonian H for the moving inter-
ferometer. As in Ref. 1 we shall consider the general case
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in which the various parts of the interferometer move in-
dependently of one another: their velocities are supposed
to be very small with respect to the group velocity of the
wave field, and their motions are then described by a field
of (infinitesimal) displacements g(x, t) with respect to the
position of the unperturbed (i.e., stationary) interferome-
ter,

Differentiating Eq. (30) with respect to x,

Bc ae'
Bx,

(35)

and substituting into Eq. (34), we get after some algebra

H(k, x, t)=H'(k, x, t)+v (X k HV—r) H—av

x=x +rt(x, t) . (27)

u(x, t)= a~(x, t )

Bt
(28)

The problem of deriving the Hamiltonian H (in the lab-
oratory frame) for the moving interferometer cannot be
given a general solution independently of the microscopic
structure of the medium: for instance, if the scatterers
which compose the medium would act as long-range
force centers, the Hamiltonian at a given point of the
moving interferometer would be determined by the dis-
placement field of all the sources and retardation effects
could also be relevant. Therefore, having in mind the sit-
uations of physical interest, we make the following as-
sumptions: (i) the medium consists of rigid pointlike
(possibly nonisotropic) scatterers; (ii) the potential due to
the constituent moving scatterers does not depend on
their acceleration. Under the above hypotheses the prob-
lem can be solved by determining, by means of a Lorentz
transformation, the effect of the motion of every single
scatterer (in the presence of all other scatterers).

It will be better for our purposes, and also for later
reference, to start with a more abstract objective, i.e., to
find the transformation properties of the Hamiltonian un-
der a general infinitesimal transformation of coordinates:

The corresponding velocity field u(x, t), to first order in
the g's is given by

—( VH —r +k.
Bt Bt

(36)

In Eq. (36) we have neglected terms of second order in

g, r and have introduced the tensor X defined by

a
B; =

Bx,
(37)

A, =—
2 Bx

8'g .

Bx;
(38)

at the point x, t. These parameters define the RF
"tangent" to the motion of the scatterers in the region.

We then specialize transformation (29) so that x', t' are
the coordinates of 7, in such a way that x'=x for x=x,
t =t: this is done by choosing

Coming back to physics, in the laboratory reference
frame (RF) 7 consider, at a given time t, a macroscopi-
cally infinitesimal region centered at the point
x=x +g(x, t)=x +q. All macroscopic quantities relat-
ed to the scatterers are constant in that region: in partic-
ular their velocity u=u(x, 3t and —in the nonisotropic
case —their orientation (with respect to that of the
scatterers at the point x of the unperturbed interferome-
ter) determined by the antisymmetric tensor A:

x'=x —g(x, t),
t'=t r(x, t) . — (29)

g=ri+A. (x — )x+u(t t ), —
1

u (x —x),
C

2

Let cp(x, t) and 4'(x', t') denote the phase of a wave ex-
pressed, respectively, in terms of the old and of the new
coordinates,

i.e.,

x'=x —g —A (x—x) —u(t —t),
4(x, t)=4'(x', t') .

By definition these functions satisfy the equations

(30) 1
t =t — u(x —X).

c 2

(40)

4(x, t ) =H—(V+, x, t ),
a

, 4'(x', t') =H'(V4', tx'),t'

where H' is the Hamiltonian in the new coordinates.
Differentiating Eq. (30) with respect to t we getae, ag ae', ar

at
— VC' at+ at'

1-
at

so that

(31)

(32)

(33)

Except for the case of a uniform motion of the whole
interferometer, the Hamiltonian H in the RF 7 is
different (for t'=t ) from Ho in the first place because of
the motion of all scatterers outside the considered region.
However, thanks to the hypothesis that the scatterers are
pointlike, these do not affect the properties of the medi-
um in the region, so that H will coincide, for t =t and
x'=x, with the Hamiltonian of a stationary medium.
Since, moreover, the physical properties of the scatterers
do not change with motion (rigidity hypothesis), the only
difference with respect to Ho —thanks to the principle of
relativity —could arise if the motion changed the density
of the scatterers, i.e., if V.q&0:

H(V&, x, t)=H'(Vg&', x', t') I — +V(g)'.a~ , a~
at at

(34)
H =HO —(V q) Vo (41)
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if Vo is proportional to p [Eq. (19)]. ' Moreover, H and

Ho diff'er only by terms of order u(x, t) [or g(x, t )]; in

particular H and Ho diA'er by second-order terms for
x=X, t =t.

Then Eq. (36) together with Eq. (41), retaining only the
first-order terms, give for Hi =H H—o (the perturbation
due to the interferometer's motion):

v BHO
H, (k, x, t)=u(x, t) k — H„—g( xt).

C 0x

V(k, x, t)= jp(x, o)T(k, u(x, t), o )do

= fpo(x —g( x, t), o )T(k, u, &.o )do

—[V. il( x, t ) ] Vo .

From Galilean and rotational invariance

T(k, u, A.o )=T(A'. (k —mu), o )

and (to first order)

(46)

(47)

—vs A.k —[V.g( xt)] Vo. (42)
V(k, x, t ) = Vo(k —A.k —m u(x, t), x v](x—, t) )

The term v -A -k vanishes if the medium is isotropic,
i.e., if v and k are parallel, while the last term is zero if
g(x, t) is the displacement field of an incompressible fiuid.
For a free particle the first term vanishes as well: it fol-
lows that H, =0 in the vacuum, for whichever displace-
ment field, as it should be.

For nonrelativistic waves the procedure is similar, and
the result is simply obtained by replacing Ho/c with
m /A in the second term on the right hand side of Eq.
(42).

As already pointed out in the course of the derivation,
Eq. (42) is not the general solution of the problem, but
should be regarded as the zero-order term of an expan-
sion in powers of the range of the interaction of the
scatterers. A simple analysis shows, however, that the
expansion parameter is of the order of the ratio between
the range of the interaction and the dimension of the in-
terferometer, therefore Eq. (42) is quite acceptable in all
practical situations.

B. Microscopic theory

A less formal (but also less general) derivation of Eq.
(42) can be given, entirely based on the microscopic
theory of the medium: we shall confine our discussion to
the case of nonrelativistic matter waves. Let Ho
=HFs+ Vo(k, x) where Vo is given by Eq. (19). The
scattering parameters s are taken to be the velocity s of
the scatterer and its orientation, that for simplicity we
describe by a unit vector o (other internal parameters are
of no concern here). Since we are interested in the
coherent scattering s is taken to be zero (fixed scatterers}.
Then Eq. (19) takes the form

Vo(k, x) = Ipo(x, cr ) T(k, s=0, o. )do (43)

where A(x, t) is the rotation matrix given by

1 ~'Qi
R, ( t)x=5, +—

2 Bx~

an'
=5, + A;, (x, t) (45)

(3x,

and for the potential term we have

Suppose now that the medium is subjected to a (macro-
scopic) displacement field g(x, t) [Eq. (27)]. Then po(x, o )

in Eq. (43) is to be replaced by

p(x, o )=po(x g(x, t),A '(x, t).o )[1——V.ri(x, t)],
(44)

Since

—[V.il(x, t )]Vo

0VO av,= Vo(k, x}— .(mu+A. k) —g.
ak Bx

—[V.il(x, t)] Vo . (48)

k 0VO
v = +

rn Bk
(49)

we get

BHO
H =H —u(x, t ) ~ (k —m v )

—g(x t).
Bx

—vs.A.k —[V.g(x, t )]Vo, (50)

which coincides with the nonrelativistic version of Eq.
(42).

V. EFFECT OF THE MOTION OF THE SOURCE
AND DETECTOR

One is often concerned —at least in the case of a rigid-
ly moving interferometer —with experiments performed
in the (possibly) noninertial frame of the interferometer,
and in this case it is certainly more convenient to work
directly with the Hamiltonian in that frame, rather than
with the one in the inertial frame [Eqs. (42) or (50)]. This
is a particular case of the more general problem in which
not only the interferometer is moving (nonrigidly as well)
but also the source and the detector are in arbitrary
motion. This problem could be treated by taking into ac-
count the Doppler eftect due to the motion of the source
and of the detector, but we prefer to follow a dift'erent
procedure.

First, observe that the velocity and displacement fields
u(x, t) and i1(x, t) need not be restricted to be dift'erent
from zero only on the moving parts of the interferometer,
but can be extended (in an arbitrary way) in the vacuum,
as we already noted. Thus for experiments in which the
source and/or the detector are in motion in the inertial
frame we can choose u and g to correctly represent their
motions too.

Then we proceed to describe the experiments by means
of the coordinates x defined by Eq. (27) in terms of
which the position of the whole device —interferometer,
source, and detector —is time independent (the inter-
ferometer's coordinate system), i.e.,
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x =x—g(x, t ),
1

t =t — u(x, t) x0

c 2

(51)

(in the case of a rigid motion these are the coordinates of
the interferometer's RF). Let us denote by H ' and N
respectively, the Hamiltonian and the phase in the new
coordinates ("noninertial frame" for brevity), and H, N
those in the inertial frame: H =H, —N =N [Eq. (31)].
From Eq. (36) with g(x, t ) = rt(x, t) and ~(x, t)
=u(x, t ).x/c' we get

Xo surfaces equally located at (or near) the sources, so
that on them N'(x, t) = N (x, t) and, because of the princi-
ple of relativity, N (x, t ) =N (x, t ). The phase
differences b, N and b,N' are always given by Eq. (55),
with the proper choice of Hz given by Eq. (54). By as-

sumption H] is the same in both cases, whereas in the
first experiment g=O, u=O at the source and detector
positions, so that in the difference only the G term is left

AN (x, t) —AN'(x, t)

=G(kz, x, t) —G(k„x, t)+G(kp, , xp„tp, )

H '(k, x, t) =H'(k, x, t)+ G(k, , t ), (52) 6 ( kpz, xpz, tpz ) (56)

where

Ho
G(k, x, t)=u(x, t).x —g( xt) k

c
(53)

H '(k, x, t)=Hp(k, x)+H, (k, x, t),
au Ou, H,

(54)

and G is the total time derivative of G. From Eqs. (42)
and (53) we get

A. Sell-aligned and mell-calibrated interferometers

Assume now that the two (unperturbed) beams leave
the interferometer with the same k: then k, (x, t )

=kz(x, t ), so that b, N is a constant in space, and for sta-
tionary solutions in time as well (we shall refer hence-
forth to this situation as to a "well aligned" interferome-
ter). Then Eq. (56) simplifies to

bN (x t) bN (x t):G(kpi xpi tpi)

—G«oz xoz toz } (57)

The presence of a non-null perturbation H2 may be
viewed, apart for the last term, as due to the fictitious
forces appearing in the interferometer's noninertial
frame.

We shall base on Eq. (54) our discussion of the
diff'erences between experiments with stationary source
and detector (and moving interferometer) and those with
both pieces comoving with the interferometer (or parts of
it); in all cases, since the result of a given interference ex-

periment cannot depend on the coordinates used for its
description, we can use H2 as the perturbation instead of
H, , provided of course that g and u are appropriately
defined not only on the moving parts of the interferome-
ter, but also on the source and detector.

In an interference experiment what is measured is the
phase difference of the two waves reaching point x, the
detector, past the interferometer, at time t. If we denote,
respectively, with AN and A4 the phase difference when
the apparatus is at rest (in the "inertial frame") and when
it is moving, from Eq. (15) we get

bN(x, t)=ANo(x, t) —f Hz(k, x, t)dt, (55)

where, as discussed before, y] and y2 are the unperturbed
trajectories starting at times to&, to2 from the appropriate
points xo„xo2 on the reference surface Xo in such a way
that they both reach the desired point x at time t.

Consider now two experiments in which the motion of
the interferometer is the same whereas source and detec-
tor, though initially occupying the same positions in
both, are at rest (in the inertial frame} in the first and are
moving in the second. Denote by N'(x, t) and N (x, t) the
phases in the two cases; in both experiments we take for

and in this case only the motion of the source is relevant.
A sufficient condition for the vanishing of the right-

hand side (rhs) of Eq. (57) is xoi=xoz, to, =toz. We shall

now show that this is equivalent to the experimental re-
quirement that the interferometer is "well calibrated:" by
this we mean that the phase difference hN (for the inter-
ferometer at rest} is insensitive to small variations of the
orientation and position of the source, as well as of its
frequency.

The effect of a small variation in the position and
orientation of the source is described by Hz = G [Eq. (54)
with H, =0] with u=0 and g=5$Xx at the source,
where x is from an arbitrary origin. Then from Eq. (55)
we get

BAN —xpi X kp] xpz X kpz
85

(58)

The requirement that the rhs of Eq. (58) vanishes entails

kp, = kpz (from the arbitrariness of the origin) and

xpi =xpz. Next, if N (x, t ) is a stationary solution with

frequency co [Eq. (22)] from Eq. (4) and xo, = xoz we have

k dx.
~1 ~2

(59}

Since in Eq. (59) y„yz are arbitrary, we are allowed to
keep them fixed while varying co and we get

5(b.N )= f 5k.dx= f 5k.v dt

5cv dt =5to(tpz tp] )

(6O)

We have thus found that for a well-calibrated inter-
ferometer y, —

y2 is a closed loop: this will be of use in

the following. Furthermore, if the interferometer is well
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aligned too, the rhs of Eq. (56) vanishes, meaning that the
motions of the source and detector have no e6ect on the
phase shift.

If this is the case, another important consequence
occurs: the interferometer will be sensitive only to ac-
celerations, since when u is constant H2=0 (and H1= —G). This result does not depend on relativistic in-
variance, as source and detector need not be comoving; a
phase shift would appear also in case of uniform motion
if the interferometer were not well calibrated. Note at

I

last that all these properties only pertain to the first-order
perturbative approximation and would not hold if
second-order effects were taken into account. "

VI. APPLICATIONS

Since we start considering the case in which source and
detector are at rest, we can use Eq. (55) with H~ replaced
by Hi given by Eq. (42). Then we get

5@(x,t)=5@(x,t) —b4 (x, t)

Ho BHO= —f u(x, t) k —v dt+ f v]( xt). dt+ f v A.kdt+ f [V.q(x, t)]V0dt .
ri r2

' ' c' Bx rl r2 rl r2

(61}

If the medium is isotropic (v and k parallel} and g is
the displacement field of an incompressible fluid
(V.my=0) Eq. (61) for stationary solutions of frequency cv

takes the form

5%(x, t) = fri

2

1— u(x, t) dx

q x, t dk,
l r2

(62)

where vf =tv/k (or mc /irik in the nonrelativistic case) is
the phase velocity in the medium.

Equation (61) can be given a diff'erent form by trans-
forming the second integral. We have

BH0f g dt= —f gidt
()x

=|i(g.k)+ f j.k dt, (63)

where

5(q k)= 1( 7tx) (k2 —k, )

l(x02 t02 } k02 9(x01 t01 } k01]

Then

(64)

In the applications one is often concerned with situa-
tions in which different parts of the interferometer move
independently: in these cases zI(x, t) can be a discontinu-
ous function of the spatial coordinates at the boundaries
and, in order to apply Eqs. (61) or (65), one must specify
how to treat these discontinuities. The problem is a
physical one, since including or excluding the boundaries
from the domain of the displacement field corresponds to
two physically different situations leading to different re-
sults: a classical instance (which we shall discuss later on

Ho
5@( xt)=5(g k)+ f z

u dx+ f (q —u) kdt
C r2

+ f v, A kdt+ f [V rf(x, t)]V0dt.
rl r2

(65)

I

in this section) are the experiments of Fizeau, where a
fluid is moving between fixed boundaries, and of Zee-
man, where the boundaries are part of the moving
medium.

The mathematical ambiguities arising from a discon-
tinuous zl(x, t) must therefore be avoided by resorting to a
regularization procedure suited to the physical situation
considered. Thus, for instance, if different parts of the
interferometer —including their boundaries —are in rela-
tive motion, we shall assume that these parts are separat-
ed by a gap, so that q(x, t ), which is arbitrary in the vac-
uum, can be made continuous by extending it within the
gap. As a consequence, if the medium consists of rigid
parts and possibly contains incompressible fluids the last
term in Eqs. (61) and (65) is zero. This is the case we
shall consider in the following applications.

In almost all practical situations the gap between the
moving parts is actually present and is sufficiently large
compared to the wavelength, so that geometrical optics
retains its validity. If this is not the case, as for instance
in the idealized situation of contiguous moving parts
(e.g. , a solid in a fiuid), we shall regularize g(x, t) by as-
suming the existence of a gap small with respect to the
wavelength.

We are now going to apply Eqs. (61) and (65) to the
various situations of physical interest.

A. Moving interferometer with a stationary medium

In this case u and g are different from zero only on the
reflecting media. The first integral in Eq. (61) gives a
vanishing contribution since the integrand remains finite
in the infinitesimal time interval where it is not zero, and
the last two integrals are absent thanks to the regulariza-
tion procedure: therefore only the second integral con-
tributes, due to the finite change of k in the reflection.
Thus we have
M&(x, t }=+g(x, 2, t, z).bk, 2

—g g(x, , t, , ).bk, , (66)
y2

where x,
& z are the points where the trajectories y, and yz

meet the mirrors —at times t, , z
—and Ak, is the varia-

tion of k in the reflection by the ith mirror (at rest}.
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Equation (66) has been used in Ref. 11 for a uniformly ac-
celerated and for a rotating interferometer.

The properties of the medium enter Eq. (66) only
implicitly —mainly through the times t, & 2 which are re-
lated to the propagation time. In special cases, however,
Eq. (66) can be given a different form: consider, for in-
stance, a rigidly moving, well-aligned and calibrated in-
terferometer, filled with a stationary, homogeneous and
isotropic (dispersive) medium. Since

BHp
M(x, t)= f g(x, t). dr

&'1 &z BX
(67)

(68)

where R(t) and A(t) are related as in Eq. (45). From Eq.
(67), after partial integration, we get

M = f k.rl(x, r)dr .
~'1 ~ z

Now

(69)

j=((r)+A(t) x+A.x (70)

and for an isotropic medium v and k are parallel, so that

q k —u.k=

where

u vg
Vg

(71)

u(x, t ) =g(t)+A (t) x. .

Thus we arrive to

(72)

54= f k udt= f u dx .
k

V
(73)

For a nondispersive medium Eq. (73) reduces to the
corresponding equation of Ref. 1.

From the above derivation it follows that Eq. (73)
remains true also if the homogeneous medium does not
completely fill the interferometer, provided its boundaries
are tangent to the displacement field g defined inside the
interferometer by Eq. (68).

B. Moving interferometer with comoving medium

In this case the interferometer and the medium are rig-
idly moving, and we take for g—also in the regions not
filled with the refracting medium —the expression given
by Eq. (68). The last integral in Eq. (65) is absent, the
second and third one give no contribution because of Eq.
(70) and we are left with

5%( tx)=5(g k)+ f u dx,
c ~& ~z

(74)

where u(x, t) is given by Eq. (72).
If 5(g.k) =0 and u has no explicit t dependence i.e. , in

the case of a uniform rotation, we get from Eq. (74) the

and BHp/Ox=0 outside the mirrors we are allowed to
arbitrarily extend g everywhere.

Take for g the expression of a rigid motion, i.e.,

g(x, t)=x —x =x+g(t) J7 '—(t). x=((t)+A(t). x,

known result that the fringe shift does not depend on the
properties of the comoving medium.

Particularly relevant is the use of the interferometer as
a rotation-rate sensor, e.g., in inertial navigation systems.
For this application the apparatus should be, as much as
possible, sensitive only to the rotational motion: for this
to be the case, it must in the first place be well aligned
and calibrated. Then Eq. (74) reduces to

54(x, t)= f u.dx

.Xdt —
2

XA t dX
V] C2 ~i ~z

f g.xdt — f x.A(t) dx .
C

54(t) =4 Q(r) A
c 2 (76)

leaving aside terms of the order Or and gr, where
7 t t p is the traversal time. In all practical cases these
terms are safely negligible.

Equation (75) differs from Eq. (73) by the substitution
of the factor k /v —which depends on the properties of
the medium —with co/c . For nonrelativistic mat ter
waves co/c2 in Eqs. (74)—(76) is replaced by m /A' and
there is no difference with the case of a stationary medi-
um unless v Wk/m, i.e., unless the potential in the medi-
um is velocity dependent [Eq. (49)].

C. Moving medium inside a stationary interferometer

There are two physically different situations which his-
torically go back to the optical experiments of Fizeau
and Zeeman: the former is realized by a fluid moving
within fixed boundaries, or by a homogeneous medium
whose boundaries move tangentially (e.g. , a rotating
disk); in the latter instead the boundaries are part of the
moving medium. For matter waves both cases have been
the subject of recent experiments with neutrons. ' A
detailed theoretical discussion of these experiments has
been given by Horne et at'. and Bonse and Rumpf: here
we take up the discussion again both for completeness
and because our Hamiltonian approach is formally
different and, perhaps, simpler.

The only difference between the two cases comes from
the second integral in Eq. (61), which is absent if all the
discontinuities —the boundaries and the mirrors —are
stationary or tangential to the displacement field g. In
this case the entire effect is given by the difference be-

(75)

In order that translational accelerations do not cause
unwanted phase shifts, the first integral should give a
vanishing or negligible contribution. This actually hap-
pens for a constant g' if the two beam paths y, and y2 are
the same loop traversed in opposite directions, ' so that
the only contribution comes from the time variation of
the translational acceleration. In this case, denoting by
A the area enclosed by the loop and by 0 the angular ve-
locity we get
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CO4—4 =uL
C

2
(77)

where L is the slab thickness, U is the group velocity in
the medium (L/vg is the traversal time), and k is the
wave vector just putside the boundaries —i.e., in the
vacuum —in case (a), inside the medium in case (b).

From Eq. (77) the known expressions in terms of the
refractive index for light waves, ' or in terms of the poten-
tial for matter waves ' (co/c t'eplaced by m/fi), can be
easily derived. For light waves

tween the canonical momentum k and the kinetical
momentum vgHo/c (mvg in the nonrelativistic case):
clearly this difference in not zero if the (stationary) medi-
um is described by a velocity-dependent potential, oth-
erwise the cancellation we referred to in the Introduction
results.

In order to explicitly show where the difference be-
tween the two cases comes from, consider a plane slab of
an isotropic refracting medium, orthogonal to the wave
vector k and moving with constant velocity u parallel to
k. The expression for the displacement field is g=ut in
the medium —including or excluding the boundaries ac-
cording to whether (a) they are moving with the medium
of (b) they are stationary —and g=0 elsewhere. In both
cases, wherever g is independent of the coordinates H, is
the time derivative of —G [Eq. (53)] and from Eq. (15}we
get for the phase shift due to the motion of the medium

D. The ring laser

As a last application we show how the formalism we
used so far can also be employed to derive the basic equa-
tions of the active ring-laser gyro. The active ring-laser
gyro is essentially a ring resonator with an active laser
medium in it; two eigenmodes, corresponding to the
propagation of light in opposite directions along the same
loop yp, are degenerate with frequency cop when the ring
laser is at rest in an inertial frame. %'hen the device is
subjected to accelerations, in the noninertial frame of the
device the degeneracy is lifted by H2 [Eq. (54)], and what
is measured is the beat frequency cob„,=co+ —~ be-
tween the two counterpropagating beams.

Since in the noninertial frame we are dealing with sta-
tionary solutions, Eq. (8) takes the form

4+(x, t )=Do+(x) not+8, —+(x) 5co+t-

and from Eq. (9), with H2 as the perturbation, we get

5co+=v (x} V8, +(x)+Hz(VBo, x, t) .

(81)

(82)

which is the difference between the rhs of Eqs. (74) and
(73), as expected. On the other hand, for a rigid motion
of the medium together with its boundaries, 54 cannot
be given a general simple expression, but is always the
difference between Eqs. (74) and (66), where in the latter
the exact geometry of the interferometer is to be taken
into account.

(a) @—@ =uL 1 —n —cop CO dn

@CO

(78)

Integrating both members of Eq. (82) along the unper-
turbed trajectory yp and taking into account that by as-
sumption yp forms a loop, we get

(b) N —4 =uL 1 n nto-—p CO 8/l
2 dCO

For matter waves (to the first order in V):

r5co+=+ f H, (VBo, x, t )dt,
Yo

where v.= ds /U is the traversal time. Then

(83)

(a) 4—4 =uLp m BV

(b) 4& —4& =uLp mBV
BE

V

2E
(79)

k
u(x, t).dx, (80)

Taking the difference between expressions (a) and (b) we
get the phase shift for an experiment with moving boun-
daries and stationary medium, which would not be zero
because of the Doppler effect in the refraction from the
moving boundaries.

In the case of stationary boundaries the expression of
the phase shift for an interferometer in arbitrary motion
is obtained from Eq. (61} simply by dropping the second
integral; assuming v parallel to k we get

cobeat 54 /r (84)

where 54 can be obtained, for the various experimental
situations, from the already derived equations by drop-
ping the boundary terms 5(ri.k).

The description from the point of view of the inertial
frame, i.e., in terms of H„ is quite different even if lead-
ing to the same result. Taking for instance a circular
resonator rotating about its center and with no refracting
medium in it, inside the cavity the frequencies of the two
counterpropagating beams are still degenerate at the
value mp, i.e., are unaffected by the motion: in fact, since
the boundaries are moving tangentially there is no
Doppler effect (in our formalism H, is zero). It is only
after the two beams are brought to propagate in the same
direction towards the detector by reAection on comoving
mirrors, that their Doppler-shifted frequencies will differ
by the amount given by Eq. (84).
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