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Ionization of high-n H atoms by bichromatic microwave fields
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We present the first quantum-mechanical calculations of the ionization probability of high-n H
Rydberg atoms perturbed by strong bichromatic microwave fields. The quantum-mechanical ion-
ization thresholds agree very well with the experimental findings. The eN'ect of rational approxi-
mants to the experimental frequency ratio is studied. We provide evidence to show that for the
range of principal quantum numbers and field parameters investigated experimentally, the
response of the H atoms to the bichromatic microwave field is quasiperiodic.

The ionization of high-n H atoms by microwave fields is
relevant to central issues in two seemingly unrelated fields
of physics: it is a study case for the "quantum chaos"
community, and it is the most transparent example for the
study of multiphoton processes in free atoms. Because of
the relative simplicity of this problem, and because of the
availability of accurate and comprehensive experimental
data, ' this subject attracted much attention ' and
received the status of a paradigm in both these fields.

Experiments investigating the response of hydrogen
Rydberg atoms to strong bichromatic microwave fields are
being conducted now and their results have been reported
only recently. ' From the theoretical point of view,
this system bears on a fundamental issue concerning the
nature of the response of a quantum system to a quasi-
periodic perturbation. When a second frequency is
switched on, the system ceases to be invariant under
discrete time translations and hence, Floquet's theorem or
any generalization thereof does not necessarily hold.
There is no general theory by which one could analyze
problems with quasiperiodic driving. Recent studies of
some particular examples ' reveal that the response
may show a transition from quasiperiodic to aperiodic be-
havior, and an adaptation of these results to other prob-
lems of interest is far from being straightforward.

In the present Communication we present for the first
time results obtained from the classical and quantal
theories of the response of a realistic system to a quasi-
periodic driving force. Both theoretical approaches will be
compared with the experimental findings. We shall show
that the physical insight and the numerical methods
developed for the single-mode case" can be extended to
the bichromatic case. The theoretical results reproduce
the experimental data very well.

In a typical experiment, ' ' a beam of neutral H
atoms is excited to a specific high-n state and collimated
to a microwave cavity, where it is exposed to a time-
dependent linearly polarized electric field, which is
characterized by its frequency (or two frequencies) and
corresponding peak amplitude(s). Frequencies and field
strengths are denoted by to; and e;, respectively (i 1,2).
The passage time of the atoms through the cavity is typi-
cally of the order of a few hundred field cycles.

One measures the ionization probability Pt(ei, e2, coi,

p 2 ——,z&0,
Hp ' 2 z'

z«0
(2)

Here p and z are the momentum and position of the atom-
ic electron in the field direction.

To introduce the notations and some essential concepts,
we shall start by discussing briefly the theory of mono-
chromatic excitation. One then deals with the Hamiltoni-
an (1) where either ei 0 or ez 0. The fact that the per-
turbation is periodic in this case is of tremendous help. By
Floquet's theorem we know that at any moment

I +(I)& -ge""
I y.(I)&(y.(0) I no&, (3)

where time is expressed in units of the field period and g
are the "quasienergies. "

I p, (t)& are periodic and we ab-
breviate the notation by denoting I p, (0)) by I a). If the
quasienergy (QE) spectrum is discrete, the wave function
I%'(t)) evolves in a quasiperiodic way. The QE spectrum

is always discrete if the Hilbert space in which the system
evolves is of finite dimension. In more general situations
this will happen if the QE states I a) are normalizable (lo-
calized).

After 1V cycles of the field the transition amplitude is
given by

(n I e(N)) -g(n I
a)e' (a I no) . (4)

A transition to a high-n state and subsequent ionization is

coz,no) keeping the frequencies fixed and varying the field
strengths for a range of initial quantum numbers np. At
low fields there is no ionization (Pt =0), while for high
fields one achieves complete ionization (Pt =1). The
transition between these extremes occurs rather abruptly,
and the onset of ionization is characterized by the field
values for which Pt reaches the value of 10% for the first
time. In a small number of cases, where Pt is not a mono-
tonic function, this assignment might be ambiguous.

Our quantum-mechanical calculations are performed
within the framework of the one-dimensional (1D) mod-
el' of H Rydberg atoms governed by the Hamiltonian

H(z, t) Ho+ z [at sin(toit) + e2sin(to2t )],
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possible if and only if there exists at least one I a) state
which overlaps appreciably with both the no and the
high-n state. This is why the localization properties of the
atomic states I n) in the I a) basis are of such importance.

To characterize the degree of localization of an atomic
state In) in the QE basis we introduce the width func-
tion

W(n) exp —QI(n (a) I in[(n]a) I . (5)
a

For ron & 1, W(n) shows a typical threshold behavior as
a function of n for given e and ro [see, e.g., Fig. 1(a) in
Ref. 12]. States below the threshold are too narrow in the

I a) basis [W(n) = I] and they have no chance to ionize.
For states located above the threshold, W(n) is large and
strong ionization is observed.

The full line in Fig. I displays the relation between the
field strength o and the corresponding n value at which the
jump in W(n) occurs. The dashed line represents experi-
mental ionization thresholds for the same field parame-
ters. The agreement between the two curves is striking.
Therefore, determining the transition points in the width
function turns out to be a simple and powerful tool for the
calculation of ionization thresholds in the single-frequency
case 11,12

Turning now to the bichromatic driving we propose to
take the following line of action. Any given irrational fre-
quency ratio can be approximated by rationals p„/q„such
that I ro2/rot —p„/q„ I & const/q„'. Replacing the irration-
al frequency ratio by its rational approximation in (1), we
get problems with periodic driving, which, by Floquet s
theorem, possess well-defined quasienergies and eigenval-
ues. It seems reasonable to suggest that by increasing the
order of the approximants one obtains in the limit the cor-
responding quantities for the case of the irrational fre-
quency ratio. Moreover, if we study the system during a
Pnite time, one can approximate the solution of the quasi-
periodic problem to any desired accuracy by the solution
of a periodic problem with sufIiciently large q„.

TABLE I. First four rational approximants to the experimen-
tal frequency ratio (Refs. 19 and 20) and their relative devia-
tions (%).

1.5
7 1.57 1 43

1.567 57
1.568 18

Experiment 1.568 16

Relative error (%)

4.35
0.21
0.038
0.0014

In this spirit we analyzed one of the ionization experi-
ments reported in Refs. 18-20 where rot 7.58175 GHz
and ro2 11.8894 GHz, a2 58.7 V/cm (peak field value
on the cavity axis) and et was swept. In our calculations
we used the first four rational approximants to the experi-
mental frequency ratio shown in Table I. In the experi-
ment the fields are homogeneous in z direction, but vary
considerably (of the order of 10%) in r direction because
of the modal structure of the fields in the cavity. This im-
plies that the theoretical ionization probabilities have to
be averaged over the experimental field distribution. We
have done this for the sweep field et in the case of the ra-
tional approximants ro2/rot

—', and —", . A simultaneous
average over s2 is prohibitively expensive. Therefore, we
chose the reduced value o2 52 V/cm as a representative
of the average. The quantum-mechanical calculations are
performed in a basis of 150 bound states including the full
coupling to the continuum as described in Ref. 11. The
interaction time was 100 cycles of the high-frequency
mode. In Fig. 2 we show a detailed comparison between
classical, quantum mechanical, and experimental ioniza-
tion probabilities for fixed sz as a function of the sweep
field ot. All four rational approximants give rather similar
ionization probabilities. Note, however, that the lowest
rational approximant (ro2/rot —,

' ) fails to produce the
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FIG. 1. Critical ionization fields as a function of principal
quantum number n. Full line: critical fields extracted from nu-

merically calculated width functions. Dashed line: experimen-
tally determined fields (Refs. 1-6). In both cases co 9.92 GHz.
Plot symbols: critical fields extracted from numerically calcu-
lated width functions for the bichromatic case. st/s2 2,
8~+ 82
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FIG. 2. Comparison between classical, quantum mechanical,
and experimental ionization curves for bichromatic driving. The
initial state is no 43. For the classical calculations ro2/rot
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FIG. 3. The locus of the scaled 10% ionization threshold
fields. From left to right: quantum mechanical, experimental
(Refs. 18-20), and classical.

"bump" peaked at e~ 110 V/cm. Away from this struc-
ture, where the calculations show a rather high sensitivity
to field strengths and frequencies, the higher rational ap-
proximants reproduce each other to a good average accu-
racy. This observation was confirmed in calculations with
a smaller basis which permits us to calculate full ioniza-
tion curves even for the 37 and 44 approximants.

Table I shows that the fraction '7' reproduces the ex-
perimental frequency ratio to 2. 1 parts per thousand.
Within a period of a few hundred cycles the system cannot
resolve such a small frequency difference and we felt safe
to perform the following quantum calculations using for
the frequency ratio the value —", (compare also Fig. 2).

For no=41, . . . , 45 and F2=0, 18.6, 40.7, 58.7, 92.5
V/cm we calculated the quantum-mechanical locus of
(scaled) ionization threshold fields sino. Figure 3 shows
that the quantum results are consistent with the experi-
mental results and the classical theory —except that the
classical thresholds are systematically too low. This be-
havior is analogous to the case of monochromatic driv-
ing" and probably due to the fact that for both frequen-
cies used here, the classically scaled values satisfy
co;no & l, i =1,2. This is the regime of parameters where
the perturbation is slow on the atomic time scale. In adia-
batic situations the maximum value obtained by the field
is the relevant parameter, and here it is the sum of the two
(scaled) fields. Indeed, the data in Fig. 3 seem to be
correlated by e&no+ e2no =0.12 on the average. Fluctua-
tions that are due to specific resonance conditions, result-
ing in nonmonotonic structures in the ionization curves,
are definitely noticeable.

In, the case of monochromatic driving, the existence of
thresholds in the width function W(n) was a useful
shortcut for the calculation of ionization thresholds avoid-
ing lengthy and expensive calculations which include the
continuum. Detailed numerical experiments revealed that
the width function of the "rationalized" bichromatically
driven H atom also exhibits marked thresholds which are
very similar to the ones encountered in the single frequen-
cy case. The locations of the two-frequency thresholds de-
pend only on the sum s&+ sz of the (scaled) field strengths
of the two driving modes. Fixing the ratio s~/san=2 and

with r02/ro~ = —", , we determined the positions n of the
thresholds of the width function for seven values of the
(summed) field strength s = s~ + s2. The result is
displayed by the plot symbols in Fig. 1. The agreement
with the single-frequency data is striking. This result, ob-
tained for a special ratio of s~/s2, should be valid more
generally. In order to test this conjecture, we calculated
the sum of the field strengths of the two driving mi-
crowave modes for a11 no values where experimental two-
frequency ionization threshold data were available, and
found it to be very close to the corresponding single-
frequency critical fields c, (n) Thi.s observation in con-
nection with the numerical threshold results (see plot
symbols in Fig. 1) leads us to the following prediction:
Once experimental data for higher principle quantum
numbers no will be available (but still co~no, co2no ( 1),
the sum field of the two microwave modes at threshold,
plotted against the principle quantum number n, should

collapse on the single-frequency data as displayed, e.g. , in

Fig. 1.
A prominent feature in the experimental data are the

nonmonotonic structures ("bumps") in the ionization
curves near threshold. The quantum calculations repro-
duce the positions and the relative heights of these struc-
tures. Within the statistical errors they are completely
missing in the classica1 results. In the case of mono-
chromatic driving, we have shown that the "bumps" are
due to the clustering of a large number of avoided cross-
ings in the quasienergy spectrum, a fact recently
confirmed in Ref. 25. This is a purely quantal
phenomenon and can be encountered only if the QE spec-
trum is discrete. "' The appearance of bumps in the bi-
chromatic case and our ability to reproduce them using a
rather low rational approximant for roz/ro& is very
significant. It indicates that in the present case, the gen-
eralized Floquet expansion converges. In this case,
the bumps are due to avoided crossings of the generalized
Floquet eigenvalues, and the wave function is quasiperiod-
ic in time.

In conclusion we may say that our understanding of the
microwave ionization of H atoms in the domain ceno & 1

is rather complete. The study of bichromatic driving
confirms the theoretical ideas and computational devices
which were developed for the interpretation of the ioniza-
tion induced by periodic fields.

The situation in the regime cono & 1 may have some
surprises in store. In this regime the theory for the period-
ically driven quantum problem predicts suppression of
ionization due to localization of the QE states. ' The lo-
calization phenomenon is sensitive to the quantum phases
between matrix elements of the evolution operator, which
may be drastically affected when a second field is switched
on. This, and other related questions, are now under
study.
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