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The exact solution to the master equation of a nonlinear oscillator, subject to damping or
amplification, is presented. The effect of such incoherent processes on the quantum-coherence
properties and recurrences is obtained. It is shown that amplification destroys quantum coherence

more rapidly than does attenuation.

INTRODUCTION

In a number of recent papers'? a simple exactly solv-
able nonlinear oscillator model has been studied that
shows how quantum coherences lead to a recurrence of
the initial quantum state and a departure of the quantum
dynamics from that expected classically. Indeed it was
shown by Yurke and Stoler® that this model may be used
to generate a quantum superposition of two oscillator
coherent states with macroscopically distinguishable am-
plitudes. However, as many authors have noted,* % such
quantum superposition states and quantum-coherence
features, in general, are extremely sensitive to external
fluctuations. Milburn and Holmes? considered the effects
of dissipation on the recurrences of this nonlinear oscilla-
tor model and showed that even very weak damping is
sufficient to destroy quantum-coherence effects and re-
store classical behavior as the action of the initial state
approaches the semiclassical limit. A similar result was
found by Yurke and Stoler using different techniques.’ In
Ref. 2 dissipation was included by coupling the oscillator
to a zero-temperature heat bath. In this paper we extend
that work to treat the case of a heat bath at a nonzero
temperature. A slight modification of the model also al-
lows us to determine the effect of amplification on quan-
tum coherence.

The nonlinear oscillator model discussed here exhibits
a number of the characteristic features of nonlinear quan-
tum systems, such as recurrences, squeezing, and interfer-
ence effects in the marginal distributions of the position
and momentum. It also provides a simple illustration of
interference in phase space, a concept recently employed
by Schleich and Wheeler® to explain the oscillations in
the tail of the photon number distribution for squeezed
light. We will determine the effect of attenuation and
amplification on each of these effects. Our results indi-
cate that such characteristic quantum features are ex-
tremely sensitive to any attenuation or amplification. In
particular, quantum recurrences are suppressed at a rate
which becomes very large as the initial average energy of
the system approaches the semiclassical limit (that is,
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large compared to #iw, where w, is the fundamental fre-
quency of the linear part of the oscillator).

Our method is based on a master equation which is ex-
pected to be valid for small nonlinearities and weak cou-
pling to the external degrees of freedom of the attenuator
or amplifier. The master equation, an equation of motion
for the system density operator, is then converted to an
equivalent c-number evolution equation for the diagonal
elements of the density operator in the coherent-state
basis. Such a matrix element is in fact a true joint proba-
bility density for a special class of simultaneous measure-
ment of position and momentum, and is known as the Q
function'® and in other contexts as the Husimi function.'!
The resulting evolution equation is a nonlinear second-
order partial differential equation. It is similar in some
respects to a Fokker-Planck equation'? but cannot strict-
ly be interpreted as such as the diffusion matrix is not
positive definite (in fact, it is complex). We solve this
equation exactly using techniques which may be of in-
terest for the solution of other nonlinear second-order
partial differential equations of this type. Once the Q
function is obtained all moments and marginal distribu-
tions may be calculated. The Q function itself illustrates
a number of important features of the model.

I. NONLINEAR OSCILLATOR MODEL

We take as our nonlinear oscillator model a system de-
scribed by the Hamiltonian'

H=H,+-*-H],

1.1
oo (1.1

where
Ho=1(p*+wig®)

is the free Hamiltonian for a simple harmonic oscillator.
This model could describe a cavity-field mode interacting
with a Kerr nonlinear medium.!* A comparison of the
quantum and classical dynamics of this model is given in
Ref. 1, and we summarize some of those results here. A
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convenient way to compare the quantum and classical dy-
namics is through the joint phase-space probability densi-
ty describing simultaneous measurement of position and
momentum. In classical mechanics the definition of such
a distribution is straightforward,; it is simply a joint prob-
ability density on phase space. However, in quantum
mechanics one must proceed more carefully as the opera-
tors for position and momentum do not commute.
Nonetheless such measurements can be described'®!* and
lead to a class of joint probability densities which form a
subclass of classical joint distributions. The quantum dis-
tributions cannot have too small an area of support on
phase space, a reflection of the uncertainty principle. For
a particular model of such measurements the resulting
distribution is the Q function defined by

Q(a)=(alpla) ,

where |a) is a Glauber coherent state and the complex
variable a is related to the position and momentum vari-
ables by

(1.2)
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(1.3)

One easily verifies the Q (a) is bounded by unity, is posi-
tive, and is normalized with respect to the measure
d*a/m.

If the initial classical state is chosen to be the density

Q(a,0)=exp(—|a—a,l?), (1.4)

a Gaussian centered at a, the average value of a decays
to zero under Liouville evolution of the density. The ini-
tial circular contours of the Gaussian undergo a rotation-
al shear about the origin. However, if we choose an ini-
tial quantum state with the corresponding Q function
given by Eq. (1.4) (that is, we choose the initial state to be
the coherent state |a,)), something quite different
occurs. The dynamics in this case is governed by the
Schrodinger equation. For short times the dynamics of
the Q function mimics the classical result, undergoing a
rotational shear. This feature of the dynamics has been
discussed by Kitagawa et al. in the context of quantum
optics.!*> However, as the leading edge of the sheared dis-
tribution begins to encircle the trailing tail phase-space
interference features arise. These interference features
are due to the underlying quantum coherence between
the energy eigenstates of H, superposed to form the ini-
tial state.!> This interference effect is shown in an early
stage in Fig. 1, in which the Q function is plotted as a
function of the real and imaginary parts of a. The origin
is in the center of the figure and the leading edge of the
sheered density is toward the foreground. The peaks and
hollows in the foreground are interference fringes be-
tween the leading edge and the trailing tail of the density.
At the time t =7/2u (in a frame rotating at frequency
®,) the system evolves to the coherent superposition state

) =—

V2 (1.5)

(e*iﬂ/4|ao>+eiv/4l_ao>) .

This surprising result has been discussed by Yurke and
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FIG. 1. Plot of the Q function for the nonlinear oscillator
with no dissipation, against the real and imaginary parts of a.
The leading edge of the sheered density is in the foreground and
is moving in a clockwise direction. The origin is at the center,
a,=2.0,v=1.8,k=0.

Stoler.> At times such that 1 = /u the system evolves to
the state | —a,), that is, the initial state has recurred up
to a phase of 7. The entire process then repeats until the
initial state has been reconstructed at ¢t =2m/u. The
model thus provides a very clear illustration of how quan-
tum dynamics departs from short-time mimicry of classi-
cal behavior.

The behavior of the quantum density is reflected in the
momenta. In Fig. 2 we have plotted the average value of
the amplitude on phase-space over the time interval
0=<t=<2m/u. Also shown for comparison is the corre-
sponding classical result (dashed line). The close similari-

Im(a)

FIG. 2. Plot of the average trajectory in phase space, that is,
the real part of {a (7)) vs the imaginary part, over the time in-
terval 0<v <27. The dashed line represents the corresponding
classical case. a;=2.0, k=0.
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ty of quantum and classical behavior for short times is
clearly evident, as is the recurrence of the initial quantum
state at —a,. One may also calculate the variances in
quantity x,; and x, defined by

x,=(ata*)/2, (1.6

x,=(a—a*)/2. (1.7)

In the classical description the variances saturate as the
initial density becomes wrapped around the origin. In
Fig. 3 we plot the classical and quantum variances in x .
The initial correspondence of the classical and quantum
result is once again evident. Note that the quantum re-
sult, however, drops below the classical result at
t =1 /2u, the time at which the superposition state in Eq.
(1.5) forms. In fact, at this time the variance falls below
the initial coherent-state value, a result known as squeez-
ing.'® It should be noted that the variances of x, and x,
computed directly from the Q function are not identical
to the variances in the correspondmg dlmensmnless posi-
tion and momentum operators Xl and Xz defined by
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(5]
=1 g, (1.8)

2%
X,=Q2%wy) "% .

s

1=

(1.9)

This is because the Q function gives directly the moments
of ‘“approximate” position and momentum variables.
This is the price paid for a simultaneous measurement of
noncommuting observables. In fact, the variances in x;
and /?,- are related by

Vix)=V(X)+1+. (1.10)
In quantum optics one would say that the Q function
gives directly the antinormally ordered moments'’ of the
creation and destruction operators. This result leads to
Eq. (1.10) in the case of the variance in )A(,‘

Another way to see the effect of interference in phase
space is to explicitly calculate the marginal distributions
for the dimensionless position and momentum operators
X, and X,. These are given in terms of the Q-function
amplitudes, (alv), for the state |¢) as

2
fdzai(X,-la)(altw : (1.11)
where the state |X;){X,| is the resolution of identity for
X,. Equation (1.11) can be viewed as the quantum gen-
eralization of the classical result

Zfdza

where x; are defined in Eqgs. (1.6) and (1.7), and Q(a) is a
classical joint phase-space probability density describing
the system state. In Eq. (1.11), {aly) is the amplitude
for a simultaneous measurement of position and momen-
tum to give a particular result a, while { X;|a ) is the con-
ditional amplitude that this result corresponds to a posi-
tion or momentum X,. Thus the quantum result is con-
structed in the same way as the classical result but at the

i&m(X,-—x,-)Q(a) , (1.12)
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FIG. 3. Plot of the classical (dashed line) and quantum (solid
line) variance in x, against v/2m, with no dissipation. a;,=2.0,
k=0.

level of probability amplitudes rather than probabilities, a
feature of quantum mechanics emphasized by Feyn-
man. '8

For the special case of the superposition state given in

Eq. (1.5) the marginal distribution for X, is

P(X)=L[P,(X))+P_(X,)
+2v/P (X ,)P_(X,)sin(4X,rysin6,)] ,
(1.13)
where
2 1/2
Po(X))= |~ exp[ —2X3 —|ay? F2X,(ag—ad)

— Naj+ag?]

i6 C P
and we have set a0=r0el °. The distribution for X, is

given by
P(X,;)=1[P.(X,)+P_(X;)
+2V P (X,)P_(X,)sin(4X,rysin6,)] ,
(1.14)
where
172
P .(X,)= l expl —2X 32— |aol> F2iX,(ap—ad)

— Nagt+ag?] .

For imaginary a, P(X,) consists of a superposition of
two Gaussian peaks centered at +|ay|; however, P(X,)
consists of a single Gaussian at X, =0 modulated by the
intereference term 1+sin(4X,r).
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In Figs. 4(a) and 4(b) we plot the marginal distributions
for X, and X, at t =7 /2u for ay=i. [At this time the su-
perposition state in Eq. (1.5) has formed.] We clearly see
interference features in the distribution for X,; but not
X,. These results may be interpreted in terms of the “in-
terference in phase space” concept developed by Schleich
and Wheeler.” 10

The nonlinear oscillator model described by the Hamil-
tonian in Eq. (1.1) illustrates well the significant
differences between the quantum and classical descrip-
tions. In Sec. II we consider the effect of attenuation and
amplification on the quantum features discussed above.

II. ATTENUATION AND AMPLIFICATION

We will model the effect of attenuation and
amplification by coupling the nonlinear oscillator to a
reservoir of oscillators assumed to be in thermal equilibri-
um at some temperature. We shall refer to this collection
of oscillators as the bath. This is a standard approach to
linear attenuation and amplification.!”!® The coupling
between the nonlinear oscillator and the bath is described
by the Hamiltonian

(a)

}
-4 -3 -2 -1 o] 1 2 3 4

(b)

FIG. 4. Plot of the marginal distributions for X, and X,. (a)
P(X,) vs X,; () P(X,) vs X,. ag=i, Y=0.
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H,=#laT (0)+a'T(0)], (2.1)

where a is the lowering operator for the nonlinear oscilla-
tor. The bath operators I'(z) are given by

—iw;t
J

N()=3g;be 2.2)
J

in the case of attenuation, and

L= 3 gbfe'"" 2.3)
J

in the case of amplification. The sum is over all the bath
oscillators and g; is a coupling constant. The form of
I'(t) for amplification makes it clear that we are consider-
ing a form of parametric amplification in which g; plays
the role of a pump field amplitude, while a and b; play
the role of signal and idler fields, respectively.

Standard methods!” lead to a master equation for the
system density operator in the interaction picture:

dp . "
_ditl: —zya)o((afa)z,p)

+%[(2aﬁa*—a1ap—p‘aia)

+yr‘1(aTﬁa +aﬁaT—aTap—ﬁaa*)] (2.4)
in the case of attenuation and
%f’: —inwol(a’a)?,p)
+-§[(2an)‘a —aaTﬁ-paa+)
+yn(apa‘+a'pa —aa'p—pa’a)] (2.5)

for the case of amplification. In Egs. (2.4) and (2.5) 7 is
the average number of bath quanta, and y /2 is the at-
tenuation or amplification constant. It should be noted
that for 740 the validity of Eqgs. (2.4) and (2.5) depends
on the nonlinearity u being quite small.?

To make a little clearer the role of ¥y we evaluate the
mean of a for the case =0 and p=0. In the case of the
attenuator one has

(a(t))=(a(0))e 72 (2.6)
and for the amplifier
(a(t))={(a(0))e?/? . 2.7

In the latter case we may thus view e’’ as the linear ener-
gy gain.

Equations (2.4) and (2.5) may be converted to
equivalent c-number equations for the Q function. The

appropriate techniques are described in Ref. 21. The re-
sults are
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aQ _ . 2,9Q 2, 0Q zaZQ 2 azQ K a a
< — 1+ —_ * < < * I 2 bl *
Y i |all+2lal®) == —a*(1+2]al e TE g T G [ 2T 3,7 |2
_ 3’0
+x(A+1) .
9o 3t (2.8)
in the case of the attenuator, while
Q0 _ . 21,99 . 2, 00 Y +2.0°Q k| d da __ 3%
—= = 1+ —= — 1+ + — - .
o in|a(l+2lal )aa a*(1+2]al )aa* a ™. (a*) 3002 5 8aa+ aa*a Q +«i P (2.9

in the case of amplification and we have defined the dimensionless variables 7=wyt and k=¥ /w,. We now solve both of

these equations for the initial condition

Q(a,0)=exp(—la—ayl?) .

A. Attenuator

The solution to Eq. (2.8) subject to the initial condition (2.10) is (see the Appendix)

= (aag)? (a*agl -y (1ia?
(a,7)= —_— e 7),
¢ q-p2=0 q! p! e
where
VAR qg+p+1
R (7= 20e VAR o VR +i8)/2
p-q —vAK/2
(QA+A)—(Q—A)e
X (T):Acosh(vRA/Z)—(l—iB)Sinh(va/Z)
pa Qsinh(vAR/2)+A cosh(vikA /2)

_ Acosh(vkA/2)+(1+i8)sinh(vkA /2)

Yo T TG Ginh(vAR/2)+ A cosh(vkA/2)
and

8=(p —q)/k, (2.15)

Q=(1+27+i8) , (2.16)

A=’ —4a(1+m)?, .17

v=2ur, (2.18)

K=k/2u (2.19)

In Figs. 5(a) and 5(b) we plot the Q function in Egq.
(2.11) versus real and imaginary parts of . In Fig. 5(a),
=0 and the interference fringes are still visible. As 7 in-
creases these fringes are diminished. At 7=10.0, the
classical whorl structure is clearly evident. This figure
[5(b)] also shows some overall contraction due to the dis-
sipative nature of the dynamics.

The Q function directly gives antinormally ordered
moments:

(a"a")= [ d’atara*yma(a) | (2.20)
T

Using Eq. (2.11) one finds

(2.10)
2.11)
exp[ — X, ,(T)]ayl’], (2.12)
(2.13)
(2.14)
[
(a,(1))=al[Y,o(r)] " VR, (1)
X lao? () 2.21)
N B AP 2.
where
N
H,(r)= . (2.22)

—VkA,

(Q,+A,)—(Q,—A,)e

and Q, and A, are given by Egs. (2.16) and (2.17) with §
replaced by n /k.
The average energy in the oscillator is given by

(a'a)=|agl’e " +r(1—e %), (2.23)
indicating an exponential approach to an equilibrium
value of (a'a)=n.

In Figs. 6(a) and 6(b) we plot two average trajectories
over the time interval, 0=v <247 on the phase space
[that is, we plot the imaginary part of {a (7)) against the
real part of {a (7)) ], for two values of layl? with & and 7
fixed. For fixed k and 7 as |ay|? increases there is a
suppression of the recurrence at v=41. The fact that the
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FIG. 5. Plot of the Q function vs real and imaginary parts of
a for the dissipative nonlinear oscillator. (a) a=2.0, x=0.1,
n=0; (b) ay,=2.0, k=0.1, 7=10.0. In both cases v=1.15.

suppression of the recurrence becomes more efficient as
the initial average energy of the oscillator increases is
typical of the decay of a quantum-coherence feature and
provides a “‘built-in”’ semiclassical limit.

In Figs. 7(a)-7(d) we plot the variance of x, as a func-
tion of v for various values of lao}z, Kk, and 7. In all cases
the variances decay to a value determined by the phase-
independent fluctuations in the bath; thus the steady state
variance is V' (x;),, =0.5. In Fig. 7(a) the decrease in fluc-
tuations at v, an odd multiple of 7, together with a par-
tial recurrence of the initial variance, persists for quite a
few periods. However, for the larger value of ¢;=2.0 in
Fig. 7(b), these quantum features are suppressed more
quickly and appear only as diminishing dips on the ex-
ponential decay. The decay reflects the dissipative con-
traction .of the density. This suppression is even more
evident for larger values of « [Figs. 7(c) and 7(d)]. We
conclude that even for 7=0 the sharp reduction in fluc-
tuations at v=7 will be considerably suppressed as |a,|?
approaches the semiclassical scale.

The effect of attenuation on the quantum-coherence
features discussed above is perhaps more clearly seen in
the marginal distributions. In Sec. I we showed that for
@, imaginary the marginal distribution for X, contained

Im(a)
0.28

Im(a) |

FIG. 6. Plot of imaginary (a(7)) vs real {a(7)) for the
damped nonlinear oscillator. (a) a,=0.5, k=0.1, A=0,
0=v=247; (b) y=4.0,k=0.1, i=0.0, 0 < v < 247.

interference features at v=s. We now calculate the mar-
ginal distributions in the presence of attenuation.

The matrix elements of the density operator in the
basis | X, ) are given as phase-space integrals as

(X, lp1x) = [ d2a— [ d%B— (X, @) (BIX} ) alplB) .

(2.24)

The off-diagonal coherent-state matrix elements are
determined by the diagonal matrix elements {a|pla ), the
Q function, as follows. First, multiply the Q function by
'@, secondly, replace a* by B* in the resulting expres-
sion; and finally, multiply this expression by



4634 D. J. DANIEL AND G. J. MILBURN 39
0.58 |
1 i
* ‘
] @ 204 (b)
] 1
1
v
AN |
il 10 j
00 s T T T o T 05 T
NR2LTT NA2TT
] 16 |
054 4 (@) (@)
Vig) ]
Vixq) 096
05 |
) 0.48
0.0 T TS ’ 10 00 T T T T T Tos T T T T T T T o
VLT /24T

FIG. 7. Plot of the variance in x,, vs v. (a) @=0.5, k=0.1, 7=0.0. (b) a;=2.0, k=0.1, 7=0.0. (c) @;=0.5, k=1.0, 7=0.0. (d)

,=2.0,k=1.0, 7=0.0.

exp[ —(la]*+B[%) /2] .

The result in this case is

= (aad)! (B*ay)
(Blpla)= ————R, (1)
g %1)2;0 q! p! e
Xexp{aB*[1-7Y, (7)]
—Lal*+IBH, (2.25)

where all the time-dependent functions are given in Egs.
i

2w (ad) (ap)P

ap=0 q! p!

(x,lpolx)= |2

X ¥ ("m0 'H, ., (V2X)H, . ,(V2X])[Z, (D],
m =0

where

2A‘p+"’/2Rp'q(T)e

(2.12)-(2.19). The wave function (X,|a) is given by'’
1/4

(Xla)= exp(—1lal?—X1?)

o
!

X (2.26)

m

2°"2H, (V2X,),

Ms

m =0

where H,, is a Hermifeﬁnolynomial of degree m. Substi-
tuting this result into Eq. (2.24) and evaluating the in-
tegrals we find

—xi+x?)

(2.27)
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Z, (1= 27 :
’ Q+ A coth(vkA /2)

(2.28)

This expression becomes the marginal probability density for X,, P(X,), when X| =X ,.
As a useful check it is interesting to evaluate Eq. (2.27) when u =0, as this result has been previously obtained by Sa-
vage and Walls.?? To effect the comparison we note that when x=0 all the time-dependent functions, f (z), (t), X (1),

and Z (t) became independent of p and gq.

The sum over the Hermite polynomials may then be performed using the summation formula

gLy
q:0q!p p!

=0 ' m=0

Q"m0 Hyy 4y (E)H 4 g(E2)2"

22(§, = V(&= U —2°[(§, = V) +(£,—UP]

=(1—22)""2exp(2§,V +2&,U —V2—U?)exp _— (2.29)
-z
Next we make the change of variable X |, =(w,/2#)!/%(x —y) and X | =(wy/2#)/*(x +y). Then
172 2 ) 172 2
(x —ylp(r)x +y)=(2ma2) " %exp aiSz_%;— exp{—%ai x— |5 +| —toy|y—o} l—ﬁﬂ 5_ ] ,
(2.30)
where
2 — # = — VK
0’.‘—?5[2" +(1—e™™)+1], (2.31)
2 — #i = —vK -1
oy—?‘;[Zn(l—e +1171, (2.32)
5, =(at +ayle "%, 2.33)
§_=(af —ayle /2. (2.34)

Equation (2.30) agrees with the result obtained by Savage and Walls.??

In Figs. 8(a) and 8(b) we plot the marginal distribution P(X,) for various values of x, 7, and |a,|>. We see that for
fixed « and 7 interference fringe visibility decreases with increasing |a,|? as one expects for such a quantum-coherence
effect. These plots should be compared to the k=0 case shown in Fig. 4(b).

B. Amplifier

The solution to Eq. (2.9) subject to the initial condition (2.10) is (see the Appendix)

Q(a,a*,m)=exp(—lal*~|ayl?) 3

gp=0 9° p!
where
P (7)=¢ k02— +1)] 2Ae ~VRAZ2 ]
" (Q+A)—(Q—A)e ~*kb
n __ , VAR
Z,,(n= 21+ (1=e™)
(Q—A)—(Q+A)e ~vka

and §, 1, and A are given in Egs. (2.15)-(2.19). When
=0 we have Q=A=1+1i8 and Egs. (2.36) and (2.37) be-
come

P, (1)=e e VRMPFA/2 (2.38)
_ — vkl
Zpq(r)=1—5— 2.39)

The time-dependent moments corresponding to the
solution in Eq. (2.35) are given by

(aa(')‘)q (a*ao)p lal?z. ()
—_—e pq

(g+p+1)

g (T) s (2.35)
27 a1 —ever) |9
exp — , (2.36)
(Q—A)—(Q+A) 4
(2.37)
r
(a"(T))=aQP, o(TN1—2Z, 1) " *D
Zn 0(7')
X —ap|——— .
exp | — eyl Z, (-1 (2.40)
The average energy is given by
(a'a)=lag|?e ™+ (e —1)A+1), (2.41)

indicating the expected exponential energy growth due to
amplification.
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FIG. 8. Plot of the marginal distributions P(x,) for the at-
tenuated nonlinear oscillator k=0.1, v =7, 7=0. (a) a=0.5i.
(b) a=1.0i.

In Figs. 9(a)-9(c) we plot the Q-function solution in
Eq. (2.35) versus the real and imaginary parts of a, with
a,=2.0 and various values of ¥ and 7. The restoration of
the classical whorl structure becomes quite evident as K
increases even for this small value of a,. The density also
reveals an overall dilation due to the amplification pro-
cess, and also some broadening. In Fig. 9(c) the classical
whorl structure is clearly evident with no hint of interfer-
ence fringes.

In Fig. 10 we plot the mean trajectory {a (7)) on phase
space over the time interval 0=<v =247, for a,=4.0.
Comparison of this figure with Fig. 6(b) seems to indicate
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FIG. 9. Q-function solution for the amplifier at v=1.15,
ay=2.0. (a) k=0.1, 7=0.0. (b) k=0.1, 7i=2.0. (¢c) k=1.0,
7=0.0.

that the recurrences in the amplifier are suppressed at a
greater rate than those of the attenuator model. A simi-
lar effect can be seen in the variance V(x,) for the
amplifier plotted in Fig. 11 [compare with the attenuator
in Fig. 7(b)]. The coherence effects, the “bumps’ on the
curve, are suppressed more rapidly than in the corre-
sponding damped case.

The greater effectiveness of the amplifier in suppressing
quantum-coherence effects can be explained as follows.



39 DESTRUCTION OF QUANTUM COHERENCE IN A NONLINEAR . .. 4637

80
VIX,)
4
20
1 00 0.5 10
1
-4 ﬁ“// \)/Aﬂ

4

FIG. 11. Variance in x,; vs v/4 for the amplified nonlinear

FIG. 10. Average trajectory for the amplified nonlinear oscil-  oscillator. a,=2.0,x=0.1, 7=0.0.

lator. ay=4.0,x=0.1, =0, 0=<v=24r.

Firstly, to see more clearly the effect in the case of the decay factor. The source of this extra decay factor is ulti-

mean trajectory it is instructive to consider the short- ~ mately to be identified in the differing structures of the
time approximation (v <<1). In the case of the attenua- ~ heat bath used in the two models. Coherence is dimin-
tor we find ished due to the random loss (in the attenuator model) or

gain (in the amplifier model) of one quantum to or from

the heat bath. In the case of the attenuator the rate of

loss of quanta from the system depends on the number of

(attenuator) , quanta remaining in the system at any time; however, in
the case of the amplifier even if there are no quanta in the
system it can still gain a quantum of energy from the bath
even for a zero-temperature bath. This may be seen more
clearly by considering the contribution of the irreversible
parts of the master equations [Eqgs. (2.4) and (2.5)] to the
rate of change of the matrix elements in the number state

The amplifier moment contains an additional exponential basis. For the case of the attenuator we find

|

(a(1))=age "% ~|a°[2“¥e~w)e ~laglme 7

while for the amplifier

. _ ok —laglPi—e ™)
(a(1))~age 2 vhe 0

—lag|?vie "1
‘0‘2 iv

Xe (amplifier) .

%(nlﬁ(r)lm y=--- +§[2\/m(n +1lplm +1)—(n +m){n|plm )]
and for the amplifier we find

L nlpim) = + 2V =T = Tin —1plm = 1) = (n +m +2)Cnlplm)]
which shows an enhanced decay rate for the off-diagonal matrix element {n|p|m ). We conclude that a system subject
to amplification will lose quantum coherence more rapidly than one subject to dissipation.

The marginal distributions for the amplifier model are determined by the solution in Eq. (2.35) in the same way as
those for the attenuator model. The off-diagonal matrix elements in the basis which diagonalizes X, are given by

172
(X,lpx)=|= exp{ —lagl>—[X?+(X})%])
= (af)? (apV * - —
X S ——P, (127?92 S 2"m) T H,, , ,(V2X)H,, . ,(V2X)Z"(1)

q,p =0 q: ° m=0

-
where P, (1) and Z(7) are given in Egs. (2.36) and interference (r=w/2u) with a;=2.0i. Comparison of
(2.37). Figs. 8 and 12 shows that even for 7=0 the visibility of

In Figs. 12 we plot the marginal distribution the fringes decreases more significantly in the case of the
P(X)=(X,|plX,) at the time for maximum quantum amplifier nonlinear oscillator. This is consistent with the
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FIG. 12. Plot of the marginal distribution P(X,) for the
amplified nonlinear oscillator. &=0.1, v=w, A=0.0. (a)
a,=0.5i. (b) ay=1.0i.

op _ . op . Op 2 829 .2 822 K
4 — = + — —
or %% et T awr et |12

2
+«it | —p +lal*— a2 a0 | P
da* da da da*

Now assume
» (aad)? (a*ayl
pla,a*,7)= - —‘—Oe|a12f(T)Pq,p(T) ’

op =0 q! p!

where f(7) and P, ,(
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discussion above. Furthermore, we see that increasing
|a,| decreases fringe visibility as expected.

CONCLUSION

We have considered in this paper the effect of
amplification and dissipation on a nonlinear oscillator
model which exhibits a number of interesting quantum
effects. These include recurrences of the initial state,
squeezing, phase-space interference, and interference
fringes in the marginal distributions of the canonical
coordinates. We have considered the case of damping
into a reservoir at nonzero temperature and also the case
of amplification by a device at nonzero temperature. In
both cases we confirm the previously established result
that for given damping or amplification constants the
rate of decay of coherence between superposed quantum
states, as reflected in the quantum features listed above,
becomes greater as the initial energy of the oscillator in-
creases. This fact enables even small damping or
amplification to restore classical behavior in the system
as the semiclassical level is approached. We have also
shown that amplification leads to a greater rate of coher-
ence decay than does damping. As quantum-coherence
features are most likely to occur in concert with very
weak signals, amplification will form an essential part of
any scheme to detect such effects. Our results show that
only a limited amount of amplification can be tolerated
before these quantum features are lost.

APPENDIX

This appendix contains the method of solution for the
two Fokker-Planck equations [Egs. (2.8) and (2.9)] corre-
sponding to the attenuated nonlinear oscillator and the
amplified nonlinear oscillator. We treat the attenuator
case first.

The initial condition for solving Egs. (2.8) is taken to
be

*|a"‘a0,‘2

Q(a,a*,0)=e (A1)
Let
*JGZ_ a 2
Qla,a*,7)=pla,a*,1)e o™l (A2)
Then
2
0P o P |4, 0P
da da* da da*
(A3)
(A4)

7) are functions of 7 to be determined. The initial condition, Eq. (A1), requires that f(0)=0 and

Pq,p(0)=1. Substituting Eq. (A4) into Eq. (A3) we may eliminate the a dependence to arrive at
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R
_gq,p +gp
.

af(7)
at

+§( —(g +pp,, +2lagl®pys1,+112(g +p +1)f (1), , +2gp[ —2f (1) + fH(7)p, , ]

+f_ll _(q +P +1)Pq,p+|a0|2pq+l,p+1+(q +P +1)f(7-)pq,p
+aplp,, —2f (T)p,, + (TP, , 1}) -

Despite the formidable appearance of this equation the solution is obtained rather easily if we let

—a%_T—)=K(1+r_1)f2(7')—x[1-+-2r7+2i,u(p — @) /K1 (7)+xF

Then

9p, ,(7) .
ar

+r(1+7)|ao’py 41,5 +1(7) .
To solve (A6) we let
Q=1+2r+1id,
A=[0>—4r(1+7)]"?,
where
5=2ulp —q)/k .
Then using partial fractions the solution to Eq. (A6) is

_ 2
S = A  Acoth(xdr/2)

To solve Eq. (A7) define R, ,(7) by

R, (T)=G, (T)p, ,(T),

where

G

p.aq

and

F(n= [ f(dr .
Then
dR, (T)

9
—2— ={(k/2)(q +p)1+2iu(qg —p)/k]+ki(q +p F+ D =w(m+1)f(T)G, (T)p, o (T)+ G, (T)—F——

or

Using the result for dp, , /37 we obtain

aRq’p(T)

or

Now take R, ,=R, , , 1, as this is compatible with the t=0 result and is a solution. Then

oR, ,(7)

T _
9P :K(l+r—l)|a0|2e—yQTeZK(n-Fl)F(T)Rq’p(T) .

or
From Eq. (A8) we have

Pgp~ _l.u'{[q -P +q(q —1)_[7 (P —1 )].pq,p +2qp(q‘p)f(t)pq,p]

== (g +p)1+2ip(p —q)/xlp, , (1) +k[(A+Df (1) =7 R)q +p +1)pg ,(7)

(7)=(e" AT« +AIF(1))(q +P+”(exp{x[1+2i,u(p —q)7/K]} yp a2

=x(1 +ﬁ)‘a0|ze—K[l+2ip.(p—q)/rc]re —2Kr'r're2k(ﬁ+lJF(‘r)

—1 (Q—A)—(Q+A)e*2T 2AKAT

F(r)= In

From this we have

C k(1+7) (Q—A)—(Q+A) KA(Q—A)
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(AS)

(A6)

(A7)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)
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e2K(l+ﬁ)F(rP: 4A2 5 K(Q+A)T , (A16)
[((A—=A)+(Q+A)e" 7]
which enables us to write Eq. (A14) as
dR, ()  —k(1+7) 1
9.p _
= —dV ,
R,, (Q+a) p? AL
where
V=(Q—A)+(Q+A)e"A" (A18)
and thus
R, ,(1)= 21+ el (A19)
qp' T/ EXP Q+Acoth(kA7/2) | °
Thus
(g+p+1) = 2
P, (T)=e KTr(7/2 A exp 201+l (A20)
P Q sinh(kA7/2)+ A cosh(kAt /2) Q-+ A coth(kAt /2)

Putting this result into Eqs. (A4) and (A2) enables the solution quoted in Eq. (2.11) to be obtained.
The method of solution for the amplified case, Eq. (2.35), is very similar to that of the attenuator. We begin with the

same initial condition and the same ansatz [Egs. (Al) and (A2)].

We also assume a power-series expansion for

pla,a*,7) of the form given in Eq. (A4). The derivation is then quite similar to the attenuator case and for brevity we

do not repeat it here.
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