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The complex Kohn variational method, which is an anomaly-free algebraic variational procedure,
is implemented for the case of collisions of electrons with polyatomic molecules. The complex
Kohn method requires only Hamiltonian matrix elements and, in this formulation, does not require
any exchange matrix elements involving continuum functions. Direct matrix elements of the
scattering potential(s) which involve continuum functions are evaluated by an adaptive three-
dimensional quadrature scheme. The entire procedure is applied to elastic electron-methane
scattering at the static-exchange level and proves to be both efficient and accurate. No Ramsauer-
Townsend minimum is found at low energies, and it is concluded that this feature of the experimen-
tal cross section cannot be described theoretically without the inclusion of target polarization.

I. INTRODUCTION

Although theoretical treatments of collisions with dia-
tomic or linear triatomic molecules have reached a level
of sophistication and reliability, ' theoretical calculations
on electronic collisions with nonlinear polyatomic mole-
cules are still at a relatively primitive stage. This is the
state of affairs in spite of the fact that these systems are
intrinsically more interesting than diatomics because they
possess an expanded range of energy-transfer possibilities
between electronic and vibrational degrees of freedom as
well as more complicated electronic structure. Pioneer-
ing calculations at the static-exchange level have been

performed, but electronic close-coupling or ab initio
treatments of target polarization for polyatomic targets
are still daunting computational challenges, and results of
such calculations have not yet been published. Some suc-
cessful efforts have been made to attack this problem
through the use of local approximations for exchange and
polarization interactions. Although those calcula-
tions may be successful at reproducing experimental elas-
tic cross sections, their great sensitivity at low energies to
the approximations used for exchange potentials makes
them poor starting points for reliable treatments of elec-
tronically inelastic processes.

At the core of this dilemma is the need for an extreme-
ly efficient and reliable approach to scattering from arbi-
trarily nonspherical targets in the presence of nonlocal
potentials. Such a technique will provide an essential
tool for solving close-coupling equations and performing
accurate calculations for polyatomics. In this study we
present such a procedure and test it by computing elastic
scattering cross sections for electron-methane scattering.

A procedure which is generally applicable to electron-
polyatomic molecule scattering should not become much
more complicated as the size of the molecule or the nurn-

ber of nuclei increases. For that reason, we have sought
to avoid the expansion of the scattering wave function in
spherical harmonics about a single center. Simply
stretching a bond increases the number of terms in such
an expansion. Furthermore, for the sake of efficiency, we
have avoided approaches which require evaluating
Green's function matrix elements. ' The essential
features of the method which we demonstrate in this
study and its principal advantages can be summarized
briefly.

(I) It is based on the complex Kohn variational princi-
ple. "' This starting point provides a computationally
stable approach while avoiding the computation of
Green's function matrix elements. Only matrix elements
of the Hamiltonian appear in the calculation.

(2) It employs a trial function which expands the
scattering wave function in Gaussian basis functions in
the interaction region together with the proper asymptot-
ic form in terms of Bessel functions. ' This choice allows
appropriate flexibility near the nuclei and facilitates the
use of standard target wave functions from bound-state
quantum chemistry.

(3) Exchange matrix elements with respect to continu-
um functions (so-called free-free and bound-free matrix
elements) are eliminated rigorously. ' The only approxi-
rnation involved is that nonlocal potentials, including
coupling potentials between electronic channels, are ap-
proximated by separable expansions in terms of Gaussian
basis functions.

(4) All direct matrix elements of the Hamiltonian
[which always appear in this formulation in the combina-
tion (H —E), where E denotes the total energy of the col-
lision system] involving continuum functions are evalu-
ated with a three-dimensional (3D) adaptive quadrature
scheme. This pivotal feature of the method eliminates
the need for the single-center expansion of the scattering
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wave function.
In Sec. II we describe the theoretical basis of the

method, and in Sec. III we discuss the evaluation of the
necessary matrix elements. Calculations on electron-
methane elastic scattering are described in Sec. IV, and
discussed further in Sec. V together with the application
of this approach to electronically inelastic collisions.

II. THEORY

A. Trial wave function and variational principle

The first step in the formulation of the method is to
choose the trial scattering wave function which is to be
used in the variational principle. We have chosen the tri-
al function to have the form'

li'r (r, , . . . , re+ &
) =X A (Xr(r„.. . , r~ )Frr'(r~+, ) )

r

+gd„" Bi,(ri, . . . , re+&),

where Y& (r) is a spherical harmonic and yk(r) denotes a
square-integrable basis function which is generally a
linear combination of Gaussians. The continuum func-
tions appearing in the expansion are regular and outgoing
Ricatti-Bessel functions defined by

f&"(r)=h (r)j &(kyar ) I+kt.

=sin(kyar

—lirl2) I+kr
as r~~,

g& (r) =ih (r)[j

&(kyar

)+in'(kr r )c(r)]loki.

=exp[i(kyar

—lrrl2)]I+k„as r ~~

The functions c(r) and h (r) are cutoff functions; c(r)
is chosen to regularize n& at r =0 and h (r) can further
exclude both the regular and irregular functions from the
inner portion of the interaction region. These are chosen
as

c(r) =(1 e ar)(2I+1)

h(r)=(1 —e ~")" .

(4)

where the first sum runs over open channels, denoted by
the normalized functions g&. The B„are an orthonormal
set of anti symmetric, square-integrable ( N + 1 )-electron
functions. The target functions yz may be single or
multiconfiguration descriptions of the bound states of the
target molecule provided by an adequate (or manageable)
level of standard quantum chemistry techniques. The
second sum can contain closed channel functions and wi11

also include (N+1) electron configurations which com-
pensate for the orthogonality constraints discussed below.

The channel continuum functions F~z. are further ex-
panded as

rFrr (r)=g [f,"(r)6a 6i»»~'err'+ T( ~r'»"@ (r)]Yt„,(r)
)'

+g cg gg(r)

—:Hpp+ V, ,

The terms 6„no longer appear in 4'~, and the coefficients
d„need not be computed.

The remaining coefficients T&" &" ~ and c& in the trial
function Pr can be treated as variational parameters
whose values are to be determined from a stationary prin-
ciple. The Kohn principle can be used to characterize
the T matrix as the stationary value of the functional,

[T "]=T" 2J%'r(H, ~ E)—+i-—(8)

The result of the variation is

[T]=—2(Moo —M oM 'M o)

where the elements of Moo are defined as

(Moo)t~~r~ = f A(Xrf("Yt~)(H, n. E)A(Xrfi" Y&~)—
(9)

(10)

k ~ /2=E —E~,
where Ez is the energy of target state g„. The T-matrix
elements which we desire to compute, and which provide
both difFerential and integral scattering information, are
the coefficients T& &" ~ in the expansion in Eq. (2).

There are several important points to be made about
the trial function in Eq. (1). First of all, the number of i' s
and m's in the sum in Eq. (2) is the number needed to
provide conserved cross sections and is determined by the
asymptotics. There is no attempt being made to expand
the scattering wave function about a single center. In the
case of methane the maximum l value required was 4
while in a typical diatomic case values as high as 10 or 12
might be necessary for scattering below 30 eV. In general
the calculation will be separable in irreducible representa-
tions of the molecular point group. In each such symme-
try a particular subset of the I's and m's will appear. The
cutoff' functions in Eqs. (4) and (5) not only regularize the
Bessel functions at the origin, but partially exclude the
continuum functions from the inner part of the scattering
region. There, such features as nuclear cusps are
represented by the square-integrable functions (sums of
Gaussians) yq(r).

The coefficients in these expansions, T&" &",, ck, and
I

d„", can be determined as variational parameters in the
complex Kohn variational principle. ' ' At this point it
is convenient (but not strictly necessary) to restrict the
application of the variational principle to the open-
channel subspace. To enforce this separation of open-
and closed-channel subspaces we employ Feshbach parti-
tioning.

The correlation functions 9„can be formally incor-
porated into an effective optical potential. If Q is defined
as the operator that projects onto the subspace defined by
the functions O„and P is its orthogonal complement,
then we can manipulate the Schrodinger equation in a
standard way to produce a modified Hamiltonian,

H, s. =Hpp+(H E)pg(E H)—gg(H E)gp— —

Finally, the channel momenta kz are defined by and M 0 and M are similarly defined as matrix elements
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of (H, tr
E—) with q referring to the subspace spanned by

the functions A(erg&"Yl ) and A(grok). Because of the
outgoing-wave definition of the functions gI, the matrix
M is complex symmetric and its inverse is nonsingular
for real energies

B. Orthogonality and the rigorous elimination
of continuum exchange matrix elements

For practical calculations on many-electron systems, it
is essential to work with an orthogonal basis. A property
of the Kohn principle that has been discussed previous-
ly, ' ' called transfer invariance, is that the T matrix is
unchanged by any unitary transformation between the
functions ql,. and the continuum orbitals f&" and g~ and
that they can thus be taken to be mutually orthogonal.
In additional, we will construct the cpI",. to be orthogonal
to the set of molecular orbitals used to form both the tar-
get states yt- and the correlation terms 0„. This latter
prescription imposes a strong orthogonality condition be-
tween the continuum channel functions and the target
wave functions. In cases where this latter condition does
represent a constraint, additional terms can always be
added to the list 6„to relax the constraint. '

If the orbitals and continuum functions which make up
the various terms in Eq. (1) were not orthogonal the first
difficulty which would arise would be in writing formulas
for the matrix elements of the many-electron Harniltoni-
an. For example, Slater's rules would not apply and we
would meet complexities like those encountered in
configuration-interaction calculations using nonorthogo-

Vrr (r)= f 1
x (

r —r

&&yr (r, , . . . , rz)dr, dr~ . (11)

Matrix elements of Vrr. (r), and those of the nuclear at-
traction potential and kinetic energy, are evaluated by
the three-dimensional adaptive quadrature scheme dis-
cussed in Sec. III. For example,

nal orbitals.
If we use a separable approximation for exchange in-

teractions, an additional premium beyond the absence of
overlap factors in matrix elements is gained. First, how-
ever, let us dispense with the other integrals which con-
tribute to Eq. (9).

The matrices M, Moo, and M o can be formed from
one- and two-electron integrals. Integrals involving only
bound functions may be extracted from standard elec-
tronic structure codes. These are called bound-bound in-
teg rais. Integrals involving one continuum function
(bound-free integrals) or two continuum functions (free-
free integrals) are more problematic because there are in
general no analytic formulas available for them. More-
over, we maintain maximum flexibility in the procedure
(to treat Coulomb scattering, for example) if the bound-
free and free-free integrals do not rely on particular ana-
lytic techniques.

Direct integrals of the electron repulsion potential may
be expressed in terms of the local, one-particle transition
potentials Vzz,

1 d
& A(yrf, Y( )I(H —&)I&(yrgl Y(,„))d;„„., =&rr&((&,„&f("I——,+&r —&lgl

2 dI"

+ &fI YI ~ Vrr +~rr'VnUc~gl"' YI'm') . (12)

The exchange-type integrals remain. A simple approx-
imation for exchange interactions which has been proven
reliable in numerous electron scattering studies is to ap-
proximate such operators by separable expansions. ' '
The exchange portion of Hzp can be approximated by

h —y ~

r)
& r~H h~ r')

&
r'~ (13)

This definition does not change any bound-bound matrix
elements. However, since all the continuum functions,
fI and g&, have been orthogonalized to the bound func-
tions, yk, any matrix element of exchange involving free
functions simply vanishes.

This device, which was first proposed by Rescigno and
Schneider, ' lies at the heart of a practical algorithm for
polyatomics, because it opens the way for the quadrature
scheme in Sec. III to be applied to all nonzero interaction
matrix elements involving free functions.

Although we do not employ an optical potential in the
calculations reported here, it is worth noting that the
same separable approximation can be made for the opti-
cal potential V, , in Eq. (7). With that approximation,

I

we have specified how all the matrix elements appearing
in the working equation for the T matrix, Eq. (9), are to
be evaluated.

III. THREE-DIMENSIONAL ADAPTIVE
QUADRATURE

The quadrature scheme we describe in this section is
applied only to the evaluation of the bound-free and free-
free matrix elements of direct potential operators and of
the kinetic eriergy. This procedure provides a set of
points and weights in the space r=(x,y, z). The prere-
quisite for the quadrature is that we be able to construct
the integrand at points in three space. For example, for a
bound-free potential matrix element

&WP Vrr +&rr'V ~gI" Yl'm')

we need Gaussian basis functions which contribute to gk,
a Riccati Bessel function defined in Eq. (3), and a spheri-
cal harmonic evaluated at the points in r space, as well as
the potential Vrr (r). The Gaussian functions and nu-
clear attraction potential V„„,are of course given by sim-
ple formulas and the Bessel and spherical harmonic func-
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tions can be evaluated by straightforward recursion
schemes.

The direct potential from Eq. (11) can be written in
terms of a one-electron density matrix (or transition den-
sity matrix if I &I"),

(14)

The bound functions g„appearing in Eq. (14) are simply
sums of Gaussians so the integrals appearing in this equa-
tion are identical to nuclear attraction integrals with a
nucleus at the position r. These integ rais are one-
electron integrals which appear in any quantum chemis-
try computer code. ' An efficient algorithm can be con-
structed which computes these for the r points in the
quadrature grid, and which can easily make use of vec-
torization on vector architecture supercomputers.

Thus we can construct the factors of the integrands of
the bound-free and free-free integrals which we require at
points in a three-dimensional quadrature grid. We now
turn our attention to the construction of the points and
weights of that grid.

We will choose a single grid with which to quadrature
all integrals involving free functions. The integrands of
many of those integrals involve nuclear singularities or
bound functions which are strongly peaked at the nuclei,
so we must adapt our quadrature accordingly. It is near
the integrable singularities of the nuclear potentials that
we must use the greatest care to avoid quadrature errors.
Asymptotically, however, the integrands of many of our
integrals, the free-free integrals, become separable in
spherical coordinates. For large r the potential ultimate-
ly is proportional to a single spherical harmonic (the larg-
est term in a multipole expansion) and the free functions
are products of Bessel functions and spherical harmonics.
So our grid should make a smooth transition from local
spherical symmetry around each nuclear singularity to
global spherical symmetry around the center of charge of
the molecule.

To construct such a quadrature, consider the general
three-dimensional integral

where the sum is over all nuclei in the molecule and

P(g)=e (19)

I= Frq dq.
Bq

(20)

This equation is equivalent to Eq. (15) only if the trans-
formation from q to r is one to one. The particular form
we have chosen for S„„,(q) makes this constraint easy to
accomplish. We have found that for values of p between
5 and 20 the transformation is well beyond for internu-
clear distances of 2-bohr radii and up.

The first step in developing an optimum and efficient
grid for a particular molecule is to choose a separable

(q, 8,y ) grid consisting of shells of points chosen from
standard 1D quadratures. In these calculations we have
used Gauss-Legendre quadratures on subintervals of q
and cos(8 ) and Simpson's rule for y . Although this
grid is separable, it can be adapted to the molecular
framework by choosing the (q, 8,p ) grid to have a
denser spacing of points in those subshells which contain
the nuclei, as shown in the two-dimensional projection of
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The effect of this transformation is to draw points in q
space toward R„„,if they lie roughly within a radius of
1/p of R„„, and to leave them unaffected otherwise.
With this change of variable the integral we wish to
evaluate becomes

I= JF(r)d r (15)

and defIne the change of variable,

r(q) =q —g (q —R„„,)S„„,(q),
nuC

(16)
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where S„„,(q) is a strength function depending on the
distance of a point from the nuclear position R„„,. The
function S„„,(q) may be chosen in any number of ways,
but it must have the property that
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S„„,(q) (17) . (b)

This property is necessary so that the transformation in
Eq. (16) will reduce to the identity, and r will be the
same as q at large distances from the molecule. A Aexible
and efFective form for our purposes is

S„„,(q) =P( (q
—R„„,. l

)' g &( Iq
—R„„,. I ),

ll UC

2 3

FIG. 1. (a) Sample untransformed (separable) grid for a case
with two atoms. Atoms are located 1 ao above and below the
center of the figure. (b) Same grid transformed (nonseparable),
showing the condensation of points near the atoms with no dis-
tortion of the grid elsewhere.
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TABLE I. Convergence of sample molecular integral in Eq.
(23) evaluated using both transformed and untransformed grids.
The value of p in Eq. {19) is 15 and the exact value of the in-
tegral is 11.170 107.

30

25- hhhh
hh

0 0 p Q hh hh
~b hh

No. of points

982
1030
1280
1388
1460
1640
2000
3376

Untransformed

1 1.086 045
11.135 080
11.158 680
11.157 628
11.165 517
11.166 771
11.166 784
11.167 401

Transformed

11.158 258
11.168 904
11.170 610
11.170075
11.170092
11.170 107
11.170 107
11.170 107

CQ

oW

b

20-

10-

0
0

h
0

i I

10 15
Energy (eV)

h
)L

Mp=Wq LUe LUv
s'

(21)

such a grid in Fig. 1(a). Then, upon evaluating the Jaco-
bian of the transformation at each point and defining

0FIG. 2. Total elastic cross section for CH& in A .
present results; ———,results of Lima et al. (Ref. 2); o, ex-
periments of Ferch et al. (Ref. 22); A, experiments of Lohmann
et al. (Ref. 23).

we obtain

I =g F(r(qp ) )
Oq

Np (22)

transformed grid produces only four. The most impor-
tant feature of Table I, however, is that further doubling
the number of points does not improve the performance
of the untransformed grid because of its lack of spherical
symmetry around the nuclear singularities.

where the sum is over points in the q grid.
Equation (22) defines a nonseparable, adaptive 3D

quadrature with effective weight ~Br/Bq ~w at each grid
point. Figure 1(b) shows the transformed grid r(q) for a
sample grid. The effectiveness of this transformation in
treating nuclear singularities in the integrand is demon-
strated in Table I. There we show the results from the
untransformed grid with r equal to q and the transformed
grid for a test integral of the form

e
—

& 5lr —Al e
—1.5lr+ AlI=, + T

lr —Al lr+ Al
(23)

with A=(0, 0, 1.034). The integrand in Eq. (23) has axial
symmetry so the grid can be chosen to lie entirely in a
plane containing the nuclei. To make the most meaning-
ful comparison possible, the number of grid points in
Table I was increased from 982 to 3376 by adding points
only in the regions near the nuclei (within 0.5ao), where
the transformation strongly affects the grid. The results
show that the transformed grid produces eight significant
figures in the integral with 1640 points where the un-

IV. ELECTRON-METHANE CROSS SECTIONS
AT THE STATIC-EXCHANGE LEVEL

In a static-exchange calculation, the initial-state target
wave function defines the scattering problem. For these
calculations, methane is described by the Hartree-Fock
wave function for its ground state in a (9s, 5p) basis con-
tracted to [5s, 3p] on the carbon and a 4s basis contracted
to 3s on the hydrogens. The contraction coemcients and
exponents are those given by Dunning. In this basis the
ground-state energy is —40. 18314Eh, which is to be
compared with —40.2124E& from the more extensive
calculation of Meyer ' at the same carbon-hydrogen in-
ternuclear distance of 2.05ao.

The scattering trial function is defined by specifying
the square-integrable basis functions gk and the continu-
um basis in Eq. (2). In these calculations, the square-
integrable part of the scattering basis consists of the tar-

24

total

Center Exponents

TABLE II. Exponents of Gaussian functions added to
methane target basis to form the square-integrable part of
scattering basis in Eq. (2). 12-

b

t2

Carbon s (a l symmetry)
Carbon p (t2 symmetry)
Carbon d (t2 symmetry)

Carbon d (e symmetry)

3.0, 1.0,0.3,0.075,0.03,0.01
2.0,0.5,0.2,0.05,0.02
2.4,0.6,0.15,0.0375

5.0,2.0,0.8,0.32,0.128,0.0512,
0.02048,0.00819

6-

I

10 15
Energy (eV)

a1

20

Hydrogen s (a, and
t, symmetries) 1.0,0.25,0.05

FIG. 3. Contributions to total elastic cross section for CH4
from a &, t2, and e symmetries.
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get basis described above augmented by the Gaussian
functions listed in Table II. To complete the specification
of the trial function, we must specify the continuum basis
of Bessel functions multiplied by spherical harmonics
which appear in Eq. (2). These functions are necessary
only to describe the iong-range behavior of the scattering
wave function. Methane is not a strongly asymmetrical
target in the sense that it does not strongly couple a large
number of partial waves in electron scattering. We found
it sufficient to include continuum functions with l up to 4.
The parameters for the cutoff functions in Eqs. (4) and
(5), which modify the continuum functions near the ori-
gin, were chosen such that both a and y were 1.0 and n

was 1.
Molecular symmetry simplifies the working equations

of the complex Kohn variational method in a familiar
and predictable way. In this case, we may solve separate-
ly for the contributions to the trial function in Eqs. (l)
and (2) which transform with different irreducible repre-
sentations of the tetrahedral point group Td. Of the five

irreducible representations of Td, only three contribute
significantly to the elastic scattering cross sections we
compute here. Those irreducible representations and the
l values which contribute to them are

a, , 1=0,3,4;
t, , 1 =1,2, 3,4;
e, t=2, 4.

The total numbers of square-integrable basis functions in
each of these symmetries in these calculations are 17 in

a, , 18 in t2, and 8 in e symmetry.
Beyond specifying the target and scattering basis sets,

all that remains to describe the calculations on methane
completely is to describe the adaptive grid chosen to per-
form the bound-bound and bound-free integrals as dis-
cussed in Sec. III. We may also use symmetry to reduce
the number of points in the grid. Because of constraints
imposed by the electronic structure codes we used to
compute the bound-bound integrals, the calculations
were actually performed in the lower symmetry point
group C2„which is abelian. For this reason, the grid
could be restricted to one quarter of a sphere, which was
chosen to have a radial extent of 40ao. The grid in that
quadrant was chosen adaptively as described in Sec. III,
and consisted of 63301 points in r space. As we will
demonstrate below, that grid contains vastly more points
than are necessary to obtain accurate results.

The total elastic cross section from these calculations is
shown in Fig. 2 together with the static-exchange calcula-
tions of Lima et al. and the results of two experimental
determinations. ' ' The calculations of Lima et al. were
performed using the Schwinger variational method. As-
suming that the scattering trial function in their calcula-
tions is adequate, the results of the Schwinger calcula-
tions should differ from the present results only to the ex-
tent that these calculations are sensitive to the differences
in the basis sets used to describe the target wave func-
tions for methane. Lima et al. used a somewhat larger
target basis which included d functions on the carbon. It

TABLE III. Contributions to total cross section from t, sym-

rnetry for large (63 301) and small (21 323) grids used in quadra-
ture of bound-free and free-free integrals. Cross sections are in

ao and incident energies are in Hartrees.

0.15
0.35
0.425

Small grid

6.150
15.875
16.560

Large gr&d

6.151
15.904
16.584

V. DISCUSSION

It is apparent from Fig. 2 that the results of the static-
exchange calculations presented here show no indication
of the Ramsauer-Townsend minimum which is observed
in the experimental elastic scattering cross section.
The effects of target polarization evidently play a critical
role in the physics of this phenomenon in methane. To
verify that this is the case we performed calculations for

0.500

0.250

A
C4

—0.250

0.000—

—0.500 I I

0.000 0.200 0.400 0.600 0.800 1.000
Energy (eV)

FIG. 4. Eigenphase sums for a, , t2 and e symmetries for low
incident energies.

is clear from Fig. 2 that the resulting differences in the to-
tal cross sections are minor indeed. In Fig. 3 we show the
contributions to the total cross section from the three
molecular symmetries included in the present calcula-
tions.

To test the dependence of the computed cross sections
on the selection of grid points we performed calculations
using a much small grid than the one described above.
The smaller grid contained 21323 points, roughly one-
third the number in the larger grid. The results of the
two calculations for the contributions to t2 symmetry to
the total cross section at three energies are compared in
Table III. The cross sections from the two grids differ
over this energy range only in the fourth significant
figure. It is worth noting that the differences in individu-
al bound-free or free-free matrix elements may be some-
what larger than the differences in the final T-matrix
values. Thus, in part, the relative insensitivity to the
number of grid points which we observe is a manifesta-
tion of the variational stability of the Kohn method.
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energies below 1 eV, for which the eigenphase sums are
plotted in Fig. 4. At very low energies the cross section is
dominated by the s-wave contribution and the eigenphase
sum for a, symmetry essentially becomes the s-wave
phase shift. A Ramsauer-Townsend minimum occurs in
the cross section when this phase shift passes through 0
or a multiple of ~ at a low, but nonzero, value of the in-
cident energy.

The a, eigenphase sum in Fig. 4 shows no such behav-
ior. Nonetheless, Gianturco et al. were able to produce
a Ramsauer-Townsend minimum in the methane cross
section in calculations which omitted polarization effects
but which employed local approximations for the ex-
change interaction. The fact that, at low energies in par-
ticular, electron scattering cross sections are sensitive to
subtle changes in the effective interaction underlines the
need for reliable ab initio methods for this problem.
Moreover, such sensitivity is to be expected near every
inelastic threshold, and the feasibility of extending these
methods to electronically inelastic processes is a central
question.

The implementation of the complex Kohn variational
method we have described in this work is designed to
eliminate barriers to its application to electronic close-
coupling calculations on polyatomics. First of all, no ma-
trix elements of nonlocal operators involving continuum
functions will be required. The exchange part of each
coupling potential and of the Feshbach optical potential
appearing in such calculations will be treated in exactly
the same way that exchange is treated in the static-
exchange calcu1ation we present here. By using separable
representations of those nonlocal potentials, and ortho-
gonalizing the free functions in each channel to the
square-integrable functions used in the multichannel ana-
log to Eq. (13), the effects of these terms are shifted to
bound-bound portions of the computation.

The adaptive three-dimensional quadrature used in
these calculations can be applied easily to the calculation
of all of the remaining integrals involving free functions.

As we demonstrated in Sec. IV, where dropping two-
thirds of the grid points used in these calculations left the
results essentially unchanged, there is considerable room
for reducing the number of grid points even further. A
reasonable question to ask is whether this quadrature
scheme will be successful in the presence of long-range
polarization and coupling potentials or for molecules
with large permanent multipole moments. Actually, ex-
tending the grid to large distances from the molecule
adds very few quadrature points. At large distances the
potentials are dominated by a few (low) multipole terms.
The angular grid necessary is therefore quite small, be-
cause there are in general only a handful of partial waves
which contribute to the scattering wave function asymp-
totically. Using five or six radial points per oscillation in
the continuum functions at large distances (the point den-
sity used in these calculationsj, the grid for methane can
be extended from 40 to 100 bohr by adding roughly 5000
points.

Thus the principal barrier to calculations including
several electronic channels is the construction of compact
descriptions of several target states which involve reason-
able numbers of configurations constructed out of a single
orbital basis. At this point the problems are in efhciently
representing the physics of target response —even at in-
cident energies of only a few eV —rather than in solving
the resulting close-coupling equations.
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