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We have performed new crossed-hearn measurements and quantum-mechanical calculations on
transitions between the short-lived Ne**[(2p)'(3p) [&

—= [a] t, states with k =4, 5, 6, 7 (Paschen num-
bering), induced by collisions with ground-state He atoms at energies between 70 and 140 meV. The
[a I 4 5 6 7 multiplet is distinguished by the presence of several avoided crossings between the adiabat-
ic potentials Vk (R)—a sign of strong, localized radial coupling. This has inspired a simple, semi-
classical model for the Ne**-He collision process, which has the following ingredients: (i) straight-
line trajectories with hard-sphere scattering at the classical turning point RT, (ii) rotational coupling
for R )RL and "locking" of the electronic angular momentum J to the internuclear axis for
R RL, with RL the locking radius; (iii) Landau-Zener —type curve-crossing transitions near the
crossing radius R&. This model goes a long way toward explaining the experimental polarization

effects, i.e., differences between polarized cross sections Q, k for the [aI I,. ~ [a[& transition de-
pending on the asymptotic orientation of the total electronic angular momentum J, as specified by
the magnetic quantum number Mk. These polarization eA'ects are at times very large. For example,
at a center-of-mass collision energy E =100 meV, we find Q) ', /Q)", =0.52 and 3.5 for 1 =6 and 7,
respectively, Q), /Q)"'6 =041 and 13 for 1 = 5 and 7, and Q) ', /Q) "7 =008 and 89 for 1 =4 and
5.

I. INTRODUCTION

In recent years there has been a rise in the attention
paid to inelastic collisions of atoms in short-lived elec-
tronically excited states. ' ' A recent review of the field
was given by Hertel et alt. ,

' while the basics of our own
work were set out in earlier papers. ' ' Excitation by a
polarized laser prepares the short-lived states in well-
defined asymptotic orientations. Strong effects of the
orientation on cross-section magnitude have been ob-
served. In many cases, however, a satisfactory explana-
tion of these polarization effects proves elusive, due to
lack of accurate information on coupling potentials for
the systems under consideration.

A fundamentally different situation obtains with the in-
elastic intramultiplet-mixing process

Ne" [aIk+He('Sc)~Ne*'[aIt+He( Sp)+EEkt

where [a) = [(2p) (3p)I, with j running from 1 to 10
with decreasing energy. Here, all three ingredients neces-
sary for a better understanding are available: experimen-
tal data, potential surface information, and the capability
to perform fully quantum-mechanical coupled-channel
calculations.

First, we have obtained experimental results on
polarized-atom inelastic cross sections from a crossed-
beam experiment, for a well-defined translational energy
and asymptotic orientation of the initial state [aj t, .

Careful design of the crossed-beam apparatus, ' necessi-

tated by the short lifetimes of the Ne** states (r=20 ns)
and the small transition cross sections (Qt k = 1 A ), has
resulted in large signals (1 kHz/A ) for the fluorescence
from the final state [a) t and a relatively low background
(2 —15 kHz). Absolute polarized-atom cross sections

Q, „were presented earlier for the [a Is~ [aI4, [a[6,IMq l 20

[aI7, and [a]6~[a)7 transitions. Here M„ is the mag-
netic quantum number of the intrinsic electronic angular
momentum J along the asymptotic relative velocity g,
i.e., the z axis. We observe large polarization effects.
Typical results at center-of-mass energy E =100 meV are
Q ~ ~ /Q '~ = 1.06, 0.52, and 3.5 for 1=4, 6, and 7, respec-
tively.

Secondly, we have at our disposal Ne'*-He model po-
tentials. '" They have been calculated starting from a
three-particle model, in which the system is taken to con-
sist of the Ne (2p) core, the e (3p) valence electron,
and the He('So) target. Thus are obtained, for internu-
clear distances R ~ 4. 5a „, separate basic potentials
V"(R ) and V"(R ) for the cr:—( ~mt ~, =0) and
sr: (~ mt ~,

= 1) orie—ntations of the 3p orbital of the
valence electron with respect to the internuclear axis, i.e.,
the z ' axis. Tentatively extended by us down to
R ~2.0ao, and supplemented by potentials V""(R)
and V'„'"'(R ) for the two orientations of the core hole, de-
rived from the spectroscopy of the (NeHe)+ ion,
these allow calculation of the matrix elements of the
Ne**-He electronic Hamiltonian H, ~

in the atomic
~LSJMJ ) basis. ''' Here L, S, and J are the quantuin
numbers of the electronic orbital, spin, and total angular
momenta L, S, and J, respectively. Diagonalization of
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H„ then yields the adiabatic eigenstates ~ak JkQk(R))
and potential curves VP(R), where 0& ——~Mk ~, . The 23
adiabatic potentials are divided into A manifolds. For
0=0, the further restraint of reflection symmetry of the
molecular states generates distinct + and —classes, each
containing five states with even and odd J, respectively.

A third instrument for a better understanding is our
fully quantum-mechanical coupled-channel calculation,
using the above potential as input. These are performed
in a basis of diabatic functions ~7raJAPMP ) which, be-
sides being atomic eigenfunctions ~aJA), have definite
parity ~ and well-defined quantum numbers P, Mp „and
& = ~MJ ~, .

= ~Mp ~, for the P, P„and P, .=J, operators
of the total angular momentum P. The time-independent
Schrodinger equation for the Ne*'-He scattering prob-
lem then gives rise to a set of at most 18 coupled
differential equations for each value of P and parity
~=+1. In this "O,-diabatic" representation, we have
"physical" coupling by the molecular interaction
V, ~

= V ' ' and rotational coupling by the operator
T„„ofrotational nuclear motion. Our coupled-channel
code uses a modified Numerov integration method. We
limit the calculation to impact parameters b ~ 15ao,
beyond which the nondiagonal matrix elements of
V ' ' vanish. For a Ne**-He collision energy E=100
meV this implies P ~ 100. A complete calculation with
appropriate integration step size hR =0.02ao then re-
quires about 2.5 h on a Burroughs B7900 main-frame
computer and yields cross sections that generally agree
well with experiment.

Unfortunately, by their very nature, the quantum-
mechanical calculations constitute essentially a "black
box. " The link between input (model potentials) and out-
put (cross sections) is rather remote. At this point, an
analysis in semiclassical terms, if at all feasible, becomes
highly desirable.

Our experiment, in its present form, involves
Ne**+He collisions at thermal energies 70 ~ E
(meV) 5200. At these low energies, relative velocities of
the colliding atoms are small compared to electron veloc-
ities. This implies a quasimolecular system. Just as
the molecular adiabatic electronic eigenfunctions
~al, J7, QI, (R) ) are likely to offer a fair description of the
electronic states, so are the adiabatic potentials VP(R)
apt to govern the relative motion of the nuclei. A com-
pletely adiabatic picture of the collision process of course
precludes the possibility of transitions between different
states. In general, the molecular electronic states will
still be coupled by nuclear motion. The coupling between
adiabatic states is bound to be particularly strong at so-
called avoided crossings of the adiabatic potentials. It
has long been established that the nonadiabatic (radial)
coupling at an avoided crossing lends itself particularly
well to a semiclassical description. As we shall see, not
only do several avoided crossings occur between the
Ne**-He adiabatic potentials, but in addition they are
limited to the quasiclosed multiplet of [aI4 5 6 7 states.
Under the circumstances, semiclassical theory would ap-
pear to provide a natural framework for the discussion of
a number of important [ajk ~ [a ) I transitions.

II. NEW EXPERIMENTAL RESULTS

We present new Ne**-He measurements on polariza-
tion effects, complementing those reported earlier for the

[ a ] 5 ~ [ a I 4 6 7 and [ a I 6~ [ a ] 7 transitions. Figures
1 —3 and 4—6 show observed cross sections for the
[a I6~ [a I 4 5 7 and [a ]7~ [a I4 5 6 transitions, as a func-
tion of the angle P between the laser electric field vector
E and the asymptotic relative velocity g of the collision
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FIG. 1. Experimental results for the observed cross section
Q~~ 6, as a function of the angle P between the electric field E of
the laser and the average relative velocity g, at a center-of-mass
energy E6 = 100 meV. Statistical errors only have been indicat-
ed. The solid line ( ) represents a curve fit of the data
points according to Eqs. (2) and (5), assuming the absence of a
magnetic field. The dashed line (

———
) is the result of

quantum-mechanical calculations with the extended model po-
tentials of Hennecart and Masnou-Seeuws as input. It uses a

', M
weighted average of quantum-mechanical cross sections Q4
assuming Gaussian primary- and secondary-beam velocity dis-
tributions.

In the present paper our aim is to obtain more insight
into the physics involved in the collision than is provided
by black-box-type quantum-mechanical calculations. As
to absolute values of inelastic cross sections, the semiclas-
sical approach is somewhat of a standard procedure.
However, as an essential extension, we include the predic-
tion of polarization effects by way of a physically suitable
description of rotational coupling.

In Sec. II we present new experimental results for the
[a I4 5 6 7 group of states, which allow a better test of our
semiclassical model. In Sec. III the basic concepts of
semiclassical theory, i.e., the Landau-Zener approach to
radial coupling at an avoided crossing and the weighing
of rotational coupling against "locking, " are discussed
and related to the Ne**-He system. This is followed, in
Sec. IV, by the description of a semiclassical model for
calculating polarized-atom inelastic cross sections, which
permits, in combination with experimental results and
quantum-mechanical calculations, a "complete" analysis
for this system. Finally, in Sec. V, we offer some conclud-
ing remarks.
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FIG. 2. Experimental results for the observed cross section
Q~. 6 at E6 =100 meV. See caption of Fig. 1 for further detail.

FIG. 5 Experimental results for the observed cross section
Qa, , at E7 =95 meV. The threshold energy is AE, 7 =81 meV.
See caption of Fig. 2 for further detail.

C5

partners. Center-of-mass energy is approximately
E= 100 meV for these measurements. The absolute
cross-section values are estimated to exhibit a systematic
error of at most 30%. Table I gives the corresponding

Im,, (

single-Mk -state polarized cross sections Q& &
. These

have been determined from a least-squares fit of the data
to a model function of the general form

QP I,
= g C„'cos(2nP) . (2)

0
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FIG. 3. Experimental results for the observed cross section
Q~7, at E,= 110 meV. See caption of Fig. 1 for further detail.

QP I,
= g g „& Id ', M, (»I'Qi I,-

where the rotation matrices or reduced Wigner D func-
tions d (Ref. 26) transform the initial distribution g
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FIG. 4. Experimental results for the observed cross section
QL ~ at E, =95 meV. The curve fit of the data points ( ) is
according to Eqs. (2) and (4). This is a highly endothermic tran-
sition, with the threshold energy AE47 91 meV close to the
average experimental center-of-mass energy. See caption of Fig.
1 for further detail.
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FIG. 6. Experimental results for the observed cross section
Qa6, at E7 =95 meV. The threshold energy being only
EE67 24 meV, averaging over different velocities has only a
limited eftect. See caption of Fig. 4 for further detail.
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/M~TABLE I. Experimental and quantum-mechanical polarized cross sections Q( k, at various center-of-mass energies E of the ini-
tial state Ia}„,together with the polarization effect Q,.',. /Q(' k. The extended potentials, used in the calculations, are identical to
those used in Ref. 20. Where indicated, the experimental energy distribution has been taken into account in calculating effective
quantum-mechanical cross sections.

Initial
state

Final
state
}a},

E„.
(meV)

QM Expt. QM

Q( k
Io

(A)'
Expt. QM Expt.

Cross section

Q(, k

(A )

QM

Ql ~k
(A )

Expt.

Polarization
effect

Q(" k /Q("k
QM Expt.

I a}4

Ia}7

60
100
140

60
100
140

60
100
140

60
100
140

70
100
140

55
100
140

8.9
14.4
16.9

0.32
0.66
0.77

5.0
7.1

7.7

9.6
13.2
14.6

0.32
0.50
0.75

5.0
7.0
9.2

10.1

13.7
16.1

0.34
0.93
1.61

1.17
1.91
2. 15

8.7
12.5
13.3

0.62
0.97
1.27

1.4
2.0
2.7

0.9
1.0
1.1

0.92
0.71
0.48

4.3
3.7
3.6

1 ~ 1

1.1

1.1

0.52
0.52
0.60

3.6
3.5
3.4

Ia}e }a},

Ia}7

100'

100'

110'

100

100

110

0.21

0.05

7.8

0.27

0.06

8 ' 3

0.38

0.14

6.0

0.42

0.14

6.3

0.08

0.03

3.1

0.05

0.02

3.1

0.55

0.35

1.3

0.64

0.41

1.3

}a}5

95'
140

95'
140

95'
140

95
140

95
140

95
140

0.06
0.43

0.46
2.4

0.84
2.1

0.04
0.44

0.59
2.6

0.81
2.0

0.24
1.3

0.05
0.30

6. 1

9.7

0.43
1.3

0.07
0.37

4.4
7.2

0.27
0.33

9.3
9.0

0.14
0.22

0.08
0.33

8.9
7.0

0.18
0.28

'Experimental velocity distribution taken into account.

over magnetic substates ~ak Jk mk )E to a distribution over
substates ak JkMk )s. Upon excitation with a linearly
polarized laser from the } Po, J, =0) metastable state, we

have for an
~
a„J„=1 ) initial state: g

~

=o = 1,
l.

g o =0. The coefficients in Eq. (2) are

Co —l(Q( k+Q(-k»
(4)

(Ql k Ql k)
For ~ak Jk =2) and

~ P2, J, =2), again using a linearly

polarized laser so that g+ =g =gI, we can write

Co =
—,', [(22go+24g& + 18g7)Q( k +(24go+64g(+40g2 )Q(-k +(18go+40g] +70g2)Q( k ] i

C, =—„', [(24go —24g2)QI '„ +(32g, —32gz)QI"k +( —24go —32g( +56g2)Q) kl

C z
= 6', [( 18go —24g t + 6g2 )Q( k + (

—24go + 32g
&

—8g2 )Q(
'

k + ( 6go —8g ( + 2g & )Q( k ] .

(5)

In the present case, as earlier for the ( }a}6,J6 =2) initial
state, the time-integrated distribution g over magnet-

ic substates ~ak Jk mk )E in the scattering volume was cal-
culated assuming the absence of a magnetic field, with the
result gI~ O=O, gI I, = —,', gI I

2= —', . This leaves

some room for error in the [a}6~[a}( polarized cross
sections.

The measurements disclose large variations, both in
cross-section magnitude (Q5 7 ((Q6 7) and in polariza-
tion effects (Q5 7/Q5 7 —8, Q6', /Q6 ', =0.2). The
cross sections Q( 7, where ( [a }7, J7 = 1) is the initial
state, closely agree with the cos(213) dependence of Eq.

(2). For the ([a}6,J6=2) initial state, the presence of the
higher-order cos(4P) term of Eq. (2) is not always im-
mediately apparent (compare, e.g. , Q7 6 with Q~ 6). Of
course, much depends on the distribution parameters

With our coupled-channel code we have calculated
IM,. I

polarized cross sections Q( k for the transitions within
the Ne**[a}~5 6 7 multiplet, at some diff'erent energies
within the experimental energy range. The extended po-
tentials mentioned in Sec. I, which for R ~4. 5ao are
identical to those of Hennecart and Masnou-Seeuws,
were used throughout. Otherwise, the calculations are
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similar to those reported before. The calculated cross-
section values Qt & are compared with those derived
from the experiment in Table I. The relevant results for
the observed cross sections Q&~ k [using either Eq. (4) or
Eq. (5)] are shown in Figs. 1 —3 for the {aI7~{aI4s 6
transitions and in Figs. 4—6 for the {a I 6~ {a I4 5 7 transi-
tions, together with the experimental results. Agreement
between experiment and quantal calculations is observed
to be generally good.

For the highly endothermic {a ) 7~ {a I 4 s and

{aI6~{a]4s transitions, in particular, it is necessary to
convolute the quantum-mechanical cross-section values
with the experimental energy distribution. This is be-
cause the measurements yield energy-averaged results.
The total center-of-mass energy spread is typically
~E/E =40%%uo, as determined by the velocity distribution
of the supersonic primary and secondary beams. ' The
strong threshold effect in the {a ] 7~ {a ) ~ s transitions
(b,E&s = —81 meV, bE74= —91 meV) explains why the
observed averaged cross sections are much larger than
the cross sections which would have been obtained in cal-
culations for the average collision energy. For the
{aI6~{a)4 s transitions (AE6s = —57 meV, bF64 = —67
meV) the threshold effect is less severe. This effect plays
a progressively smaller role at the higher energies, at
which measurements were performed. For the exotherm-
ic transitions, it is generally sufficiently accurate to use
the average collision energy in the calculation. In the
calculation of effective quantum-mechanical cross sec-
tions, generally four or five cross-section values were
available within the width of the experimental energy dis-
tribution. The convolution procedure was carried out
while linearly interpolating between these values.

The experiment offers two methods of varying the
Ne**-He collision energy. First, by scanning the laser
beam along the primary-beam axis, the position of the
scattering volume with respect to the secondary-beam
nozzle can be varied. The resulting change in the direc-
tion of the secondary-beam velocity vz affects both direc-
tion and magnitude of the relative velocity g. Secondly,
the magnitude of the primary-beam velocity vi can be
changed through the use of a seeding agent. We have
used a 15% Ne —85% He seeded primary beam, in addi-
tion to a 100% Ne beam.

The observed energy dependence of the {aIs~{a{46
and {a I 7~ {a I s 6 cross sections, for which most data are
available, is discussed in Sec. IV. Generally speaking, the
time-consuming nature of quantum-mechanical coupled-
channel calculations is prohibitive, when it comes to
simulating the energy dependence of cross sections. In
this respect, the semiclassical calculations of Sec. IV are
much less demanding.

III. SEMICLASSICAL MODEL

A. Adiabatic representation

iA (r, R, t)=H+(r, R, t)=(H„+T„)%'(r,R, t),
at

n rad rot

Hei+Ha~+ ~moi

(6a)

(6b)

(6c)

in which T„ is the kinetic energy operator of nuclear
motion, with T„d and T„, its radial and angular com-
ponents, and H, ~

is the electronic Hamiltonian, split into
the atomic part H„of the separate particles and the
remaining molecular part V,~. Within the framework of
our scattering problem, we are interested in solutions
%(r, R) of the time-independent Schrodinger equation,
where r represents all electronic coordinates and R is the
internuclear radius vector:

( T„+H„)+(r,R) =E+(r,R), (7)

with E the total energy in the center-of-mass system.
Now, a fully quantum-mechanical treatment takes an

even-handed approach to the general problem of coupled
nuclear-electronic motion. The wave function %'(r, R) is
expanded in an orthonormal basis of channel functions,
characterized by the collective quantum number i:

(8)

The channel functions ~y, (r, R) ) can be written as

~y;(r, R) ) = ~cp;(r';R)g;(R) ),
where R=R/R indicates the orientation of R, and r'
represents the electronic coordinates r' in the body-fixed
frame. The electronic functions

~ cp; ( r', R ) ) depend
parametrically on R. Substitution of Eq. (8) into Eq. (7)
results in a set of coupled differential equations for the
wave functions F, (R) of radial nuclear motion. In a basis
of adiabatic eigenfunctions of the electronic Hamiltonian
H, ~, for which we have

H„~~, '& =(H„+ I „., }~~,"&= V, (~)l~,"&, (10)

nonadiabatic coupling is caused by T„,~ and T„„,.
The semiclassical approach to Eq. (7} consists of

separating the coupled electronic-nuclear motion into
electronic motion, treated quantum mechanically, and
nuclear motion, which is now treated classically. Suppos-
ing for the moment the latter problem solved, with the
classical trajectory R=R(t) as a result, we are left with
the time-dependent electronic Schrodinger equation

where the electronic Hamiltonian depends on the time t
through the known quantity R.

In the adiabatic representation of Eq. (10), with the ex-
pansion

%(r;R(t))= g a, (t)~y', (r;R(t)))
To facilitate the discussion, without pretending in any

way to provide an overview of semiclassical theory, we
now introduce a number of key concepts. The system of
nuclei and electrons is described by the wave equation

Xexp —I V, (R(t))dt (12}
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—i h —= —iAR —i%a.
Bt BR

(13a)

Taking into account Eq. (9), we have

~R
1 = (-Pf)St

(13b)

nonadiabatic coupling is caused by the time-derivative
operator

At the basis of the linear model lies a description of the
two-state system near the avoided crossing in terms of
only weakly R-dependent diabatic states lp& ) and lq& ).
At a large distance from the crossing these must coincide
with the adiabatic states leak ) and ly& ). For the diabat-
ic matrix elements of H, ~

an approximate expression is
adopted, retaining only the linear part of the expansion in
terms of R —R~, with R~ the crossing point of the dia-
batic potential curves Hkk(R ) and H&&(R ):

—iA —= —iAU& —R J~ .
(3t BR

(14)

with i referring to the component perpendicular to the
internuclear z' axis. As a consequence we have

Hk„(R)=Hc Fk(R —Rc)

H(I (R ) =Hc FI (R——R, ),
Hk( ( R ) =H~k ( R ) =Hkj ( R c ) =Hp(,

(16)

Here v~ and lk l

=0=co are the radial and angular veloc-
ities of nuclear motion, respectively, 0 being the angle of
the internuclear axis with the space-fixed z axis, i.e., the
polar angle in the collision plane. The operator J~ is per-
pendicular to the collision plane. Given that

Ji= —,'(J+, +J, ),
where J+, and J, denote the raising and lowering
operators for the azimuthal angular momentum MJ A

Z

along the internuclear axis, clearly the terms of Eq. (14)
represent radial and rotational nonadiabatic coupling, re-
spectively. In practice, radial coupling will occur mainly
between adjacent states k and I within a particular 0
manifold (and reflection symmetry class, for Q=O). Ro-
tational coupling takes place between different 0 states
for a single k, with

l
0—0'

l

= l.
Our task will be to find a suitable semiclassical descrip-

tion for both types of coupling, in addition, of course, to
working out a solution to the trajectory problem. The

IM~ I

calculation of polarized cross sections Q& k for the
(ak JkMk, ) ~(a&JI ) electronic transition calls for a semi-

IM, I

classical transition probability P& «(b), where b is the
impact parameter. For a given P, it follows directly that

Q, k
= J 2vrbPI I, (b)db (15)

0
IM~Thus it remains to derive a suitable expression for P,

B. Radial coupling

Nonadiabatic radial coupling near an avoided crossing
of two adiabatic potential curves has first been described
semiclassically by the Landau-Zener-Stuckelberg (LZS)
theory. In its extended LZS form, this model allows
for interference between different collision paths followed
by a particle, as opposed to the Landau-Zener (LZ) mod-
el. A survey of LZS theory is given by Thorson et al.
There have been numerous additions and extensions to
LZS theory, notably the inclusion of tunneling effects. '
At the same time, the application range of previous linear
models has been greatly extended by the advent of non-
linear models. ' For our analysis of Ne'*-He intramul-
tiplet mixing, the linear model of Nikitin ' has a
sufticiently wide application range and offers maximum
potential for physical insight.

while for the coupling-matrix element H&& we find

HP(=[Vk (Rc)—
V( (Rc)]/2 . (18)

This situation is clarified in Fig. 7.
For the total probability PI, I of a transition from one

adiabatic potential curve to the other, we cite here the
limiting case of the original Landau-Zener formula, ob-
tained under the assumption of uniform motion near the
crossing radius R~:

kl 2Pkl ( 1 Pkl )

I kl XP( Vkl ~VR )

vp~ =27r(Hkl )'&AlFk F(l . —

(19a)

(19b)

(19c)

Eg E

Hc

Hg

I

I

I

(RTj,

FICs. 7. Schematic picture of an avoided crossing of adiabatic
potentials VI, and V&, with corresponding diabatic potentials
H«and H». The crossing parameters of Nikitin's linear model
have been indicated, i.e., the crossing point A&, the crossing en-
ergy Hc, and the diabatic coupling matrix element H&&. The
non-adiabatic transition probability Pt, I is determined by the ra-
dial energy at the crossing.

where F = —(BIER)H (R)lz "z is the slope of the dia-

batic potential at Rc. The crossing point R~ can then be
identified as the point of minimum splitting between the
adiabatic potentials Vk (R) and VI (R). The crossing po-
tential H~ is given by

Hc = [ Vk" (Rc )+ V( (R c )]/2,
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Here uz is the radial velocity, and u&l a reference velocity
that contains all information on the coupling at the
avoided crossing. In the LZ case, with the crossing ra-
dius far from the classical turning point (Rz ))Rr), a
transition may occur with single-pass transition probabil-
ity p&&, both on the incoming and on the outgoing transit.
For radial velocities u~ && u I,I, the original adiabatic
curve will be followed both coming in and going out,
whereas for u~ &&u&, , on both occasions a crossing to the
other curve will take place. In both instances, the total
transition probability P&I amounts to zero. A net transi-
tion is most likely for intermediate velocities u~ =u&t. In
particular, the maximum value P&t =

—,
' is obtained for

u„=uk(/In(2).
As the classical turning point Rz- comes closer to the

crossing region (Rr ~ Rc. ), interference occurs between
incoming and outgoing trajectories. In the general linear
model, this is taken into account by postulating constant
acceleration by an effective force F = ~F(,.F(~' near the
crossing point. The resulting description is equivalent to
the quantum-mechanical one. Quantum-mechanical
tunneling (important for Rr =Rc) is thus simulated as
well. The case of FI, and F& having a different sign, im-

plying transition over or under a potential barrier near
the crossing, will not be considered here.

Depending on the coupling strength, the linear model
yields analytical expressions P«(e, /3) in certain regions of
the (e,P) plane, ' with

Ec IF, FI.—
2Hk( [Fk F( (

(20)]/2
PH

&'I F(,F( I

' '
I F(, F, —

Of the dimensionless parameters e and /3, the first charac-
terizes the (radial) kinetic energy Ec =

—,'(L(u(( at the cross-

ing point, the second the nonadiabatic coupling-matrix
element H(,.(. The only region for which there is no
analytical expression for P(,.( is defined by ~e~ =1, P= l.
However, numerically calculated transition probabilities
have been tabulated.

In practice, the centrifugal potential E„, combines
with the adiabatic potentials Vk to form effective
potentials V,(r k(R ) = V(, (R )+E„„,(R ). Through

E„,=—,'pg b /R, the single-transit and total transition
probabilities therefore depend on the impact parameter b

(and, of course, on the relative velocity g), and will here-
after be denoted as pk((b) and P(",((b), respectively.

compared to the rotational-coupling strength

T =[N(N+1)]' A' I(MR (22)

where
~
II —0'

~

= 1.
There are two limiting cases to be discerned. If the 0

splitting greatly outweighs the rotational-coupling
strength, i.e., if 6 V& » T„, , the internuclear axis
serves as the effective quantization axis and the orienta-
tion of the electronic wave function is "locked" to it. For
values AV& «T„„, the electronic state observes no
angle-dependent forces and remains space fixed. In a
semiclassical context, the inherently problematic transi-
tion between these extremes is often considered to occur
at a fixed position Rz, the so-called locking radius, where
the rotational-coupling strength equals the 0 splitting:

av"'(R )=f [N(N+1)]'"X'y R' (23)

For future reference, we have included here a locking fac-
tor fL.

More insight into the phenomenon of locking than is
provided by the above can be obtained from classical
mechanics. The 0, splitting AV correlates with an
angle-dependent force and thus with a torque, which
operates on the spinning top representing the angular
momentum J. The net result of this torque is a preces-
sion of J about the internuclear z' axis, with angular fre-
quency

(24)

The problem of rotational coupling can be reformulat-
ed in compliance with the original LZ formalism. The
dynamical state model even enables one to apply LZS
theory to cases involving both radial and rotational cou-
pling. In the case of a C, /R ' adiabatic potential
difference, a different general treatment is possible as
well. However, for our Ne**-He problem, a somewhat38

simpler approach is both possible and desirable.
Rotational coupling, of course, simply rejects the

effect of describing an essentially space-fixed electronic
state in a rotating body-fixed coordinate system. Howev-
er, it is unrealistic to suppose that the electronic angular
momentum J will retain its space-fixed orientation along
the entire trajectory. The "mathematical" rotational
coupling must at all times compete with the 6-conserving
"physical" coupling that gave rise to the adiabatic poten-
tials V(, (R). Their relative importance depends on the
magnitude of the 0 splitting

b, V(, (R)= V(,. (R) —
V(,. (R)

C. Rotational coupling

jM~For polarized cross sections Q( (,. to be determined
from the transition probability P(,.((b) of Sec. III B (with
0= ~Mk ~, . ), it is necessary that the distribution over

MI, , states at the crossing radius R& be known. The de-

velopment of a distribution G(, "(R} from an initial dis-

tribution Gk "(—~ }=5~ M is a matter of nonadia-~k, z' /

batic rotational coupling between states ~ak J(,M(, , ) and
a( JkM„, +I ).

On the other hand, there is the angular velocity of the in-
ternuclear axis, due to nuclear motion:

0=[N(N+1)]' filpR (25)

If co „,»0, then J will precess so rapidly about the inter-
nuclear axis as to rotate with it, which implies locking.
For co „,«0, J is bound to remain space fixed, since
there is hardly time for J to precess at all during the in-
ternuclear axis's rotation from 0( —oo )=0 to 0( ~ ) 5 sr.

Defining the onset of locking by (u „,=fL0, we again
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and

g yAA'
dA

(26)

find Eq. (23).
It is the spinning-top image of Eqs. (24) and (25), in

particular, which suggests the insertion of a locking fac-
tor fL & I to the right of the equality sign in Eq. (23).
For fL =4, say, we have one full precession of J for a typ-
ical 0=m/2 rotation of the internuclear axis.

Another approach is based on the principle of energy
conservation. In this case, we have to compare the
change of energy for a unity change of the quantum num-
bers 0 and N, i.e.,

)
2 h

(z')1

b

, R

FIG. 8. By introducing a locking radius RL, we assume the
electronic angular momentum J to be space fixed for R )RL,
and locked to the internuclear axis for R ~RL. Thus we have
purely geometrical 0 mixing through rotational coupling for
R )RL, and 0 conservation for R ~ RI .

d E„,=(N+ ,' )fi /p—R (27)

where E„„ is the rotational energy. If
(dldA)V »(dldN)E„„we expect 0 to be conserved,
that is to say locking, since a change in 0 would require
an unrealistically large change in N to provide for the
necessary change in E„,. Likewise, the condition
(did 0) V «(d ldN)E„, means that N must remain un-
changed and that rotational coupling will act on
the space-fixed J, changing Q. With (d jdQ)V=fL(d ldN)E„„and writing (N+ —,

'
) =[N(N+ I )]'~2,

we once more have Eq. (23).
Lastly, as a closing note on locking, we note that the

transition from a space-Axed to a body-fixed angular
momentum J corresponds, in the language of molecular
spectroscopy, to a transition between Hund's cases "e"
and "c.""

The simplification, implicit in the concept of a locking

radius, has met with considerable success, e.g. , in the
Na*+Na+ case. ' Although this picture of sudden lock-
ing, as illustrated by Fig. 8, has proven too simple for
Ne"

I a I9+Ar collisions, I' it is quite appropriate in the
present Ne"*

I aI4 ~ 6 7+He context, as will be shown in
Sec. III E.

The problem of finding a locking radius has also been
discussed by Nikitin, for the case of small-angle scatter-
ing, i.e., large impact parameters. The criterion used for
determining RL is the su%cient accumulation of phase
difference between the adiabatic states. For a steep rise
of the 0, splitting, this approach will yield results similar
to those found by us. We note that, for impact parame-
ters b ~O, the above so-called "matching" criterion
would give a finite value of RI, whereas in our case
RL ~~. However, to the extent that for b ~0 the
space-fixed and body-fixed coordinate systems coincide,

19.2—
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18.75-~ '

(5, 7)
I
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this work
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Hennecart and Nasnou —Seeuws
I I I

5 10
R (units of a0)

I
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FIG. 9. Adiabatic potential curves Vq (R) for k=5,7 and 0=0 . The arrow points to the position R, 7 of the avoided crossing.
The inset shows the crossing region in more detail. The diabatic potentials and the coupling-matrix element, indicated in the figure,
are given in Table II. See Fig. 7 for comparison.
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0
0.6
0
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87
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0.24
0.09
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noteworthy that the reference velocities vk& of the (5,7)
and (5,6) crossings on the one hand, and the (4,5) and
(6,7) crossings on the other, differ by an order of magni-
tude.

The values of H& —H& in Table II indicate how easily
the crossing can be reached. For an estimate of the range
of impact parameters b contributing to the cross section
for a given initial energy Et„we must compare the rota-
tional energy at the crossing radius Rz with the total ki-
netic energy available there. If the crossing is to be
reached at all, some radial energy must remain, which
gives rise to the following condition for the impact pa-
rameter b:

b E& —(Hc H& )—
Rc E (29)

In all cases where an avoided crossing of the adiabatic
potential curves is present, the corresponding 0/BR-
matrix elements display a peak at the crossing radius R&.
This is in contrast with the behavior of a 8/BR-matrix
element in the absence of an avoided crossing,
exemplified here by the

(a,J, n=O- a/aR~a J Q=O- )

matrix element, which is both smaller and extends over a

For positive values of (Hc H& ), t—he range is b (Rc. Of
course, in terms of the classical turning point RT, Eq.
(29) translates to R T ( b ) ~ R c .

A closer view of the radial coupling at and near the
various avoided crossings of Table II is offered by Fig. 11
of the radial-coupling matrix elements

(a~Jln[a/aR[ rJt, II& .

TABLE III. Position R,. „, height (a/aR ),„, and FWHM
width 4R of the peaks of the radial-coupling matrix elements
(a~ J~II ~a/aR a~ Jf II ), associated with the avoided crossings of
Table II. The peaks are shown in Fig. 11. See the caption of
this figure.

Crossing
( lc, l )

(5,7)
(4,5)
(5,6)
(6,7)

0
1

1

1

R max

(ao)

6.95
8.55
6.90
7.35

(a/aR ).,„
(ao ')

1.0
5.7
1.1
3.5

AR
(ao)

0.95
0.17
0.80
0.27

considerably wider range. The peak values and full
widths at half maximum (FWHM) of the a/BR peaks in
Fig. 11 are listed in Table III. By comparison, the max-
imum value of the

(a3J3 0=0 ~a/aR ~a4J4 II =0

matrix element is only 0.25ao ', which still makes it
larger than most matrix elements not associated with an
avoided crossing. The width of the widest 0/dR peaks is
roughly of a size with the minimum wavelengths, encoun-
tered at R& for an initial energy E= 100 meV. These are
obtained for head-on collisions. For the (5,7) crossing for
A, =O, E~ =100 meV yields k~ ~0.97ao. An energy
E4=100 meV translates, through multiple curve cross-
ings, to Xc ~0.87ao for the (6,7) crossing for II=1. For
E6 = 100 meV, we find for this crossing X& ~ 1.12a o.
This illustrates the localized nature of the avoided cross-
ings.

Comparing Tables II and III, the close relationship be-
tween crossing parameters and 0/0R-matrix-element
characteristics is obvious. The peak positions R „are
seen to coincide with the crossing radii R&. The order of
magnitude of peak values (a/aR ),„not unexpectedly
compares closely to that of the reference velocities v&I.

Lastly, the width of the coupling region 6R& =H&&/AF
(Ref. 31) is directly proportional to the peak width b,R
In fact, we find approximately AR = 36R&.

h

3 ll
::(6,7)

I 1

1 I

2 I

I I

(S, 6),: I

1 l

O

s 10

R (ul)itS Of a() )

FIG. 11. The radial-coupling matrix element
(a,J,O a/aR o~ J~O) has a sharp peak, if an avoided crossing
of the adiabatic potentials V&'(R) and V&"(R) is present. This
lies at the basis of our model assumption, that radial coupling is
localized at the crossing radius R~. The matrix element
(a,J, II=0+ a/aR a~J~ $1=0+ ), which is not associated with

o+an avoided crossing and therefore denoted as (a/aR ),4, ex-
tends over a far wider range.

E. The Ne *-He case: rotational coupling
versus locking

In Figs. 12—15 we have plotted the 0, splitting AV&

and the rotational-coupling strength T„„(N) as a func-
tion of the internuclear distance R. From these figures
we can determine the locking radius RI, as defined by
Eq. (23). In principle, RL depends upon the impact pa-
rameter b, which is related to the rotational quantum
number N by the semiclassical correspondence relation

b =(N+ —,')K~, (30)

with P =A/pg the de Broglie wavelength in the incoming
channel. For the Ne*'-He system, in practical units, Eq.
(30) translates to

b =[0.149 (in units of ao)]N(Ek/100 meV) '~ . (31)

Equation (23), with locking factor fr =1, yields lock-
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FIG. 12. Q splitting b V&'"(R) of the adiabatic potentials for
k=4 and A, Q, '=O, l (a); A, O, '=1,2 (b). Comparison with the
rotational-coupling strength T„, (R), in accordance with Eq.
(23), offers a criterion for determining a locking radius RL. The
effective locking radius of Table III coincides with the observed
steep rise of the Q splitting.

FIG. 14. 0 splitting AVk (R) for k=6 and A, A'=0, 1, (a);
A, Q'=1, 2 (b). Note the "hump" at large-R values, which
makes it hard to define a single effective locking radius RL. See
caption of Fig. 12 for further detail.

ing radii Rl (N) which are quite far out, especially for
low-N values. In fact, at the present thermal energies,
they are larger than even the largest crossing radius R&
of Table II over a considerable part of the range of con-

30—
RL

(a,j

Ol
E 20—

CI Lll)
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10

R (units of ap )
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I

15 10
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N

100
I 20
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FIG. 13. 0 splitting EVA. (R) for k=5 and Q, Q'=0, 1.
Locking would seem to occur intermittently. See caption of
Fig. 12 for further detail.

FIG. 15. Q splitting AVz "(R) for k=7 and A, Q'=0, 1.
Once more, it is possible to define an overall locking radius RL.
See caption of Fig. 12 for further detail.
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TABLE IV. Effective locking radii RL for the thermal energy
range, deduced from the taI4 5 f 7 adiabatic potentials, and ap-
proximate values A V&'",, of the 0 splitting at R~. Rotational
coupling may be expected to play a major role in the collision
process. In addition, the approximate collision energies EI are
given, at which the concept of a universal locking radius for the
states in question must break down, as specified by Eq. (32),
with a locking factor fI =4. For fr = I the values of Er would
be higher by a factor 16.

State
k

Rl
(&0)

E
(meV)

8.0 220

F 1
7.0

26
24

240
210

"Value at R =7.5a„.

Vp+„=fL T (R~;b =RL,E =El ) . (32)

The values of 6 VI „. , and the corresponding energy
values are given in Table IV as well. It may be concluded
that for thermal energies the present concept of a univer-
sal locking radius has practical application.

tributing impact parameters. This would eff ectively
negate the role of rotational coupling in bringing about
transitions between states I a I & and I a I I. It is when pos-
tulating a locking factor f~ —4 in Eq. (23) that the steep
rise of the 0 splitting with decreasing R enables us to
define effective locking radii RL for the taI467 states,
valid for all impact parameters b that contribute to the
cross sections of interest. This approach yields the Rl
given in Table IV. For the I a)5 state, the criterion for
locking is met only over a much more limited range of R
and N values than for the other states. Since the turning
point is always quite far out for this state anyway, we
have neglected locking for I a I s altogether. With a single
exception, explained later, these are the locking radii
which have been used in our calculations.

Looking at Table IV, we observe that locking will
occur at a rather large internuclear distance R =(7—8)ao
for all states, except perhaps IaI, . Even so, comparison
with the crossing radii of Table II shows that in all cases
rotational coupling will have its 0-mixing effect, at least
up to or even slightly beyond the various avoided cross-
ings. What consequences this has for the IaII, ~Iajt
cross sections will be discussed in detail in Sec. IV.

At higher initial energies than encountered in this pa-
per, there will be locking only for a limited range of im-
pact parameters b & R I . With the 0 splitting rising
steeply at Rl to an approximate value AV& ',„, we may
perform the following estimate. The energies EL, for
which the locking criterion of Eq. (23) will just barely be
met on a trajectory with an impact parameter equal to
the locking radii RL of Table IV, are defined by

IV. APPLICATION TO THE [a I~ ~ 6 7 group

1. Single-curve-crossing model

At the basis of our semiclassical model are a number of
approximations and assumptions. Firstly, radial coupling
is taken to be strictly localized at the crossing radius R&.
Figure 11 of the

( a&JI fI
)
r)lr)R (a,J„&)

radial-coupling matrix elements lends legitimacy to this
assumption, even in the case of the (5,7) matrix element
which exhibits the least-pronounced peak. As in
Landau-Zener theory, we distinguish between incoming
and outgoing transits of the avoided crossing (thus
neglecting interference effects). This permits complete
separation of radial and rotational coupling. Secondly,
there is assumed to be a sharp transition, at the locking

'RT /RL

III Q
/

RL-

FIG. 16. Overview of the collision process according to the
semiclassical model expounded in the text. Indicated are the
crossing radius R&, the locking radius RL, and the turning point
RT. For R & RL, we have rotational coupling; for R ~ RL, lock-
ing. At R =Rz a nonadiabatic transition may take place, both
on the incoming and on the outgoing trajectories. The latter are
assumed to be straight lined, with hard-sphere scattering at
R =R T. We explicitly point out that, for the distribution
GI,". (R ) over 0 states, we have G&'( R ~,in) &G/, (R&,out),
G&'(R~, in) = G&'(RL,out).

A. Single- and multiple-curve-crossing model

/M~For the calculation of polarized cross sections Qt &, in
accordance with Eq. (15), it remains to combine the con-
cepts of radial coupling and locking and use these with
trajectory information in the computation of the total

[M& [

transition probability P& j, .
As to trajectories, in a discussion of rotational cou-

pling, knowledge of the orientation of the internuclear z
axis for any given R (but in particular, of course, for
R =Rc and R =RL) clearly is indispensable. Classical
trajectories are often assumed to be of constant velocity,
and straight lined. While assuming straight-line trajec-
tories, a scattering plane can still be defined by incoming
and outgoing relative velocities for a very small scattering
angle. ' All the same, curved trajectories have been used
in a semiclassical context. ' In our present model we will
assume scattering from a hard sphere, with radius equal
to the (impact-parameter-dependent) classical turning
point RT.
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radius RI, between pure rotational coupling and locking.
Justification for this lies in the behavior of the 0, splitting
of the adiabatic potentials, as shown in Figs. 12—15.
Lastly, in the now disconnected issue of particle trajec-
tories, we postulate hard-sphere scattering at the classical
turning point Rz-. Of course, at the price of additional
computational effort the model could easily accommo-
date both impact-parameter-dependent locking radii and
more realistic trajectories. This was deemed unnecessary,
for the moment, in view of various other simplifications
inherent to the model.

In the end, for a transition caused by a single avoided
crossing, the collision process is as depicted in Fig. 16,
where R z- & RL & R ~. On the straight-line incoming tra-
jectory at impact parameter b, we have rotational cou-
pling down to Rc, where the distribution Gk (R) over

I

magnetic substates JR =Mk, can be determined. At R&,
each substate may cross from the initial Vk"(R) curve to
the Vt (R) curve, with a transition probability pkt ~. Of
course, this implies a probability (1 —

pk~t ~) of following
the initial curve. The two fractions are then traced sepa-
rately, once more undergoing rotational coupling down
to their respective locking radii RI, where the angular
momentum becomes body fixed, so that the distribution
remains constant. At the respective classical turning
points R~, hard-sphere scattering takes place. Then, on
the outgoing trajectory, the reverse process evolves.

In view of this, the following exgression may be written
down for the total probability Pt k of a transition from
the polarized

~ ak Jk Mk ) state to the
~ at Jt ) state (the Ro-

man numerals denote the various R regions in Fig. 16):

Pkl (b) = g gk (81 )p„, (b)
IMg I M~ A.

JN = —J~

J(

g, (9„+8 )[1—p„, '(b)]
JH,

' = —J(

A= —Jk

gk
'

( )[ —p' '(b)l (g +g )p
At (b)

(33)

with A, =M&, or W—:MI, , as appropriate.
In cases where LZ theory applies, the appropriate for-

mula yields pj, &
directly. Otherwise, an effective single-

pass transition probability pkl, ~ has been introduced, cal-
culated from the averaged total transition probability
Pkt(e, (3) of Nikitin, in accordance with Eq. (19a). In the
light of our calculation of total (as opposed to diff'erential)
cross sections, there is justification for the omission of in-
terference effects implied by this procedure. Of course,
for R ~ =R&, interference effects once more are fully ac-
counted for, the rotation between R~ and Rz- being negli-
gible under the circumstances. Likewise, there is no limi-
tation on tunneling, since this presupposes Rz--R~ any-
way. The straight-line trajectories make for a very simple
calculation of rotation angles 0.

2. Multiple-curve-crossi ng model

As is plainly evident from Fig. 10, an [a}k~[a}t
transition may have to take place via more than one
avoided crossing. Of course, the principles expounded in
Sec. IVA1 still apply. Now, we must keep track of all
possible particle trajectories, along different adiabatic po-
tentials, with different locking radii RL and turning
points Rz. Every relevant route along the various curve
crossings consists of nonadiabatic crossings (probability
pk~& ) and adiabatic noncrossings (probability 1 —

pk~& ).
Keeping track of the distribution over A, —:M, states at
each crossing poses a considerable bookkeeping problem.
In practice, however, matters may be considerably
simplified. Given the relative position of the various
avoided crossings and the locking behavior of the states

involved (see Tables II and IV), the interaction between
the Q=O and 1 manifolds is bound to be minimal, in
the Ne**-He case. Our calculations have therefore been
limited to a single 0 manifold at a time. Otherwise, all
effects of rotational coupling have been properly account-
ed for.

A cross-section calculation for a single energy at
present takes only about 30 sec on an AT-compatible mi-
crocomputer with numerical coprocessor. This contrasts
sharply with the 2 —3 hours on a Burroughs B7900 main-
frame computer, required by every quantum-mechanical
calculation, which translates to 30—45 h on the AT-
compatible microcomputer.

B. The [ a }5~ [ a }7 transitions

The [ a }5~ [ a } 7 transitions are governed almost ex-
clusively by the (5,7) avoided crossing for Sl=O . The
greatly disparate reference velocities of the (4,5), (5,6),
and (6,7) crossings for 0= 1 make a multiple-curve-
crossing [a }5~[a }7 transition unlikely. The high refer-
ence velocity v 57 implies a main cross-section contribu-
tion from small impact parameters, where radial veloci-
ties are large ("head-on" collisions). Even without lock-
ing, the initial 0 orientation will then be largely con-
served at the crossing, hence the large polarization effect
Q 7 5 ))Q 7 5 in the [ a }5~ [ a }7 cross sections. With
[a}7 as initial state, the radial energy at the crossing is
less than with [a}5. So, the main contribution to the
[a}7~[a}, cross section will come from even smaller
impact parameters than in the [a}5~[a}z case [Eq.
(29)]. This translates to both a smaller [a}7~[a } 5 cross
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FIG. 17. Semiclassical cross-section contributions
'M

dQ, , (b)/db, as a function of the impact parameter b, at ener-
gy E, = 100 meV. The dashed line ( ———

) represents
M, l =0, the solid line ( ), M, f

=1. They compare closely
)M~ I

with their quantum-mechanical analogues AQ7 5 (P), indicated
by filled circles ( ~ ) for M, f

=0, and open circles ( o ) for
fM5 f

=1. Fairly small impact parameters are preferred, yield-
ing a large orientation effect. The arrow points to the avoided-
crossing position R, 7

results. This holds both for the general behavior, and for
the position of the maximum. The preferred head-on
character of the collision is evident at once.

Figures 19 and 20 show the energy dependence of the
IM~semiclassical polarized-atom cross sections Q 7 '5 and

Q& '7, together with the experimental cross sections. The
latter are seen to rise with the energy, as do all cross sec-
tions studied in the present paper. The initial rise of the
polarization effect with falling energy rejects the effective
0 conservation implied by a shift to smaller impact pa-
rameters. Agreement between semiclassical theory and
experiment is good. The same can be said regarding the
results of the quantum-mechanical calculations, per-
formed with our coupled-channel code.

The experimentally observed threshold behavior of the
cross sections for endothermic transitions is obscured to a
certain extent by the fact that average velocities only are
considered here. The calculated energy spread of about
AF. =40 meV, due to the primary- and secondary-beam
(Gaussian) velocity distributions and to the spatial extent
of the scattering volume, ' roughly corresponds with the

section and a larger polarization effect.
The above is illustrated by Figs. 17 and 18, which com-

pare semiclassical cross-section contributions
IM& I

dQ, 7 (b)ldb with their quantum-mechanical counter-
IM& I

parts EQ& "7 (P) at an initial energy E= 100 meV. For
this, we have made use of the correspondence relation of
Eq. (30) and approximated the total angular momentum
by P =X. Averaging out the interference oscillations in
the quantum-mechanical cross-section contributions
brings out the excellent agreement with the semiclassical

LA
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FIG. 18. Semiclassical and quantum-mechanical cross-
jM7 IM7fsection contributions dQ5 7 (b)/db and b, Q5 7 (P), at energy

E, =100 meV. The endothermic nature of the transition dic-
tates a preference for even smaller impact parameters than in
the case of the reverse transition of Fig. 17. See caption of Fig.
17 for further detail.
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FIG. 19. Energy dependence of the polarized cross sections
Q7 5 and Q7 5 with E the center-of-mass energy. Filled ( ~ )

and open ( 0 ) circles depict the experimental data points,
dashed (

———
) and solid ( ) lines the semiclassical re-

sults. In addition, three quantum-mechanical cross sections are
shown, indicated by filled ( ~ ) and open ( ) quadrangles. (All
for fM5 f

=0 and 1, respectively. ) The corresponding polariza-
tion etfect Q7 ', /Q7 5 is given as well, in a similar notation.
For E=43 meV, the quantum-mechanical polarization eAect
has a value of 6.3.
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FIG. 21. Semiclassical and quantum-mechanical cross-
M5f IM, I

section contributions dQ4 ', (b)/db and b, Q4 5 (P), at energy
E5 =100 meV. The preference for intermediate impact parame-
ters combined with the absence of locking on the taI, curve,
leads to thorough 0 mixing and almost no overall polarization
effect. The semiclassical cross-section contributions are cut off
when the turning point passes the crossing radius. The
quantum-mechanical large-impact-parameter contributions
point to an additional radial-coupling mechanism. See caption
of Fig. 17 for further detail.

FIG. 20. Energy dependence of the polarized cross sections
QI 7 and QI' 7. The behavior of the experimental data points
near the threshold energy E =b E57 91 meV is strongly
influenced by the experimental velocity distribution which, as
no data averaging has been applied here, makes the comparison
with the semiclassical and quantum-mechanical cross sections
break down. For E= 100 meV, the quantum-mechanical polar-
ization effects has a value of 30. See caption of Fig. 19 for fur-
ther detail.

is largely responsible for the transition. The peculiar na-
ture of the (4,5) crossing, with its extremely low reference
velocity v45

' -20 ms ', makes the single-transit cross-
ing probability close to unity. For a net transition to take
place, rather than two subsequent crossings, rotational
coupling is required to generate an IM4I, &1 component,
which cannot cross again at the second transit. Of
course, rotation of the IM5, .&1 components at the first
transit of the avoided crossing to IM5 I, = 1 at the second
transit has a similar effect. For this reason, the expected

observed transgression of the energy threshold. These
convolution effects have not been included here, other
than (where necessary) in Table I and Figs. 1 —6. 0

0.5
100

C. The (aiz~(aI4 transitions
0.4

M =04

The IaIs~IaI4 transition is caused in effect by the
isolated (4,5) avoiding crossing for Sl = 1, which has a low
reference velocity U45 '. The small radial velocities, re-
quired for optimum coupling, imply that at the high-
velocity inner (5,6) avoided crossing almost always the
adiabatic curve is followed. For the favored larger im-
pact parameters ("glancing" collisions), Q mixing up to
the crossing point Rc is considerable. The absence of
locking on the I a I s curve leads to an even more
thorough Q mixin~ and to the virtual absence of a polar-
ization effect: Q4 ~ =Q4' ~. The small asymptotic ener-

gy difference AE45 =11 meV results in calculated cross
sections for the endothermic [aj4~Ia}s transition,
which are only slightly smaller than the IaI5~[aI4
cross sections.

The I a I 5~ I a I 4 transition is very instructive in
several regards. First of all, it is rotational coupling that

0.3

0.2

0.1

0
0

b (units of ap j

10

FIG. 22. Semiclassical and quantum-mechanical cross-
IM5I IM, I

section contributions dQ, 4 (b)/db and EQ4 4 (P), at energy
E4=100 meV. The similarity to Fig. 21 is not surprising in
view of the small energy difference AE45. See caption of Fig. 17
for further detail.
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and

la„J„Q=I (R)),
for k=4, 5. Ideally, a Landau-Zener-type avoided cross-
ing involves a ~/2 rotation of the adiabatic eigenfunc-
tions, while a a/4 rotation is associated with Demkov

3K/4,
Rg 5

K/2
d

0
d

7

7r/4,

hR7 5=
ik

-BR' 51

laA (R oo) ~

0
5 10

R (Unifs of a0 j

15

FICx. 23. Development with decreasing R of the mixing angle
) k (R) between adiabatic eigenfunctions

~ ai Ji,. Qi, (R = ~ ) ) and
~ai, Jinni, (R)), with k=4, 5 for 0=1, and k=7 for A=O. For
k=4, 5 the e6'ect of the (4,5) avoided crossing is added to by a
substantial rotation for large-R values. This rejects additional
radial coupling, perhaps of Demkov type.

Landau-Zener pattern of a rise and subsequent fall of the
cross sections does not materialize. To the {a)4~ {ajs
crossing, the same reasoning can be applied. With lock-
ing radii equal to the crossing radius, we would obtain

IM41cross sections Q4 '5, Q5 '4 (1 A, at E, =100 meV.
This both confirms the need for a locking factor fr ~ 1 in

Eq. (23), and provides a quite accurate upper limit for the
locking radii in question. Rotational coupling inside of
the inner (5,6) avoided crossing turns out to play no part.
It is possible to represent this crossing as a simple loss
term on the {a I &

curve, due to radial coupling only.
A second interesting aspect of the {aIs~{aI4 transi-

tion is evident from Fig. 21, which once more compares
semiclassical and quantum-mechanical cross-section con-
tributions per impact-parameter value, for E5 =100 meV.
Agreement is good, up to the sharp cutoff in the semiclas-
sical cross sections that signals the onset of tunneling at
the turning point. This behavior, closely paralleled by
that for the {a)4~{a],transition in Fig. 22, is quite in-
sensitive to the (4,5)-crossing-parameter values. To ac-
count for the quantum-mechanical contributions at large
impact parameters, a different radial-coupling mechanism
seems to be required.

The {als~{aI4 transition thus appears to be a prime
candidate for the tentative demonstration of Demkov
coupling. This is supported by Fig. 23 of the develop-
ment of the mixing angle yk (R ) between the adiabatic
eigenfunctions

lak J„0=1 (R = ~ ))

1.5

1.0—

c5

05—
C5

0
15

cv 10
~ ~
o o

fM)f =0

I ~

o0

0
0 50

E (meV j

100

coupling. Whereas obviously neither case applies here
with textbook clarity, the infiuence of the (4,5) avoided
crossing for 0=0 is unmistakable. The sharp transition
near the (4,5) crossing radius Rc=8.6ao makes the gra-
dual rotation over close to ~/4 in the outer R regions the
more remarkable. Compare this, in the same figure, with
the much smaller amount of mixing displayed by the
la7J7 0=0 (R)) state, in spite of the more diffuse char-
acter of the (5,7) avoided crossing for 0=0.

We must look at Fig. 24, which shows the semiclassi-
M)1cally calculated energy dependence of the Q4 '5 cross

sections, with the above in mind. What differences with
the quantum-mechanical cross sections there are, stem
mainly from a lack of large-impact-parameter contribu-
tions. In our opinion the conclusion is justified that the
{a]5~{aI4transition is essentially caused by Demkov
coupling in the outer R regions and LZ coupling at R&.

The quantum-mechanical calculations, in their turn,
agree well with the experimental results. Lower energies
(and smaller impact parameters) in this case favor the
0=

~

1
~

cross section, which means a decreasing polariza-
tion effect. As yet, there are no experimental data for the
{a ) 4~ {a I s transition.

D. The {a I 7~{a I 6 transitions

The {a)7~{a}6transitions are caused mainly by the
(6,7) avoided crossing for II=1. It resembles the (4,5)

FIG. 24. Energy dependence of the polarized cross sections
Q4 ', and Q~', . Added radial coupling may explain the
discrepancy between semiclassical and quantum-mechanical
(and experimental) cross sections. See caption of Fig. 19 for fur-
ther detail.
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FIG. 25. Semiclassical and quantum-mechanical cross-
IM, i

section contributions dQ6 & (b)/db and EQ6 7 (P), at energy
E7 = 100 meV. See caption of Fig. 17 for further detail.
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FIG. 26. Semiclassical and quantum-mechanical cross- .

iM6i
section contributions dQ, 6 (b)/db and bQ7 6 (P), at energy
E6 = 100 meV. See caption of Fig. 17 for further detail.

crossing in the same 0 manifold, but has not quite so
small a reference velocity. Also, of course, the crossing
radius is smaller. Other than for the {a}s~{a}4transi-
tions, however, on account of more complete locking in
the inner regions there is a remaining orientation effect
for the {a}7initial state: Q6'7) Q6 7. For the {a}6ini-
tial state, the energy at the crossing is larger than for the
{a }7 state, thereby forcing impact parameters to be
larger still ("grazing" collisions). In fact, even a small in-
version of the polarization effect is observed:
Q 7 6 Q 7 6 though, of course, here there is a Q 7

cross section to be taken into account as well ( J6 =2).
For the [a}~{a}6 transition, semiclassical cross-

section behavior as a function of the impact parameter, at
energy E7=100 meV, compares favorably with that of
the quantum-mechanical cross sections, as may be seen
from Fig. 25. Figure 26 for the reverse {a }6~ {a j ~ tran-
sition, at E6=100 meV, also displays good agreement.

c5
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I

50
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100

FIG. 27. Energy dependence of the polarized cross sections
Q 6 7 and Q 6 ', . Other than the experimental and quantum-
mechanical cross sections, the semiclassical cross sections fall
off with rising energy. A reference velocity for the (6,7) avoided
crossing, suSciently large to chancre this, is unlikely. For

o+E=140 meV, we find Q6 ', =9.7 A, quantum mechanically.
See caption of Fig. 19 for further detail.

The {a j 7~ {a }6 polarization effect is underestimated,
though. Some improvement may be achieved by using a
larger effective locking radius for the ja}7 state than in-
dicated in Table IV. The larger value, RL =9.0ao,
perhaps reAects the slowly rising Aank of the 0 splitting
6 V7' in Fig. 15. No realistic change in crossing parame-
ters, though, can correct the tendency of the semiclassical
cross sections Q& 7 to decrease prematurely with rising

energy (in contrast to the cross section Q4 's ), as shown
in Fig. 27. The {a j 6~ {a j 7 transition has only been
measured at a single energy, so far.

K. The {a],~{a}6,Ia }7 6~{a}4transitions

Transitions {a}4,~{a}67are possible only through
multiple curve crossings. The high radial velocities
favored by the inner (5,6) crossing imply a dominant con-
tribution from small impact parameters. In view of the
locking on all but the {a j 5 curve, some polarization effect
is to be expected. For high radial velocities, a single-
transit nonadiabatic transition is much more likely at the
low-velocity (4,5) and (6,7) crossings than single-transit
adiabatic following. The {a}4~{a}~transition is there-
fore the most probable, with cross sections comparable
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TABLE V. Performance of the semiclassical model. Comparison of semiclassical and quantum-
/M~ f

mechanical polarized total cross sections QI k, at center-of-mass energy E=100 meV of the initial
state fajk.

Initial

state

Final

state

Cross section
IM~

( Ql k )SC~(QI k )QM

Mk =o
Polarization effect

( Ql —k ~QI k )SC~( Ql k ~QI -/ )QM

fajs
faj,
fa}7

1.4
0.4
2.6

1.1

0.4
2. 1

0.7
0.3
1.8

1.3
1.0
1.2

[aj,
faje

0.8
0.02
1.0

0.8
0.07
1.2

1.0
0.3
0.8

fa}4
f&je
faj~

0.6
1.0
0.8

0.5
0.2
0.7

0.7
0.8
1.3

1.3
10
1.2

faj, faj
laj,
faje

0.2
2.5
1.8

1.1

2.3
1.0

0.13
1.1

1.8

even to those for the single-curve-crossing transitions.
Once again, we expect more of an orientation effect in the
reverse highly endothermic ( b E7& = —91 me V)
[a}7~[a}& transition, for the same initial energy. Fig-
ure 28, which compares the composition of semiclassical
and quantum-mechanical cross sections for the
[a}4~[a }7 transition, once more at initial-state energy
E4=100 meV, shows them to be in reasonable agree-
ment.

The transitions requiring adiabatic following at one
([a}4~[a}eand [a}~~[a}7)or both ([a}~~[a}e)of
the (4,5) and (6,7) crossings are progressively less likely
than the [ a }4~ [ a }7 transitions. This is roughly the be-
havior displayed by the quantum-mechanical cross sec-

P
50

I

/Ng, I
=0

0.2

tions of Table I. The smaller the cross sections, the soon-
er our simple semiclassical model may be expected to de-
viate from quantum-mechanical "reality. " Even here,
though, qualitative agreement is sometimes maintained,
as, e.g. , for the [a}6~[a}4transition. On the other
hand, while, e.g. , the [a}&~[a}6 quantum-mechanical
cross sections are small, the semiclassical cross sections
are considerably smaller still and cannot be said to
present a true picture anymore. Once more, this may in-
dicate radial-coupling mechanisms not included in our
model. For none of these transitions are experimental
energy-dependence data available.

For the transitions of this subsection and for all transi-
tions discussed earlier, Table V offers a comparison be-
tween semiclassical and quantum-mechanical total cross
sections. Some possible reasons for existing discrepancies
have been given above. In general, though, the
quantum-mechanical results are qualitatively and often
quantitatively reproduced by the calculations with our
semiclassical model. We note that by fitting the semiclas-
sical crossing parameters to the cross-section data, still
better agreement could have been obtained.

C5
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b (units of a0 )
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FIG. 28. Semiclassical and quantum-mechanical cross-
M4I /M4section contributions dQ, 4 (b)/db and bQ7 ~ (P), at energy

E4=100 meV. The large crossing probabilities pqI at the outer
(4,5) and (6,7) avoided crossings make this multiple-curve-
crossing transition quite likely, thus the large cross sections.
See caption of Fig. 17 for further detail.

F. General conclusions

From the previous case studies, several general con-
clusions may be drawn as to cross-section magnitude,
dominance of impact-parameter regions, and polarization
effects. First, for two adjacent [a} states, an isolated
avoided crossing between the adiabatic potentials will re-
sult in large cross sections. This is true when only a sin-
gle crossing is present, but also when the principal cross-
ing is "isolated" by a second, inner crossing with an en-
tirely different reference velocity and thus representing
only a small loss term. In comparison with transitions
outside the [a}4~ e 7 multiplet,

'
the cross sections that

meet the above criterion (i.e., the {a}~~[a}7,
[a}~~[a}~,and [a}7~[a}ecross sections) are indeed
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relatively large. The same principle, in reverse, holds for
the true multiple-curve-crossing transitions. Here, the
inner of three crossings determines the preferred velocity.
Hence the I a I 6~ I ct ] 4 cross section is bound to be larger
than the [aI6~ I a I, cross section.

Exothermic IaI„~IaIi transitions are seen to yield
larger cross sections than their endothermic I a]i~ (ct) „
counterparts. This is because for a given energy with
respect to the initial state, radial energy at the avoided
crossing is larger in the exothermic case. For the transi-
tions under discussion, this is a favorable condition.

Secondly, as to the behavior of cross-section contribu-
tions as a function of the impact parameter, the expected
preference of "high-velocity" crossings for high radial ve-
locities translates directly into a preference for small im-

pact parameters (head-on collisions). Likewise, "low-
velocity" crossings require grazing or, in any case, glanc-
ing collisions at greater impact parameters.

The occurrence of polarization effects in IaI&~Iajt
cross sections is determined by the relative importance of
impact-parameter regions and by the competition be-
tween rotational coupling and locking of the electronic
angular momentum J. For head-on collisions (b «Rc),
the orientation of J remains quite unchanged, irrespective
of locking. This holds for both the incoming and outgo-
ing trajectories. Since, for Ne**-He, avoided crossings
are limited to a single 0 value per transition (0=0 or
0= 1), the preponderance of small impact parameters is
equivalent to a large orientation effect. For grazing col-
lisions and large impact parameters ( b =R c ) locking
plays no part either (since RL &Rc), but the orientation
of J with respect to the internuclear axis undergoes an
almost complete "inversion" (M =0~0=1, M =+1
~A =0 for J= 1). Again, a large but now opposite
orientation effect is expected. For intermediate impact
parameters and glancing collisions, strong 0 mixing gen-
erally leads to an averaging out of orientation effects, un-
less locking occurs along a substantial part of the trajec-
tory.

Lastly, it is worth noting that rotational coupling in-
side the crossing radius can play an instrumental role in
bringing about a net Ia)k~IaIt transition in the first
place. This happens when the single-transit transition
probability approaches unity, as in the I a ) ~~ I a I s case.

V. CONCLUDING REMARKS

For the Ne**Ia)4, 67 group of states, semiclassical
considerations are of great help in obtaining insight into
the Ne**+He intramultiplet-mixing process at thermal
energies. Symmetry restraints, Landau-Zener-type radial
coupling at avoided crossings, and the competition be-
tween rotational coupling and locking, are the essential
elements of our simple semiclassical model. The semi-
classical calculations, not only qualitatively but more
often than not quantitatively as well, effectively emulate
quantum-mechanical coupled-channel calculations
(which in turn agree well with experiment).

The combination of crossed-beam experiment,
quantum-mechanical coupled-channel calculations, and
semiclassical analysis presents a picture, of polarization
effects in particular, that is quite remarkable in its com-
pleteness. The energy dependence of cross sections still
needs to be examined in more detail. It will be
worthwhile to investigate the possible inclusion of anoth-
er kind of radial coupling (e.g. , Demkov coupling) into
the framework of the present model.

In the case of related systems, such as Ne**-Ne,
Ne"-H2, or perhaps even Ne'*-CH4, semiclassical cal-
culations offer a practical way of directly testing the va-
lidity of interaction potentials, similar to that for Ne**-
He but for the changes due to, e.g. , a different polarizabil-
ity. The possible merits of this idea are suggested by pre-
liminary Ne**-Ne and Ne**-H2 measurements, which
show cross-section behavior for these systems to be quite
similar to that for Ne**-He.
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