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Shake-off measurements of electron-ion-scattering phase shifts
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Continuum electrons are produced in a specific I state with high-energy resolution using shake-ofT'
photoionization. This process is well characterized, so that the photoionization signal is an accu-
rate measurement of the difference between the continuum electron's wave-function phase and that
produced by a hydrogenic interaction. Measurements are reported showing the phase of a
Ba +e in a d wave, in cases where it is well behaved, and in cases where doubly excited reso-
nances produce rapid phase variations.

INTRODUCTION THEORY

The absolute phase of an electronic wave function is
arbitrary, and thus unmeasureable; however, much can
be learned about electronic interactions by studying the
variations of this phase, either as a function of spatial
coordinates or of energy. For example, elastic electron-
scattering experiments measure how the electronic wave-
function phase changes between ingoing and outgoing
components. Specifically, one envisions a decomposition
of an ingoing plane-wave into a linear combination of in-
going spherical waves, so that any interaction which
shifts the phase of one component relative to the others
will distort the balance. In that case, the outgoing com-
bination will no longer be a plane wave, and the scattered
electrons will show angular deflections. This process
works best when most of the spherical components are
not affected, so that one only measures the low-I phase
shifts. If many of the spherical waves are phase shifted,
as by a long-range interaction, the process of determining
any particular phase shift becomes more complicated.
Thus, for example, elastic electron-ion scattering is
dificult, since the powerful (but uninteresting) Coulomb
force produces considerable scattering which will obscure
any other internal effects. '

Here, we report a new method of accurately measuring
the phase shift of a continuum electron's wave function in
the presence of an ion scatterer. The technique gains its
accuracy by actually measuring how the phase shift
differs from that caused by a pure Coulomb potential.
Since this method uses a laser technique to produce the
continuum electrons, it has an extremely high-energy
resolution (better than 0.1 meV). Its major benefit, how-
ever, is that only one l-value wave is ever produced, so
that no mathematical partial-wave decomposition is
necessary and subtle effects should be that much more
detectable. For example, this technique can be applied
just as easily to cases with high I values, and in fact all of
the data reported here involve l =2 states. We demon-
strate the technique by examining two distinct cases, one
where the continuum phase has no energy dependence
and a second case where autoionizing resonances intro-
duce dramatic variations.

When an electron is bound to an ionic core, it is easy to
determine its phase shift relative to hydrogen, since the
long-range behavior of the regular and irregular Coulomb
wave functions require that the electron's binding energy
be related to that phase shift by
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where n is an integer (the principal quantum number), n
*

is the effective quantum number, and 6 is the quantum
defect. The phase shift of the wave function relative to
hydrogen is ~= ~n '. The quantum defect thus measures
what linear combination of regular and irregular
Coulomb wave functions best describes the long-range be-
havior of the electron, and Eq. (1) results from requiring
that the exponentially growing parts of these two com-
ponents cancel each other. ' The energy of a bound state
thus produces the most accurate measurement of the
electronic wave-function phase. However, continuum
waves do not satisfy Eq. (1) since both the regular and ir-
regular solutions oscillate at large distances so that nei-
ther has an exponentially growing part. Accordingly,
their energy alone gives no information about the wave-
function phase.

This accurate bound-state phase information can be
transferred to the continuum by shaking off the bound
electron as the result of an isolated core excitation (ICE)
of an inner electron. The ICE technique has been
developed extensively and used to excite doubly excited
states of alkaline-earth atoms. ' The basic idea is to put
one electron into a Rydberg state, thereby isolating the
other valence electron as the "core." Next, this core elec-
tron is excited while the outer, Rydberg electron is rela-
tively undisturbed; it does not change its orbital angular
momentum l, but it does change its energy to absorb (or
emit) the difference between the excitation energy of the
core electron and the energy of the absorbed photon.
The size of the transition moment varies with energy be-
cause of two energy-dependent factors

39 4610 1989 The American Physical Society



39 SHAKE-OFF MEASUREMENTS OF ELECTRON-IQN-. . . 4611

where the constant p, is the transition moment that
would be observed in the (g ~

~ ~e ) transition of the bare
ion. The energy-dependent factors are ( nl

~

n'I ), the pro-
jection of the initial Rydberg electron s wave function
onto its final state, and A,„&, the amplitude of admixture
of the doubly excited configuration. Thus,

~ A,„ I ~
is pro-

portional to the energy density of doubly excited states.
The overlap factor itself only depends on the phase
difference and energy difference between the initial and
final Rydberg states

Auorescence efticiency can change, affecting the observed
structure. All of these effects can be properly incorporat-
ed by using multichannel quantum-defect theory
(MQDT) to calculate the A,„,

&
value in Eq. (2) (actually

to calculate several A,„.I and to form the proper linear
combination of them), and to modify Eq. (2) by projecting
out only those final ionic states that are detected. The
formalism that we employ here has been developed in de-
tail elsewhere, for using MQDT to measure branching ra-
tios.

(3) EXPERIMENT

If the transition is to the bound character of the final
state, as in most of the measurements performed using
ICE, then the phase difference itself is related directly to
the energy difference by Eq. (1). Sandner er al. have
been able to make very accurate measurements of the ini-
tial state's n* by measuring the wavelengths where the
zeros occur in an ICE spectrum, and then fitting them to
Eq. (3). If the transition is to the continuum character of
the final state, however, the phase no longer depends on
the energy through Eq. (1). But in this case, the transi-
tion moment of Eq. (2) can be written in a particularly
simple form which makes the dependence on the continu-
um electron s phase-shift explicit. First, since the outer
electron will be energetically above all normal bound-
state resonances, the A,„ I coeScient becomes a constant
(equal to 1 if there are no degeneracies complicating
things). Then, the energy difference can be replaced with
the difference between the ionic transition frequency (co, )

and the photon frequency, so that we obtain

(4)

In the simplest case, the continuum phase ~' will have a
constant value, and Eq. (4) will result in a photoioniza-
tion cross-section that monotonically decreases as the en-
ergy denominator increases. However, if r' has an energy
dependence itself, this will show up as additional struc-
ture. The most dramatic example of such structure
occurs when the continuum is coupled to an additional
resonance. Then, the continuum phase will increase by a
total of ~ over the linewidth of the resonance.

The actual measurements are somewhat more compli-
cated, due to several effects. Degeneracies are hard to
avoid. In some cases, more than one total angular-
momentum value J is excited. In some cases, there are
degeneracies possib1e even with only one J excited. Also,
it is not always true that the only transition moment
arises from the shake-off process. For some cases report-
ed here, there will be two contributions, one due to shake
oA; and one due to shake down, producing a bound outer
electron and a slightly higher ionic core excitation. Fi-
nally, in the data reported here, we did not measure the
total ion signal, but instead we only detected the fluores-
cence produced by the excited ions left behind after the
shake-off electron had left. Usually, this only multiplies
the signal by a constant fIuorescence-efficiency factor;
however, in cases where there are nearby resonances, the
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FIG. 1. Energy-level diagram of barium, showing the three-
photon excitation route.

All of the data reported here was obtained by monitor-
ing the Auorescence of excited ions produced in an
effusive atomic beam. %'e used two tunable dye lasers to
excite the barium atoms stepwise through the 6s6p 'P,
state to the 6snd 'D2 bound Rydberg state, as shown in
Fig. l. After a delay of approximately 10 ns, to eliminate
scattered light from the first two lasers, a third dye laser,
near the Ba+ 6s~6p transition, simultaneously excited
the 6s core electron and shook and nd Rydberg electron
into a different energy state with the same I quantum
number. Finally, Auorescence was collected from one of
the Ba+ 6p ionic fine-structure states for a period of ap-
proximately 10 ns, during and after the third-laser pulse.

A typical spectrum was obtained by first setting the
Rydberg excitation lasers to their required wavelengths,
monitoring laser-induced Auorescence in each case to
maximize the population transfer. It was usually neces-
sary to reduce the power of each of these two lasers to
prevent undesired photoionization from depleting the
Rydberg population. Then, with the first two lasers fixed,
the monochromator was set to detect one of the two Ba
6p ~6s transitions, while the third dye laser was scanned
over the region producing shake down and shake off.
Since the wavelength range of the third laser was fairly
large (10—20 nm), we also measured the laser's power
variation over the tuning range. The signal from the
monochromator was averaged using a boxcar averager in
the linear-sum mode, and stored by an AT8cT 6300 mi-
crocomputer for later analysis.
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The atomic beam was produced by heating a stainless-
steel oven, with a 1-mm-diam nozzle, which contains
barium metal. The oven is mounted inside a caramic in-
sulator, which is wrapped with nichrome heating wire.
The entire structure is shielded by three concentric sets of
stainless-steal-foil radiation shields, and enclosed inside a
copper, water-cooled can. The oven can be heated to
temperatures in excess of 1000 K, and produces an atom-
ic density of approximately 4X 10" cm at the interac-
tion region, 2 cm from the nozzle. Usually, the oven was
run at lower temperatures for two reasons. At very high
densities, the bound-Rydberg-state population became
superradiant. This produced copious broadband fluores-
cence which resulted in significant noise at the monitored
wavelengths. Even worse, the superradiance redistribut-
ed the Rydberg population, so that the high-energy and
angular-momentum resolution would be lost. The second
difhculty with high atomic-beam densities was that stron-
tium impurities would become significant. The strontium
resonance line is at 461 nm, perilously close to our moni-
tored lines. Any amplified spontaneous emission (ASE) in
the third dye laser excited this resonance, again produc-
ing a background.

Above the interaction region, another water-cooled
copper can:raps the barium beam to prevent it from
coating the optics. The interaction region is defined by
the point where the atomic beam is crossed by the three
coHinear lasers, which pass through a series of baNes to
reduce scattered light. At a right angle to both the lasers
and the atomic beam, a camera lens collects the emitted
fluorescence, and focuses it onto the entrance slits of a
0.1-m monochromater. All optical elements, except for a
12-cm-diam window, are kept outside the vacuum
chamber; nevertheless, the camera lens can be positioned
less than 10 cm from the interaction region. The mono-
chromator is typically set for a resolution of 4 nm.

The dye lasers are pumped by the third harmonic of
two independently triggerable Nd: YAG (where YACC

represents yttrium aluminum garnet) lasers. The first two
dye lasers are pumped by the same Nd: YAG laser, while
the third dye laser is pumped by the second, delayed
Nd:YAG laser. The first two lasers are simple, trans-
versely pumped oscillators, which typically produce 0.3-
mJ pulses of 5-ns duration, with a spectral bandwidth of
0.4 cm ', at wavelengths of 554 and 422 nm, respective-
ly. The third laser is a commercial transversely pumped
oscillator with two stages of transversely pumped
amplifiers. It typica11y produces 7-m J pulses in the
450—500 nm wavelength range, again with approximately
5-ns pulse times, and 0.5-cm ' bandwidth. often, we
would operate this laser at lower powers, after realigning
it to reduce the ASE output. As mentioned above, the
ASE excited strontium to produce a background, but in
some cases it was also very eftective at photoionizing the
barium Rydberg states.

RESULTS AND DISCUSSION
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There are no doubly excited states or shape resonances in
this energy region, so it can be easily described by the
simple model of Eq. (4). Figure 2 shows data from this
excitation as the third dye laser was scanned over the
wavelength range 458 —438 nm. There are three prom-
inent features in this data. First is the sharp peak at
21952 cm ', which is due to laser-induced fluorescence
of Ba+ ions. Such ions are always present, being pro-
duced by collisional processes, and (mostly) by photoion-
ization. (The second, smaller sharp peak is laser-induced
fluorescence from the 5s9d 'D2 ~5s 5p 'I', state of stron-
tium. The resonance transition in the impurity strontium
is excited by ASE from the dye laser as mentioned above. )

Underneath this peak is a broader peak, which is due to
scattered laser light passing through the monochromator.
The width of this peak is characteristic of the bandpass of
the monochromator. The final structure is the shake-off
signal, due to simultaneous excitation of the 65-core elec-
tron, while the Rydberg electron is shaken into a continu-
um state. Superimposed on the data is the simple model
of Eq. (4). We made no attempt to measure the absolute
phase in this case, since that would best be done by com-
paring the total ion yield below the threshold, where the
phase is related to binding energy, to the total ion yield
above the threshold.

In Fig. 3, we show the 6s19d~6p, /2+e shake-oA'

spectrum, which also shows the eA'ects of shake down to
6p3/2nd states with n between 11 and 14. The solid line
through the data is our best visual fit using three channel
MQDT including one bound channel and two continua
channels. The bound channel is the 6p3/pnd series which
provides the shake-down transition moment as in Eq. (2).
One of the continua is the shake-off continuum of Eq. (4),
and the other provides an extra width to the bound states
but is not directly excited. This second continuum is
clearly needed, since the spectrum never reaches a true
zero after the threshold turn on. We have found no
significant improvement in the fit when we introduced an

As a first illustration of the shake-oft' technique, we ex-
cited the Ba 6s19d ~Ha 6p3/2+e transition to pro-
duce d-wave electrons with energies of 0 to 50 meV.

FIG. 2. Shake-off'spectrum obtained from exciting the transi-
tion, Ba(6s19d)~Ba (6p3/z)+e, by detecting the Auores-
cence from the excited Ba (6p3/z) ions.
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FIG. 3. Shake-off spectrum obtained from exciting the transi-
tion, Ba(6s19d)~Ba (6p, /, )+e, by detecting the fluores-
cence from the excited Ba+(6p&/2) ions. The resonances are
Ba(6p3/2nd) states with 11 ~ n ~ 14.

TABLE I. MQDT parameters for the 6sl9d~6p, ~2+e
spectrum shown in Fig. 3. The labels 6, cl, and c2 correspond
to the shake-down resonances, the shake-oA'continuum, and all
other continua, respectively.

Cl

C2

—0.23
0

—0.270.
0

2.75
2.89

additional continuum, whether it be detected or not.
Moreover, we have found no evidence of additional
bound resonances, although the 6p3/2ns series should be
present and located approximately centered between the
obvious 6p3/hand resonances.

The MQDT fitting parameters are given in Table I.
We have used a shifted R-matrix representation, so that
each channel has a quantum defect and each pair of
channels has a coupling represented by an off-diagonal
matrix element of R. ' This shake-off spectrum gives no
information about the interactions between the continua,
nor about the phase of the second continuum (which is
not directly excited). The spectrum is, however, rather
sensitive to four remaining MQDT parameters in this
three-channel fit. The most sensitive parameter is the
quantum defect of the bound 6p3/hand channel which
determines the location of the high-energy resonances,
where shake down totally dominates the spectrum. The
next most sensitive parameter is the phase shift of the
shake-oF continuum, which determines the size of the
signal just before the first 6p3/z13d state. At threshold,
before the resonance, the transition moment is dominated
by just the shake-off contribution, so the ionization rate is
a measure of the phase difference between the initial
bound state and the shake-off continuum as in the previ-
ous example. But, near that first resonance, two things

occur: the density of bound-state character increases, so
the shake-down transition moment increases, and the
shake-oF continuum phase changes by n. As the phase
change occurs, the shake-off transition moment changes
from its near-threshold value, first increasing, then pass-
ing through zero and then returning to its initial value.
Since the zero occurs at a higher energy than the reso-
nance, the continuum phase shift must be greater than
the bound resonance value. This continuum phase shift
also determines where the two-transition-moment contri-
butions, shake-down and shake-off, will be comparable.
Since these two terms interfere, one expects a relatively
Aat region to occur when the two terms are changing at a
similar rate, which means that their values are also close.
Such a region can always be found, since the shake-off
transition moment will decrease above threshold as
(A'cu —irido )

' while the shake-down moment increasese

as (irido —
Aco6~ ) ', where co6~ is the transition fre-

l 3/2 1/2

quency to the lower excited core state, and co6 is the

transition frequency to the higher excited core state. In
Fig. 3, these two transition moments become approxi-
mately equal in the region between the first and second
resonances.

Both of these characterizations of the continuum phase
shift are only measures relative to the size of the shake-
down transition moment. This moment depends
(through the size of the A6&„d coefficient) on the width of
these resonances which in turn is determined by the sum
of the squares of the two off-diagonal R-matrix elements.
The way that this width is distributed between the two
continua can be determined from the depth of the mini-
ma between the 6p3/2nd resonances, particularly the first
minimum. If there were no second continua, then there
would always be at least one true zero between the reso-
nances as the shake-off and shake-down transition mo-
ments canceled each other out. Even if only one term
contributed, each of the two-transition moments pass
through zero individually as they change sign near the
resonances. The additional continuum introduces an ad-
ditional solution composed of a linear combination of the
two continua which is not coupled to the 6@3/pnd reso-
nances. Since this solution has a component of the first
continua, there is a shake-off transition moment to excite
it, but since it is not coupled to the resonances, the
solution's phase does not change, so it provides a slowly
decreasing background. The ratio of the resonant por-
tion of the spectrum to the nonresonant portion deter-
mines the relative size of the couplings to the two con-
tinua. The sign of the coupling between the resonances
and the first continua can also be determined from this
spectrum. Since the sign of the 3

& „d coefficient depends
on the sign of this coupling, and the shake-off and shake-
down transition moments interfere, the sign of the cou-
pling, and the continuum's quantum defect will deter-
mine the asymmetry of the resonant structure. There is
no way to determine the sign of the coupling to the other
continuum from this spectrum.

This three-channel model for this spectrum is not com-
plete for several reasons. First, the spectrum is composed
of J =1 and J =3 states, in a 2:3 ratio. Furthermore, al-
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though only one shake-off continuum is available for each
J value, there are two 6p3/hand resonances. Finally, there
are many continua available for each J that are not
shake-off continua. Nevertheless, since the main charac-
teristics of the spectra are well modeled, we may con-
clude that the quantum defects and channel couplings are
not strongly J dependent. Combining the many addition-
al continua into one should have little effect since the
only role of the additional continuum in the model was to
provide a nonresonant shake-off background, and addi-
tional width to the 6p3/2nd resonances. To introduce
other continua, the only necessary restriction is that the
total off-diagonal R-matrix elements should sum in quad-
rature to the value in Table I.

CONCLUSION

This work has demonstrated that the shake-off spec-
trum, which results from the simultaneous excitation of a
core electron and ejection of a Rydberg electron, provides
a sensitive measure of the phase of the shaken-off contin-
uum electron. This phase varies rapidly at energies near
a doubly excited resonance, and this variation can result
in an accurate measurement of the magnitude of indivi-
dual MQDT parameters. In cases where shake-down and
shake-off can both occur, the shape of the spectrum can
also provide information about the sign of some of the
MQDT parameters.

This technique allows a very high-resolution (0.1 MeV)
determination of the phase of one particular I-value par-
tial wave at a time. Nevertheless, there is no fundamen-
tal limitation on the specific value of l to be studied. The
shake-off spectra are usually very simple with the physi-
cally measureable quantities readily discernible, a compli-
cated partial-wave analysis is not required. Consequent-
ly, it should be an ideal technique for studies of phase
variations due to subtle causes (such as shape resonances
resulting from an extra potential minimum inside the
core region). "

It is also clear that this technique can be extended to
study inelastic shake off, where the transition moment is
to a particular excited core-continuum wave, but a
different core-continuum wave combination is detected.
This should provide detailed information about one
specific continuum-continuum coupling, something
which is difficult to obtain from standard branching ratio
measurements. Work to demonstrate this effect is
currently in progress.
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