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We present a procedure to subtract the contribution of the first Born approximation from ‘“‘exact”
transition amplitudes of projectile plus target collision complexes. Following this preliminary step,
only a small set of amplitudes requires accurate calculation, these amplitudes are labeled by low
values of angular momentum and are invariant under coordinate rotations.

I. INTRODUCTION

Collisions of a charged particle with an atom or mole-
cule may result from a projectile approach with impact
parameter b comparable to, or much larger than, atomic
radii. Large impact parameters b imply a large geometri-
cal effective target (wb?) and a weak interaction which
would afford adequate evaluation of a cross section in the
Born approximation. More accurate calculations are in-
stead required for small impact parameters, especially at
low collision velocities. The analytic compactness of the
Born cross-section formula, however, makes it desirable
to represent the effect of collisions with low impact pa-
rameter as a departure from the Born evaluation rather
than as the result of a wholly separate treatment.! This
paper presents a general procedure to this end.

The compact form of a Born treatment represents the
transition amplitude in a collision as a function of the
momentum #q transferred from the projectile to the tar-
get, where

q=k;—k, (1)

is the difference of the initial and final wave vectors of the
projectile. This amplitude is represented by>

(EfJ Mk, |TEEJMK,)

where E, J, and M characterize the target states before (i)
and after (f) the collision, and (z,,r,) indicate the charge
and position of the ath particle in the target. The matrix
element in (2) constitutes the Fourier transform of the
electric charge distribution associated with the target’s
transition i— f. The coefficients of (2) stem from the
Fourier expansion of the Coulomb field generated by the
projectile’s transition between plane-wave states (k;, k)
normalized per unit energy (Sec. 4.3.2 of Ref. 3).

A corresponding amplitude T¢* calculated accurately
for low impact parameters is instead usually represented
in a base of angular momentum eigenstates of both target
and projectile,

CEpJ My klom | TNEJ M kim;) (3)
Representing T* as a departure from TE, ie., as
Tex:TB+(Tex_TB) , (4)

requires us then to cast both TZ and T** in the same base.

Note at the outset that the interaction between projec-
tile and target is invariant under rotations of coordinates.
The basic forms of T? and T°* should be similarly invari-
ant but their initial representations (2) and (3) are not.
An invariant form of (3) is readily extracted by replacing
the separate pairs of magnetic quantum numbers (M;,m;)

_ me? ‘/kikf and (M;,m,) by their sum M=M,-+m,~=Mf+mf,
2t #q? which is conserved in the collision. Accordingly we
transform (3) by addition coefficients for the vector angu-
X <EfJfo > z,expliq-r,) E,J,-M,-> , (2) lar momenta of the collision complex, J=1J,+1,=J,+1,,
a namely, (JMIJfo,lfmf ) and a conjugate, writing
|
<E/kf(-]f]f)J|Tex!E1k,(J,1,)J)Z z (JMIJ/‘Mf,lf”‘l/)
va’"/va'"l

X (EfJfo,kfl/mf|Tex|E,J,M,,k,[,m,><J,M,,l,mI|JM> . (5)

Note that this basic matrix element (5) is diagonal in J
and explicitly independent of M, i.e., of reference coordi-
nates, as desired.

We shall here represent T? in the base of (5) as a super-
position of terms in the base of (2). We understand that
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the seemingly straightforward task of achieving this goal
in suitable and general form has been hampered previous-
ly by analytical complications, due to the use of different
representations in Eq. (2) for target and projectile states,
namely, angular momentum eigenstates for the target and
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39 COLLISION AMPLITUDES SHORN OF FIRST BORN TERMS

momentum eigenstates for the projectile. This difference
stems from the fact that a collision amounts, in the first
Born approximation, to an elementary transfer of
momentum 7iq from projectile to target. Constructing a
frame transformation that would recast (2) in the base of
(3) with minimum loss of compactness and transparency
has required many steps of trial and error.

Note that the Born matrix element on the right of (2)
depends only on the magnitude of q, regardless of the
magnitudes and directions of k; and k,. (Indeed, experi-
mental verification of this independence is a familiar test
of the Born approximation.?) In our problem the magni-
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tudes k; and k; are specified as input parameters of the
matrix element (3) but the angle between k and kf is not.
[Integrations over this angle, at constant (k,,kf) amount
to integrations over the magnitude of q]. Accordingly
the matrix element on the left of (2) should be indicated
more explicitly as (E J M/ k .k |T?|EJ M, kk,).
Our goal of recasting this matrix in a form congruent to
(3) requires_us then to split off its dependence on the
directions (kf,k ), replacing them with corresponding or-
bital and magnetic quantum numbers. This will be
achieved formally by the double expansion

(EpJ M TR EIMX )= 3 3 (k,ll,m YCEJ My kL m, | TPEJ M kilim Y Lm; k) (6)

If'm[ I‘,mi

whose transformation coefficients are defined as

A 1 -~ ~ L ~
<kf‘lfmf>:l fY/fm/(kf ),(limi|ki>—l YITm‘-(ki) ’

(6"

by Eq. (4.7) of Ref. 3. The frame transformation we seek
amounts thus to casting the expression on the right of
(2) as an explicit function of {kf,kf,k,,k } rather than as
a simple function of q=k; —k,.

Different bases are used for target and projectile in (2)
because the Born approximation deals with the elementa-
ry process of momentum transfer #iq from projectile to
target. An exact calculation deals instead with the tran-
sient complex formed by projectile and target; it is treat-
ed in a single base and leaves invariant the angular
momentum J of the complex in an arbitrary frame about
its center of mass. The connection between the two
frames is carried out in Sec. II. It will be applied in Sec.
ITI, for purposes of illustration, to the elementary col-
lisions e +H for which (2) is known in fully analytical
form. Final comments are presented in Sec. IV.

II. FRAME TRANSFORMATIONS

The transformation of the operator T2 from its repre-
sentation (2) to a frame congruent with (5) is mediated by
the angular momentum j, transferred from projectile to
target. It articulates in several steps, namely,

(a) Analysis of T2 into contributions labeled by a quan-
tum number j,.

(b) Separation of T?s dependence on target and projec-
tile variables.

(c) Expansion of T? into harmonics (6') ofk and k

(d) Transformation of TZ from the frame of (3) to that
of (5).

A. Expansion into partial waves

The matrix element in Eq. (2) is called the “form fac-
tor” of the target’s transition from its initial state to its
final state, as indicated by

,.> NG

Real and imaginary parts of this expression are readily
identified in the expansion of its exponential into powers
of q-r,. The even-power terms are real and of even parity
under the inversion r,— —r,; parity conservation re-
stricts their contributions to transitions i — f that con-
serve parity. The odd-power terms are instead imaginary
and contribute only to parity-changing transitions.

A more compact and instructive analysis of contribu-
tions to the form factor emerges from the familiar expan-
sion of its exponential into partial waves,

F,,.<q)=< 5

_J
Fr=(E,M, sz, zz" (24, + 1P, @%,)], (ar.) |EJ M, ®)
:<EfJfo Eza 2 ["l47Tthm,(a)Yj,ml(?a)jj,(qra) EiJfMi> , R (8")
a Jpm,

where P; is a Legendre polynomial of degree j, and Jj, in-
dicates the spherical Bessel function of order j,. Here the

factor i’* shows that the terms with even (odd) values of

|
ji are real (imaginary), the factor P; (§-T,) selects even
(odd) values of j, according to the equal (opposite) parity
of the target states (f,i). Moreover the factor Yj’m,(?a) in
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(8') amounts to a 21’-pole operator which changes the
target’s angular momentum J; to J, in accordance to the
vector operator equation

The component of this equation along the polar axis
yields the corresponding relation among the magnetic
quantum numbers of Eq. (3)
M;=m+M;m +m =m, . 9%

These relations illustrate how the angular momentum j,
is transferred from projectile to target in the (Born ap-
proximation) collision process.

Equation (8) restricts the value of j,, through the tri-
angular condition

Ji+dpzj 2 =d,l, (10)

to a range set by the specified values of J; and J,. This
condition usually enhances the importance of the expan-
sion (8) by reducing the number of its terms to a very few,
with low j,, in collisions that do not disrupt the target
structure completely. The opposite limit implies a large
momentum transfer ¢ >>1 a.u., in which case the col-
lision resolves into separate binary interactions of the
projectile with individual electrons and is made unlikely
by the prefactor of (2) « 1/¢> (Note, incidentally, that
effects of exchange between an incident electron and
atomic electrons could be included in the first Born ap-
proximation correctly only in the limit of binary col-
lisions; here we exclude them in this approximation,
viewing them instead as an essential ingredient of
T —T%2)

Returning, finally, to the restriction placed by parity
conservation on the expansions of the form factor, we
note its simple representation in terms of the parities
(Pr,P;) of the states (f,7) and the values of j,,

PP =(—1)=(—1)" " (11)
Let us also mention that a second set of “magnetic” form
factors becomes relevant in high energy collisions where
the interaction between projectile and target currents is
no longer negligible and yields a parity selection rule op-
posite to (11); their contribution will not be considered
hereafter.

B. Separation of variables

The expansion (8') of P; (q-T,) into products of har-

monics Y, (@)Y, (f,) has initiated the process of fac-
toring out the dependence of Fy;(q) on g=k; —k, and on

target variables. The harmonic YJ’T’",(a) can also be fac-

tored out of the matrix element in (8'). Paralleling this
separation we shall also factor out the dependence of
F;;(q) on magnetic quantum numbers, which depend on
the coordinate axis, from invariant functions.

The next step in this process represents F,(q) through
the Wigner-Eckart theorem
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Fp(q)=

s iy, @)

Jym

<Jf‘Mf1jrmt’JiMi >Gfi(jr’q) ’

!

(12)

in terms of the Wigner coefficient that depends on
{M;,m M.} and of the invariant
(Eij,u|Eza ol NEJ;p)

(Jpplji 0,010

T.)j; (ar.

Gilj,q)=4m
(12')

The arbitrary value of u in (12') can be set to O if J; is an
integer or to 1 if half integer, as indicated by
w=1sin’J,7 . (12")
The new factor Gy; still depends on the projectile mo-
menta (k,[,k,), though only through their scalar combina-
tion k-k; in the expression of q. This combination will
be separated from G; later through expansion in Legen-
dre polynomials P, (k,-k;). However, a part of the
dependence of G;; on q can be separated readily through
the following factorization of the Bessel function,

Jitaro=tarY' 3, (ar) (13)

whose modified Bessel function jA'j is represented by a
!
series in even powers of gr, and remains finite at gr, =0.

The factor qj’ of (13) can be taken out of G, and com-
bined with the harmonic YJ*,,, (@) of (11) to form a har-

~

monic polynomial Ik,-—kfIJ’ Yy, (@) in the components

of (kp.k).
Y, 0( ) in

2ary' ol

The factor ri’ combines similarly with
(12') to form the axially symmetric polynomial

r,) in the components of r,, which represents

the 2 -pole moment of the target’s charge density at r,
The radial oscillations, of the remaining factor of (13)
j] (gr,), modulate this multipole moment, whereby the

modiiied coefficient

@f,-(j,,q)
_ Gulj,q)
- 47rqj’
(EfJf,u]Ez o) (ara) | Eid i)
- (qulj,O,J,-,u> ()

represents the 21’-pole moment of the modulated charge
density of the target’s transition /i — f. It is this 21’—pole
moment @f,-(j,,q )—more precisely, its ratio to the factor
g? in the denominator of (2) —which remains to be ex-
panded into polynomials P, (k,-k;) to separate out the
variables (k¢,k;). We thus set
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quéﬁ(j,,q)z % 1L +VH };(j,, L, ks, k;)

xP ks, k), (15)
whose coefficients

+1 _ . ~ A
HyGo Lok k)= [ d(kf g 2Gnq)P (k,k,)

(16)

remain to be evaluated numerically as discussed in Sec.
III. The desired dependence of T? on the projectile
directions (k;,k;) is thus represented by expansion into
polynomial factors
Ik, —k, "V, @P.(k, k). (17)
A special note applies to ““‘monopole” transitions, with
Jj;=0. In this case, no contribution accrues to (14) from
the zeroth order term of the expansion of 70 into powers
of (gr)?, owing to orthogonality of the i and f states with
E,+E, and Jy=J;. Proportionality of the matrix ele-
ment to g cancels the ¢ ~ % factor in (16).

C. T® expansion into harmonics of (/IE ! ,ﬁ )

.. The expansion of T2 into harmonics of the directions
k, and k; must be carried out separately for each term of
the earlier expansions with indices j, and L. Since the
function (17) transforms under coordinate rotations as a
bra {j,m,|, the expansion we seek should consist of ap-
propriate superpositions of products of Y, functions of
k, and k;. The transformation properties of each of
these functions are specified by Eq. (6) and (6'), to ensure
that the coefficient of each product shall transform just as
the matrix element (3) of T**. That is, the base products
shall have the form

Y,/mf(/lzf)Y,’:‘mi(f(,-) . (18)
The appropriate superposition coefficient consists of two
factors, namely, a vector addition coefficient for a prod-

|
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uct that transforms as a bra, and the factor (—1 )™/ that
transforms Y,f,,,[ into Y,;,_,,,f. The resulting harmonic
function of the pair (’lE/,’lE,-) is

y/‘j’ ’(kf,k )_ 2 (_], tllfy mf,lm >

mp,m;

X(—1)™ Y,fmf(ﬁf)Y,Tm((/lz,-) .
(19)

Consider now that the expression (17) consists of two
factors, one of which transforms as {j,m,| while P; is in-
variant. We perform then its expansion in two steps.
The first step consists of expanding the first term of (17),
[k, —kflj’ Y}, (@), which can be cast as a polynomial of
degree of j, in the components of k, and k; and
whose expansion into terms of degree k}k,l“
to be

I,
is known*

4m(2j, + 1) 12

/
[@= § QI+ D2(, —D+1]!

X(—1) ).

Rand

(T I lq )
k}ki yl,jﬁ/,j,m,(kf’
(20)

Note that the index pair (//,/;) of (19) has been replaced
here by the pair (/,j, —1) each of which is <j, in accor-
dance with the degree of the initial expression.

The second step consists now of expanding the product
of the functions ¥} j,—1,j,m, ON the right of (20) and of

PL(kf k ) into functions (19) The indices (/,];) are now
restrlcted only by the triangular relations among (L,L,1y)
and (j, —I,L,l;), where the values of L are only restricted
by the convergence of the coefficients Hfi(j,,L,kf,k,) as
L — . The coefficients of this expansion are identified
by inspection as matrix elements familiar in spectrosco-
py,5 namely,

1

. . ~ ~ . 1+1 . 4 .]I— ’

(Lji=Ljim [Pk k)l plijim, ) = (= )+'+J'_2_——Lﬂ +1 ly <l“)1f||L)(_11_1”11,“L> ) 21
where

||Y, ILY=(—1) 21 +1)(2L +1)(21,+1) 201 L I, |

I /f“ (—1) : 0o .

Combination of (20) and (21) yields now the expansion of (17) in two-variable harmonics (19),

A A A 4 p A A
Ik, kf[f,Y* q)PL(kf.ki)———2L+1 EX_]“L I 0,k pok ')‘yrf/,j,'n,(kf'ki)’ 22)
}
with the coefficient
o 4m(2j,+ 1) 172 P jo=1 o) [k, )
. . J; t . » M
X o Lol Lk gk ) =(— 1)k 2 21+1,[2(J’_l+1]'] YL Ge=HIY LD oL

(22")
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Note that this expansion involves only algebraic properties of projectile variables whereby its coefficients (22’) can be
evaluated without reference to target properties.

Our final goal here is to expand functions of (k/,k ) into products of separate harmonics of their two arguments,
analogous to (6), whose expansion coefficients will be cast as matrix elements {/;m| - - [I;m;) akin to those on the
right of (6). This goal is reached by transcribing (22), recalling the expression (19) of ¥* as a product of harmonics, in
the form

K=k Yy, @PLR K= 3 (K m ) mg =k, 1Y, @P (R KDIm Y m k), @3)
[f’mf'lz’m,
with
(Upm Ik =k " Y}, @PL(Rp &) ) =i 2;:_1X(j,,L,If,l,-,kf,k,-)(j,m,|lf,—mf,l,mi)(—l)m/ : (23)

The matrix element of T? on the right of (6), congruent with the matrix element (3) of T®*, can now be constructed as a
linear combination of matrix elements (23’) with coefficients drawn from the previous equations (2), (12), (14), and (15).
The result is

4me RC A/t

"HpGoLoke k)X G Loyl kg k)

(E J My kplym | T2 EJ M, klim; ) = ViR S S(—

L=0 j,
X 3 AT Ml jim M) Gom |, —m g Lim (=1
(24)
A few remarks may illustrate Eq. (24): Its first factors derive from (2), the ¥, from (15) and the Ej m, from (12).
The imaginary factors from (12) and (33') yield the real factor 1 owing to the parity Eq. (11). The coefﬁcnent Hg isa
target property, whose convergence at high L depends mainly on the factor ¢ ~2 in (16). The coefficient X has been dis-
cussed below (22'). The quantum numbers (/,,m ;) appear in different positions on the left and right of (24), namely, in a
bra on the left and in a ket on the right. The difference originates from the implied use of the relation j, =1, —1, in (19)
and of J,=J,+j, in (12), and is rectified by the identity
172

2j,+1
! 2(JfoIj,m,,J,M,-)(lfmf,j,m,]ll-m,-) R

20, +1

S I ML jom I MO Gom L, —mp Lm Y= 1) =(—1)7

m,

(24')

whose last factor represents I, =j, +1,. An interpretation of the 2,,,[ on the right will emerge below.

D. Invariant form of T2

The invariant form of T2, congruent with (5), results at this point by applying the transformation on the right of (5)
to the expressions 2'", ... on the right of (24). The combination of these expressions mirrors the recoupling of three

angular momenta

I=J,+1,=(J,;+j)+1 =)+, +j,)=J,+],= (25)
represented by a well-known formula in terms of a 6]-coefﬁcient.6 It reads
<(_],J,)Jflf,JM'J,(lf],)ll,JM)zM ZM (JM|Jfo,1fmf)(Jfo]],m,,J,M,)(lfmf,],mtll,m,>(JIM,,l,m,|JM)
i
. Ji I j
VRPNV R AP o MR AR
(—1) [(2J,+1)2]+1)] llf AR (26)

Equations (24), (24'), and (26) combine now into the desired expression of T2,
CE k(Jpl V| TPE Kk, (J;1))
g+,
J AT H(172), +1

VEES S et 2+ D(2),+ D]
L=0j,= |J J

4me

Ji Jf jt
Lol (27)

1

XH (oo Lok k)X Gy L L Iy kg k) [
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As noted earlier all the target’s dynamical properties
are incorporated in the coefficients H; of (27), to be stud-
ied in Sec. III. The remainder of (27) consists of explicit
algebraic functions of (k,k;) and of angular momentum
quantum numbers. Notably these numbers consist of two
subsets with different restrictions: Triangular conditions
restrict the magnitudes of the subsets {Ji,Jf,j,,l,j,—I}
in accordance with the usually low values of (J r»J;); the
upper rows of the 6; coefficients in (22’) and (27) include
only elements of this subset. The remaining subset
{{7,1;,L,J} is similarly restricted to values close to that
of L and occurs in the lower rows of the 6; coefficients.
The magnitude of L itself is limited only by the conver-
gence of Hj; as L increases, as noted above. The depen-
dence of the 6;’s on a large L has been discussed in the
literature.’

The physical dimensions of the several factors of the
T2 expression (27) may be noted: T2 itself is dimension-
less as are both the matrix element and its coefficient in
(2). The coefficient H, has the dimensions of
(length)j’H, being an integral over a dimensionless vari-
able of the 21’-pole moment G 1 multiplied by the inverse
square wave number ¢ ~2. The X coefficient has the di-
mensions (length) ’t of its factor k,—j . The prefactor of
the > _, cancels the residual dimensions.

III. PARAMETER H;(j,,L,k;,k;)

This parameter is defined by (16) and earlier equations
as a superposition of matrix elements (2) of T? with
different magnitudes of the momentum transfer q, a su-
perposition anticipated in Sec. I. The integration vari-
able of (16), kk;, is included in the parameter

q2=|ki___kf|2
=(k;— k) +2k ik (1-k, k)

A ~ _2
=2(k*—8k?) (l—kf-ki)+—_—8k———_—— , (28)
2k 2—8k?)
where
l?=%(ki+kf) , 08"
5— ki kf 1 E,“'Ef

e - .
k ki+kf sk/k<<1 2 E,'+Ef

This parameter occurs both in the denominator of the in-
tegrand of (16) and in the factor Gﬂ(j,,q) through the ex-
pansion of the function

© ( —q 2r2/2 )V

L= 2 )+ 1

(29)

in the matrix element of (14). The integral (16) could
thus be evaluated analytically for each term of the series
(29), but its net value would not be readily assessed owing
to the alternating sign of those terms. Indeed, the radius
of the series of integrals may prove insufficient.® We shall
then report here an example of numerical evaluation, pre-
facing it by a qualitative discussion.

The oscillating function (29), jj[(qr)/(qr)j', converges
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as (qr)_(]’ﬂ) when gr — « and is further multiplied in
the matrix element of (14) by the exponentially converg-
ing 2]’-pole density of the i—f transition. The v=0
term of the expansion (29), which becomes very large as
k f-k,-—> 1, determines thus the behavior of the coefficient
Hy(j,,L,ks,k;) at large L, which we shall indicate as H;
for brevity. This term fails to contribute, however, for
J:=0 as noted as the end of Sec. II B. Its contribution to
H, is represented by

(E[J;|S z,r |EJ,)
o 1+ (8K /k 2
1—(8k /k )?

(0) —
HL -

9]

kik, £

8k /k << 1 1 | j|
— —(E.J z r!|E.J.
E/6E>L>>lk2< ad § ala 18 l>
2 EtE,

LEE | (30)

XlIn

where Q; is the Lth Legendre function of the second
kind. The upper limit of L in the last expression is set by
the use of an approximation form of Q;; we have in fact
Q;(z)—0 (as L — ) at constant z > 1 whereas the loga-
rithmic approximation to Q; in (30) becomes negative for
L >k /8k. Our interest in the approximate form lies in
its showing that k 2H® depends mainly on k /8kL in the
intermediate range of this parameter, and vanishes as
L — o for given k and 8k.

For purposes of illustration we have evaluated H; nu-
merically for a few transitions of the H atom whose form
factor has an analytic expression as a function of ¢2.° The
resulting values are plotted in Fig. 1, with the scales sug-
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FIG. 1. Values of H/;(j,,L,k;,k;) for 1s—2p transitions in
atomic H. Notations are as in Sec. IIl. H,: O, E;=20eV; X,
E;=50eV, ¥, E;=500eV. H{: +,E,=20eV; A, E;=50¢eV;
0O, E;=500 eV. For ls—np, H, «<n " (For the physical di-
mension of H; see text at end of Sec. II). Note how the scale
adjustments of abscissas and ordinates condense the data into
similar curves.
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FIG. 2. Values of Hj;(j,,L,k,k;) for 1s— 3d; notations as in
Fig. 1.
gested by the analysis of H/, except that it proves more
practical to plot kH, rather than k 2H,. The low values
of the ratio H; /H}” reflect the partial cancellations re-
sulting from the sum in Eq. (29). The lower values of H,
for the quadrupole transition 1s — 3d are shown in Fig. 2.

IV. FINAL REMARKS

Equation (27) represents T2, the first Born contribution
to a collision amplitude, in the same frame as was used in
Eq. (5) for the “exact” amplitude T, thus completing
the task outlined in Sec. I. As anticipated in Sec. I, the
expression (27) of T? amounts to a superposition of the
familiar Born approximation matrix elements (2), which
are included in the coefficients H,(j,,L,k,k;) through
their definition (16) and through the earlier relations (14),
(12'), (8), and (7). Subtraction of (27) from (5) defines a set
of collision amplitudes
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(E k (J )T T —TP|E k;(J,1)T )

whose magnitude converges to zero rapidly as J in-
creases, thus restricting the scope of “‘exact” calculations
of the target plus projectile complex.

Sample calculations of inelastic collisions of slow elec-
trons with atoms are planned within this limited scope,
by the same R-matrix procedure that has yielded input
data for spectroscopic applications.'® These data consist
essentially of scattering eigenphases and eigenvectors,
which yield spectroscopic information by multichannel
quantum-defect techniques on the one hand and collision
data on the other hand. Making their link to collisions
practicable was the primary motivation of the present pa-
per.

An incidental benefit accrues to the analysis of col-
lisions from the introduction of the angular momentum
transfer j, in our treatment [Eq. (9)]. Even though the
explicit dependence of T? on the momentum transfer q
has been transformed away in Sec. II, we are aware that
the direction q of target recoil has been seen to provide a
convenient coordinate axis for the study of collisions re-
gardless of its relevance to the Born approximation.“ In
this context we note that the invariance of T# in Eq. (2)
under rotations about g implies M =M, in the q frame
together with the restriction of the Em, to m,=0in (8,

(23"), and following equations. Nonzero elements of the
transition matrix with m,0 in this frame are according-
ly a signature of the contributions of T —T®. There are
only a few such contributions, in general, owing to the re-
striction (9). Their relevance to the multipole transitions
of the collision target is represented by Eq. (11) and fol-
lowing of Ref. 12.
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