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It is shown that the interaction of frequency- and amplitude-modulated optical fields with a two-
level atom, as treated by Nayak and Agarwal [Phys. Rev. A 31, 3175 (1985)] and Agarwal and
Nayak [J. Phys. B 19, 3385 (1986)], respectively, can be described by the same Bloch equations, and
that both have close counterparts in magnetic resonance. The matrix continued-fraction solution
for the system is refined, and fluorescence and absorption spectra are explicitly related.

In two recent papers, to be referred to as I and II, re-
spectively, Nayak and Agarwal' and Agarwal and
Nayak have treated the response of a strongly driven
two-level atom to frequency-modulated (I) and
amplitude-modulated (II) optical fields. Solutions of the
Bloch equations are obtained in terms of two-dimensional
matrix continued fractions, valid for an arbitrary index of
modulation. In this Comment (Sec. I) we show that, by
using a different choice of polarization components, both
cases can be described by the same equations. The great
similarities as well as the differences between the two
cases are pointed out, and a comparison is made with
magnetic resonance experiments. In Sec. II it is shown
that the matrix continued-fraction solution in our alter-
native formulation takes a simpler form, especially for
the amplitude-modulated (AM) case. In Sec. III some
discussion on the resonance behavior of the system is
given, and, finally, in Sec. IV, it is shown that the absorp-
tion and fluorescence spectra are intimately and simply
related, a conclusion that has not been reached fully in
the original work.

taneous frequency of the field, and counter-rotating terms
are dropped. However, rather than working with the
off-diagonal elements of the density matrix themselves, as
was done in I and II, we follow Allen and Eberly and use
the real and imaginary parts U and V of the polarization,
along with the atomic inversion W. Both interactions
can now be represented by the semiclassical Bloch equa-
tions in the form
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In Table I the quantities from Eq. (3) are given explicitly
for the two cases. From Eq. (3) it is evident that the FM
case is remarkably similar to the AM case. The notable
difference is the interchange of the roles of the real part

I. BI.OCH EQUATIONS

Following largely the notation of I and II, let a two-
level atom be subjected to a frequency-modulated (FM)
or AM electric field FM optical AM optical rf magnetic

TABLE I. Quantities from Eq. (3). T, and T~ are longitudi-
nal and transverse relaxation times, W is the equilibrium inver-
sion scaled by T, , and k~~ and A,, are longitudinal and transverse
pumping rates, respectively.

E„M(t)=8 exp( ito, t iM sinQ—t )+—c.c. ,

E~M(t) = C(1+M cosset ) exp( ico, t )+c.—c. ,

which is detuned from resonance by an amount
=coI —coo and with associated Rabi frequency g= —d. C/A. As is customary, the dynamics of the in-
teraction are described in a frame rotating at the instan-
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of the polarization U and the atomic inversion 8'of the
Bloch vector 4, along with its associated damping terms
and inhomogeneous term. Also, the roles of the Rabi fre-
quency 2g of the carrier field and the detuning b, (which,
in the FM case, can be interpreted as the carrier phase of
the field) are reversed. From a purely mathematical point
of view, i.e., without regard to the roles of the atomic
variables, the only difference between the FM and AM
cases lies in the nonvanishing component of the inhomo-
geneous term C, resulting in different resonance behavior
of the system, as discussed below. Before addressing this
issue, it should be recognized that Eq. (3) is a very famil-
iar one in the study of magnetic resonance phenomena.
Indeed, consider a magnetic dipole under the inAuence of
a combination of static and oscillating magnetic rf fields

H =Hiei —
(HI) +H cos~~ (4)

II. SOLUTION OF EQ. (3)

Most of the work on magnetic resonance experiments
has dealt with special field geometries, e.g. , coi=0 (Ref. 7)
or co~,

,

=0 (Refs. 8,9). For the latter, it was Stenholm who
first obtained (scalar) continued-fraction solutions follow-
ing Floquet expansion of the Bloch vector,

4(t) = g 4'") exp( —in II t ) .

The more general geometry has been investigated exten-
sively by Yabuzaki et al. ' and by Thomann. Both re-
duced Eq. (3) to a single, infinite set of five-term re-
currence relations for the Floquet coefficients of the
atomic inversion 8' and obtained the solution by solving
a truncated pentadiagonal matrix equation. By compar-
ison, the matrix continued-fraction solutions from I and
II significantly reduce the computational effort in solving
the problem. Here, we note that a further simplification
results by applying the same procedure as in I and II to
the Bloch equations in the form of Eq. (3). Upon Floquet
expansion as in Eq. (5), and upon elimination of the
coefficients N), "), Eq. (3) becomes a two-dimensional
infinite set of recurrence relations that can be written in
matrix form as

+ —,'co&(N +N )=C5„0, (6a)

with associated Rabi frequencies co, , co~~, and co. For this
system, the Bloch equations (without making the rotating
wave approximation) again take the form of Eq. (3), with
the quantities given explicitly in Table I (see, e.g. ,
Stenholm et al. ' ). Comparison shows that the roles of
the atomic variables are as in the optical AM case, as
noted by Thomann. However, the inhomogeneous term
in the rf case can be either as in the optical AM case for
longitudinal pumping of the magnetic doublet, or as in
the optical FM case for transverse pumping. Thus, from
a mathematical point of view, the optical FM interaction
is identical in form to the rf case under conditions of trans
verse pumping. The tremendous body of literature on
magnetic resonance experiments, roughly from the period
1955 to 1975, is thus of great value to work in the optical
regime for AM as mell as FM interactions.

where

and

(
@(k).q)(k) )

T C = ( C3; C) co, /y, —C~ ) (6b)

—yb+in 0, —
y, —in'

y, —in',
(6c)

Solution of Eq. (6) follows very closely that of I. In par-
ticular, the matrix-continued fraction X, has to be evalu-
ated from the recurrence relation

X„=—[A„/( —)co3)+X„+,] ', n ~ 1 . (7)

For accurate results, the iteration should be started at a
value of n no smaller than co3/A. Note that at each itera-
tion only three components of the L„'s have to be com-
puted, since the diagonal elements are equal. Unlike I
and II, a similar continued fraction for negative indices is
not needed, essentially because the atomic variables U, V,
and W are all real. Also, the number of (matrix) multipli-
cations and inversions at each step in the evaluation of
the continued fraction is considerably less than for the
solution in II for the AM case (for the FM solution in I
there is not much difference). Once the X„'s have been
obtained, the solution of Eq. (6) is given by

=[Ao+co3 Re[X, ) ) 'C; (8)

(9)

As a check, various figures in I and II were recalculated
using the preceding equations. Apart from some scaling
factors, perfect agreement was found, except for Fig. 3 of
II and for the labeling of the curves in Fig. 2 of I.

III. RESONANCE BEHAVIOR

In I and II, the resonance condition

2+ 2 2~2co
~ c02 —n

is mentioned, corresponding to the vanishing of the
determinant of 3„ in the limit of zero damping. We
would like to point out that this condition describes the
resonant behavior accurately only in the limit of sma11 A@3,

as is well established in the literature on magnetic reso-
nance. In fact, it has been shown by Yabuzaki et al. '

that the resonance behavior of Eq. (3), i.e., the general-
ized Bloch-Siegert shift, for arbitrary values of the pa-
rameters cu, , co2, and co3 is quite complex. In particular,
the circles described by Eq. (11) are modified by a pattern
of crossings and anticrossings as co3 increases. Also, we
note that although Eq. (11) is identical for the FM and
AM interactions in terms of actual atomic variables,
namely, 6 +4g = n 0, , there is an important difference:
substituting the values for C from Table I, it is seen that

and the coefficients N"
, that had been eliminated from

Eq. (3) are obtained as

4')")=(C)5„0+co)4')"')/(y, in') . —
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the inhomogeneous term C in Eq. (6b) has its nonvanish-
ing component interchanged for the two cases. Thus, the
roles of even and odd terms in the Floquet expansion are
interchanged. From the literature on magnetic resonance
phenomena, this implies an interchange of real and virtu-
al transitions, characterized by odd and even (Haroche" )

numbers of photons, respectively. Thus we note that the
optical FM interaction with zero detuning would consti-
tute an ideal experiment to study Haroche resonances in
the optical regime, characterized by elliptical structures
in the (2g;M) plane, intersecting the axes at 2g equal to
an even multiple of O„and M equal to a zero of an integer
order Bessel function.

IV. ABSORPTION AND FLUORESCENCE SPECTRA

P, (cu) =(1—icoTi )Pf(~), (12)

Finally, we emphasize the close relation between
fluorescence (in the sense of I and II) and absorption
spectra. In I and II, the two are basically treated in-
dependently. However, it is clear from the pairs of Figs.
1 and 6, 2 and 9, 3 and 10, 4 and 7, and 5 and 8 in I, and
of Figs. 4 and 8, 5 and 10, and 6 and 9 in II, that the two
spectra are intimately related, in fact almost identical
upon interchange of in-phase and quadrature com-
ponents. Indeed, from the expression of work done by
the fields and from the Bloch equation for the rate of
change of the atomic inversion, it is easy to show that for
a two-level atom interacting with an arbitrary field, the
absorption spectrum P, (co) and fluorescence spectrum
Pf ( co ) are simply related by

Let us now denote the rate of fluorescence for both the
FM and AM cases by the Floquet series

d JI f /dt =(first/T, ) g p~z'z'exp( —in At ) . (13)

Also, let us assume that the upper-state population
coefficients pzz' have been obtained from the continued-
fraction solution. Application of Eq. (12) then yields the
rate of absorption, in terms of the same coefficients,

dW, /dt =(fico& /T, ) g (1—in AT& )pzz' exp( —in At ) .

(14)

This expression can also be obtained directly from the re-
currence relations between the Floquet-expansion
coefficients. Thus we observe that the relation between
absorption and fluorescence is independent of the type of
interaction (FM or AM), field strength, modulation in-
dex, detuning, and transverse relaxation rates. If the fac-
tor nAT& significantly exceeds unity, which is the case
for most of the figures in I and II except near the origins
in A scans, then the corresponding spectral harmonics
are 90' out of phase, and differ in magnitude by that fac-
tor. Although the relation between the two spectra in
this limit is mentioned for the components at the driving
frequency 6 at the conclusion of I for the FM case, we
note here that it is quite generally valid. In particular,
Eqs. (13) and (14) remain valid for arbitrarily modulated
fields as long as both the amplitude and phase are period-
ic at A.

where T, is the longitudinal relaxation time. For zero
frequency, this expresses of course the time-averaged en-

ergy balance of the system. For frequencies other than
zero it is seen that the magnitude of the absorption spec-
trum is always greater than that of the fluorescence spec-
trum, particularly if the longitudinal damping is small.
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