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Destruction of quantum coherence in a nonlinear oscillator via attenuation and amplification
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The exact solution to the master equation of a nonlinear oscillator, subject to damping or
amplification, is presented. The effect of such incoherent processes on the quantum-coherence
properties and recurrences is obtained. It is shown that amplification destroys quantum coherence
more rapidly than does attenuation.

INTRODUCTION

In a number of recent papers' a simple exactly solv-
able nonlinear oscillator model has been studied that
shows how quantum coherences lead to a recurrence of
the initial quantum state and a departure of the quantum
dynamics from that expected classically. Indeed it was
shown by Yurke and Stoler that this model may be used
to generate a quantum superposition of two oscillator
coherent states with macroscopically distinguishable am-
plitudes. However, as many authors have noted, such
quantum superposition states and quantum-coherence
features, in general, are extremely sensitive to external
fIuctuations. Milburn and Holmes considered the effects
of dissipation on the recurrences of this nonlinear oscilla-
tor model and showed that even very weak damping is
sufficient to destroy quantum-coherence effects and re-
store classical behavior as the action of the initial state
approaches the semiclassical limit. A similar result was
found by Yurke and Stoler using different techniques. In
Ref. 2 dissipation was included by coupling the oscillator
to a zero-temperature heat bath. In this paper we extend
that work to treat the case of a heat bath at a nonzero
temperature. A slight modification of the model also al-
lows us to determine the effect of amplification on quan-
tum coherence.

The nonlinear oscillator model discussed here exhibits
a number of the characteristic features of nonlinear quan-
tum systems, such as recurrences, squeezing, and interfer-
ence effects in the marginal distributions of the position
and momentum. It also provides a simple illustration of
interference in phase space, a concept recently employed
by Schleich and Wheeler to explain the oscillations in
the tail of the photon number distribution for squeezed
light. We will determine the effect of attenuation and
amplification on each of these effects. Our results indi-
cate that such characteristic quantum features are ex-
trernely sensitive to any attenuation or amplification. In
particular, quantum recurrences are suppressed at a rate
which becomes very large as the initial average energy of
the system approaches the semiclassical limit (that is,

large compared to Scop where cop is the fundamental fre-
quency of the linear part of the oscillator).

Our method is based on a master equation which is ex-
pected to be valid for small nonlinearities and weak cou-
pling to the external degrees of freedom of the attenuator
or amplifier. The master equation, an equation of motion
for the system density operator, is then converted to an
equivalent c-number evolution equation for the diagonal
elements of the density operator in the coherent-state
basis. Such a matrix element is in fact a true joint proba-
bility density for a special class of simultaneous measure-
ment of position and momentum, and is known as the Q
function' and in other contexts as the Husimi function. "
The resulting evolution equation is a nonlinear second-
order partial differential equation. It is similar in some
respects to a Fokker-Planck equation' but cannot strict-
ly be interpreted as such as the diffusion matrix is not
positive definite (in fact, it is complex). We solve this
equation exactly using techniques which may be of in-
terest for the solution of other nonlinear second-order
partial differential equations of this type. Once the Q
function is obtained all moments and marginal distribu-
tions may be calculated. The Q function itself illustrates
a number of important features of the model ~

I. NONLINEAR OSCILLATOR MODEL

We take as our nonlinear oscillator model a system de-
scribed by the Hamiltonian'

H=H + H
RMp

where

Ho= —,'(p +cooq )

is the free Hamiltonian for a simple harmonic oscillator.
This model could describe a cavity-field mode interacting
with a Kerr nonlinear medium. ' A comparison of the
quantum and classical dynamics of this model is given in
Ref. 1, and we summarize some of those results here. A
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ty of quantum and classical behavior for short times is
clearly evident, as is the recurrence of the initial quantum
state at —ao. One may also calculate the variances in

quantity x, and x2 defined by

x, =(a+a*)/2,
x, =(a —a*)/2 .

(1.6)

(1.7) ~["1) 3.0-

q, (1.8)

In the classical description the variances saturate as the
initial density becomes wrapped around the origin. In
Fig. 3 we plot the classical and quantum variances in x, .
The initial correspondence of the classical and quantum
result is once again evident ~ Note that the quantum re-
sult, however, drops below the classical result at
t =~/2p, the time at which the superposition state in Eq.
(1.5) forms. In fact, at this time the variance falls below
the initial coherent-state value, a result known as squeez-
ing. ' It should be noted that the variances of x, and x2
computed directly from the Q function are not identical
to the variances in the corresponding dimensionless posi-
tion and momentum operators L, and L2 defined by

1/2

1.0

0.0 0.5 1

J/21T

FIG. 3. Plot of the classical (dashed line) and quantum (solid
line) variance in x, , against v/2w, with no dissipation. a„=2.0,
R =0.

Xz =(2fiioo) '
p .

This is because the Q function gives directly the moments
of "approximate" position and momentum variables.
This is the price paid for a simultaneous measurement of
noncommuting observables. In fact, the variances in x,
and L,- are related by

level of probability amplitudes rather than probabilities, a
feature of quantum mechanics emphasized by Feyn-
man. '

For the special case of the superposition state given in
Eq. (1.5) the marginal distribution for X& is

P(X, )= ,'[P+(X, )+—P (X, )

V(x; ) = V(X; )+ —,
' (1.10)

+21/ P+ (X& )P (X& )sin(4X, rosinHo)],
In quantum optics one would say that the Q function
gives directly the antinormally ordered moments' of the
creation and destruction operators. This result leads to
Eq. (1.10) in the case of the variance in X, .

Another way to see the effect of interference in phase
space is to explicitly calculate the marginal distributions
for the dimensionless position and momentum operators
X, and Xz. These are given in terms of the Q-function
amplitudes, (all(), for the state lg) as

2

P(X, )= f d a (X;la—)(alp)

where the state lX; ) (X, l
is the resolution of identity for

X;. Equation (1.11) can be viewed as the quantum gen-
eralization of the classical result

P(X;)= Jd'a —6' '(X, —x;)Q(a),2 1 (2)

where x, are defined in Eqs. (1.6) and (1.7), and Q(a) is a
classical joint phase-space probability density describing
the system state. In Eq. (1.11), (alp) is the amplitude
for a simultaneous measurement of position and momen-
tum to give a particular result a, while (X; la ) is the con-
ditional amplitude that this result corresponds to a posi-
tion or momentum L, . Thus the quantum result is con-
structed in the same way as the classical result but at the

(l.13)

where
1/2

P+(X, )= 2
7T

exp[ —2X, —laol -+2X, (ao —ao )

j (a2+atz)]
iO~

and we have set eo = roe '. The distribution for L2 is

given by

P(Xz)= —,'[P+(Xz)+P (Xz)

+2+P+ (Xz )P (Xz )sin(4Xzrosin8o)],

where

P+(Xz)=
' 1/2

exp[ —2Xz —laol +2iXz(ao —ao)

—
—,'(ao+ao')] .

For imaginary ao P(Xz ) consists of a superposition of
two Gaussian peaks centered at +laol; however, P(X, )

consists of a single Gaussian at L, =0 modulated by the
intereference term 1+sin(4Xz ro ).
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In Figs. 4(a) and 4(b) we plot the marginal distributions
for X, and Xz at r =m /2p for +0=i .[At this time the su-
perposition state in Eq. (1.5) has formed. ] We clearly see
interference features in the distribution for X] but not
Xz. These results may be interpreted in terms of the "in-
terference in phase space" concept developed by Schleich
and %'heeler. '

The nonlinear oscillator model described by the Harnil-
tonian in Eq. (1.1) illustrates well the significant
differences between the quantum and classical descrip-
tions. In Sec. II we consider the effect of attenuation and
amplification on the quantum features discussed above.

Hl=iri[al (t)+a I (t)], (2.1)

I(r)= gg, b, e (2.2)

in the case of attenuation, and

I (t)= gg, b~e
J

{2.3)

where a is the lowering operator for the nonlinear oscilla-
tor. The bath operators I (t) are given by

II. ATTENUATION AND AMPI. IFICATION

We will model the effect of attenuation and
amplification by coupling the nonlinear oscillator to a
reservoir of oscillators assumed to be in thermal equilibri-
um at some temperature. We shall refer to this collection
of oscillators as the bath. This is a standard approach to
linear attenuation and amplification. ' ' The coupling
between the nonlinear oscillator and the bath is described
by the Hamiltonian

in the case of arnplification. The sum is over all the bath
oscillators and g is a coupling constant. The form of
I (t) for amplification makes it clear that we are consider-
ing a form of parametric amplification in which g- plays
the role of a pump field amplitude, while a and b play
the role of signal and idler fields, respectively.

Standard methods' lead to a master equation for the
system density operator in the interaction picture:

dp
dt
p = i@co—o((a a),p)

P{X2) 0. 5-

{a)

+ [(2apa —a ap —pa a)
2

+yn(a pa+apa —a ap paa )]—(2.4)

in the case of attenuation and

/

I

I'

/

/

I

/

/

I
/

dp
dt

ipro((—a a )',p )

+ [(2a pa —aa p —paa )
2

+yn(apa +a pa —aa p —pa a)] (2.5)

p(x{)

X2
for the case of amplification. In Eqs. (2.4) and (2.5) n is
the average number of bath quanta, and y/2 is the at-
tenuation or arnplification constant. It should be noted
that for n&0 the validity of Eqs. (2.4) and (2.5) depends
on the nonlinearity p being quite small.

To make a little clearer the role of y we evaluate the
mean of a for the case n =0 and @=0. In the case of the
attenuator one has

(a(r)) =(a(0))e (2.6)

and for the amplifier

(a(r)) =(a(0))er' ' (2.7)

0

X)

FICi. 4. Plot of the marginal distributions for Xl and X&. (a)
P(X, ) vs X~; (b) P(X, ) vs X, . ao=i, Q=O.

In the latter case we may thus view e ~' as the linear ener-
gy gain.

Equations (2.4) and (2.5) may be converted to
equivalent c-number equations for the Q function. The
appropriate techniques are described in Ref. 21. The re-
sults are
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a i—p a(1+2[a)') —a'(1+2(a(') +a —(a*) + — a+ a* QBr Be Be~ Be*~ 2 Be Be*

B2
+v(n + 1)

Be Be (2.8)

in the case of the attenuator, while

BO i—p a(1+2)a( )
—a*( 1+2(a[ ) +a —(a*) —— a+ a* Q +1mO'7 Be Be* Be Be* 2 Be Be Be*

(2.9)

in the case of arnplification and we have defined the dimensionless variables ~=not and ~=y/coo. %'e now solve both of
these equations for the initial condition

Q(a, 0)=exp( —~a —ao~ ) . (2.10)

A. Attenuator

The solution to Eq. (2.8) subject to the initial condition (2.10) is (see the Appendix)

(a o) ( ao)
Q(a, r)= $, e " R (r),

q, p =0

where

(2. 1 1)

R (r)=
—vAk/2

(II+ b, ) —(II—A)e

q+p+1
e"'+' ' exp[ —X (r)~ao~ ], (2.12)

X (r)= 5 cosh( vKb. /2) —
( 1 —i 5)sinh( vkb, /2)

0 sinh(vbk/2)+b, cosh(vkh/2)
(2.13)

3, cosh(vKA/2)+( I+i5)sinh(vie, /2)
II si nh( vhk /2) +b, cosh(vKb, /2)

(2.14)

and

5=(p q)/i, —

II = (1+2n +i 5),
5 = II 4n ( 1+—n )

'

v —2p7

k=~/2p .

(2.15)

(2.16)

(2 17) where

(2.18)

(2.19)
H„(r)=

—vkA /2
2h, e

(II„+b,„)—(0„—b, „)e

(a„(r) ) =ao[ Y„o(r)] '"+"R„o(r)

H„(r)
X exp —tao/'

Y„o(r)
(2.21)

(2.22)

(a "(a ) ) = f d a —a"(a*) a (a) .1
(2.20)

Using Eq. (2.11) one finds

In Figs. 5(a) and 5(b) we plot the Q function in Eq.
(2.11) versus real and imaginary parts of a. In Fig. 5(a),
n =0 and the interference fringes are still visible. As n in-
creases these fringes are diminished. At n = 10.0, the
classical whorl structure is clearly evident. This figure
[5(b)] also shows some overall contraction due to the dis-
sipative nature of the dynamics.

The Q function directly gives antinormally ordered
moments:

and Q„and b„are given by Eqs. (2.16) and (2. 17) with 5
replaced by n /k.

The average energy in the oscillator is given by

(a'a ) = ~ao~'e ' +n(1 —e '"), (2.23)

indicating an exponential approach to an equilibrium
value of (a a ) = n.

In Figs. 6(a) and 6(b) we plot two average trajectories
over the time interval, 0~ v~24am on the phase space
[that is, we plot the imaginary part of (a (r) ) against the
real part of (a(r))], for two values of ~ao~ with k and n
fixed. For fixed R and n as ~ao~ increases there is a
suppression of the recurrence at v=4m. The fact that the
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0.5
o48

0.0

FIG. 7. Plot of the variance in x},vs v. (a) go=05, k=0. 1, n=0.0. (b) &o=20 @=0.1, n=0.0. (c) ao=0.5 &=1,0, n=0.0. (d)
ao=2.0, @=1.0, n=0.0.

exp[ —(,'al'+ IPI')/2] .

The result in this case is

(aao )~ (p*ao)~
&plpla&= y qt pI

XexpIaP*[1 —Y (r)]
—

—,'( la I'+
I pl')!, (2.25)

where all the time-dependent functions are given in Eqs.
I

(2. 12)—(2.19). The wave function &X& Ia & is given by'
' 1/4

&X, Ia&= 2
'IT

exp( —
—,
' Ial —X, )

oc m

X g, 2 "H (v'2X, ), (2.26)
=o m!

where H is a Hermite-polynomial of degree m. Substi-
tuting this result into Eq. (2.24) and evaluating the in-
tegrals we find

&x, lP )lx; &=—2
'

7T

1/2
(~o)q (~o)~ —(X +X )

q p=p 9''

where

X g (2 m!) 'H + (v'2X, )H + (v'2XI )[Z (r))
m=0

(2.27)
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Z (r)= 2n

f1+b, coth(vice, /2)
(2.28)

This expression becomes the marginal probability density for Xi, P (Xi ), when X', =X, .
As a useful check it is interesting to evaluate Eq. (2.27) when )M=0, as this result has been previously obtained by Sa-

vage and Walls. To effect the comparison we note that when p=O all the time-dependent functions, f (t), g(t), X(~),
and Z ( t ) became independent ofp and q.

The sum over the Hermite polynomials may then be performed using the summation formula

VP
X (2 ~') H +p(ki)H +q((2)z

=o O' =o P' =o

=(1—z )
' exp(2() V+2(2U —V —U )exp

2z(g) —V)($2 —U) —z [(g) —V) +(g2 —U) ]

1 —z 2
(2.29)

Next we make the change of variable X, =(coo/2iri)'/ (x —y) and X', =(coo/2')' (x +y). Then
1/2 2

(x —y~p(~)~x +y }=(2qrcr„) ' exp o. 5 —exp . —
—,'o„x — 5+ —

—,'o y —cr2

L

' 1/2 2

(2.30)

where

cr = [2n+(1 —e )+1],2' (2.31)

cr = [2n (1 —e )+ 1]
26)

=(ct~+cz )e
—vn /2

(2.32)

(2.33)

(2.34)

Equation (2.30) agrees with the result obtained by Savage and Walls. '
In Figs. 8(a) and 8(b) we plot the marginal distribution P(X, ) for various values of )c, n, and ~ao~ . We see that for

fixed tc and n interference fringe visibility decreases with increasing ~cto~ as one expects for such a quantum-coherence
effect. These plots should be compared to the tc=O case shown in Fig. 4(b).

B. Amplifier

The solution to Eq. (2.9) subject to the initial condition (2.10) is (see the Appendix)

(ct(z,*)' (cz*(20)p
Q (& ct &) =exp( —Ict I' —l(zol') g, ,

e "'
Pp, (r)

qI pl
(2.35)

where

p ( )
— vK[n/2 —(n+ i)l

—VKA /2

(II+ 6, )
—(Il —h)e

2n
~

~2(1 —'")
exp

(II—b, ) —(II+ b, )e

(q+p+1]

(2.36)

Zp q(r) = 2(1+n )(1—e ')
(0—

2)), ) —(0+3, )e
(2.37)

p ( )
—vK —vnn(p + q) /2

O'.P (2.38)

and 5, 0, and b, are given in Eqs. (2.15)—(2.19). When
n =0 we have II =b. =I+i'5 and Eqs. (2.36) and (2.37) be-
come

(a "(q.) }=ct()P„O(r)[1—Z„o(r)]

Z„o(r)x exp —/u, [2
Z„o(r)—1

(2.40)

1'KQ

Zp q(r) = (2.39)

The average energy is given by

(a a }=
~czo~ e '+(e '—1)(n+1), (2.41)

The time-dependent moments corresponding to the
solution in Eq. (2.35) are given by

indicating the expected exponential energy growth due to
amplification.
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Im(a)

r—3.6 0

Re(a)

&(x }

0.0 0.5

FICx. 10. Average trajectory for the amplified nonlinear oscil-
lator. ao=4.0, @=0.1, n=0, 0~ v~24~.

FIG. 11. Variance in x, vs v/4~ for the amplified nonlinear
oscillator. F0=2.0, @=0.1, n=0.0.

Firstly, to see more clearly the effect in the case of the
mean trajectory it is instructive to consider the short-
time approximation (vK «1). In the case of the attenua-
tor we find

ol I e l~o(a (r) ) =aoe "~'e ' e

(attenuator),

while for the amplifier

aoe
—iv/2e —vke o I2( & ~

—iv

—
/la /2vrce

Xe (amplifier) .

The amplifier moment contains an additional exponential
I

decay factor. The source of this extra decay factor is ulti-
mately to be identified in the differing structures of the
heat bath used in the two models. Coherence is dimin-
ished due to the random loss (in the attenuator model) or
gain (in the amplifier model) of one quantum to or from
the heat bath. In the case of the attenuator the rate of
loss of quanta from the system depends on the number of
quanta remaining in the system at any time; however, in
the case of the amplifier even if there are no quanta in the
system it can still gain a quantum of energy from the bath
even for a zero-temperature bath. This may be seen more
clearly by considering the contribution of the irreversible
parts of the master equations [Eqs. (2.4) and (2.5)] to the
rate of change of the matrix elements in the number state
basis. For the case of the attenuator we find

a
& nip(r)lm &

= + —[2&(n + I)(m + I)& n + Ilplm + I &
—(n +m)& nlplm &]

K

a1- 2

and for the amplifier we find

K
(nlplm ) = + —[2&(n —1)(m —1)(n —llplm —1) —(n +m +2)(nlplm )],a~ 2

exp{ —laol —[X', + (X', ) ] l

which shows an enhanced decay rate for the off-diagonal matrix element ( nip lm ). We conclude that a system subject
to amplification will lose quantum coherence more rapidly than one subject to dissipation.

The marginal distributions for the amplifier model are determined by the solution in Eq. (2.35) in the same way as
those for the attenuator model. The off-diagonal matrix elements in the basis which diagonalizes X, are given by

I /2

&x, lyly)lx', &=—2

(ao)' (ao)~ oo

X g P (r)2 'i'+~I g (2 m!) 'H + (v 2xi )H + (v'2X'i )Z (r),
s'' m=0

where P (r) and Z(r) are given in Eqs. (2.36) and
(2.37).

In Figs. 12 we plot the marginal distribution
P(X, )—= (X, lplX, ) at the time for maximum quantum

I

interference (r=m/2p, ) with ao=2. 0i. Comparison of
Figs. 8 and 12 shows that even for n=O the visibility of
the fringes decreases more significantly in the case of the
amplifier nonlinear oscillator. This is consistent with the
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The initial condition for
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i ion for solving Eqs. (2.8) is taken to

f T—20 00 2.0 4,0
Let

Q(a, a*,O) =e (A 1)

FIIG. 12. Plot of the mar in
' '

ion X
.1, v=a n=0 0. a(a)

Q(, *, )= ( a,a, r)e

Then

(A2)

ap . Bp + 2
2-(-')' '

2 Ba Ba Ba*

p + Bp 8
c)a Ba

(A3)

Now assume

(aao )' (a*ao)~
e l~l'f ~~)

pq ~(r), (A4)

where f (r) a d P r io o r to bn (r) ar r to be determined. The inite g ial condition, Eq. , qi
a ependence to aarrive at
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ap„af (.)
+'qp

g p, ip'[[q p +'q('q 1) p(p 1}]p, +2 ( — )f( )p, ,, l

+ —( —(q +p)p +2~ao~ p +, +)+2(q +p +1)f(w)p +2qp[ —2f (w)+f (z)p ]

+n[ —(q+p+1)p +~ao~ p +, +)+(q+p+1)f(~)p

+qp[p, ,, 2f—(r)p, ,,+f'(r)p, ,, ]] ) .

Despite the formidable appearance of this equation the solution is obtained rather easily if we let

Bf(r) = )r(1 +n )f (r) —a[1+2n +2ip(p —q)/)r)f (w)+en
a7

Then

ap„(r)
(q +p—)[l+2ii2(p —q)/)r]p (r)+Ir[(n + 1)f(r) —yn ](q +p +1)p (r)

+K( 1+n )~ao~ p +) +)(7 )

To solve (A6) we let

0, =1+2n +i5,
6=[0 4n(—1+n )]'

where

|)=2p(p —q)/)~ .

Then using partial fractions the solution to Eq. (A6) is

2n(r)= 0+b,coth( a b, r/2 )

To solve Eq. (A7) define R (~) by

R (~)=G (~)p (r),
where

G (z) =(e ««+n«) (~
) " (exp I)r[ I+2ip(p q)r/~] J ) P—

p q
7

and

F(r) —= f f (r')dr' .
0

(A5}

(A6)

(A7)

(AS)

(A9)

(A 10)

(Al 1)

dR p(~) ap„(i)=
I ()r/2)(q +p)[1+2ip(q p)/)~]+)rn (q +p —+ 1) )r(n + 1—)f (r) I G (~}pp q(~)+ Gp (r)

07 pq pq (A12)

Using the result for Bp /B7 we obtain

BR (r)
a7

)2 —«[)+2(p(p —q)i«)7 —2«n~ 2«(n+1)F(r)n a0~ e e e pq+] p (A13)

Now take Rq p Rq+] p+] as this is compatible with the t=O result and is a solution. Then

BR (r)
(Iir+n)~a

~
e )n'e ""+ 'R (w) .qp

From Eq. (AS) we have

(A14)

—1F(~)= In
~(1+n )

From this we have

(0—b, ) —(Q+b, )e' '
(II—2)), )

—(II+ 6, )

2n ~67
«.5(II —b )

(A15)
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2l~(1+ n )F( r) 4A a(0+6)w

[(0—b, ) +(0+6)e' ']
which enables us to write Eq. (A14) as

(A16)

dR (r)
R

—tc(1+n ) 1

(Sl+b, ) V' (A17)

where

V =(n —b, )+(fl+ A)e"
and thus

2(1+n ) l~ol'
R (r) =exp 0+ b, cath(ted r/2)

Thus

(A18)

(A19)

( )
—«i7 r «ti /2-

VP 0 sinh(ted, r/2)+ b cosh(trAt /2)

2(i+n ) l~, l'
exp 0+ b, coth(tcAt /2)

(A20)

Putting this result into Eqs. (A4) and (A2) enables the solution quoted in Eq. (2.11) to be obtained.
The method of solution for the amplified case, Eq. (2.35), is very similar to that of the attenuator. We begin with the

same initial condition and the same ansatz [Eqs. (Al) and (A2)]. We also assume a power-series expansion for
p(a, a, r) of the form given in Eq. (A4). The derivation is then quite similar to the attenuator case and for brevity we
do not repeat it here.
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