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A modified perturbation procedure for computing relativistic atomic bound-state energies is de-
scribed, in which the instantaneous Coulomb interaction is included in the unperturbed QED Ham-
iltonian and the effect of virtual electron-positron pairs and of virtual transverse photons is treated
as the perturbation. To illustrate the method in the context of a simple model, a one-electron atom
is considered and a "one-pair" approximation is analyzed in detail. The approach is based on the
resolvent-operator formulation of many-body time-independent perturbation theory. The removal
of divergent vacuum-to-vacuum matrix elements is easily accomplished in this formulation, and it
leads rather directly to the derivation of a modified Dirac equation in which all perturbative effects
are contained in an effective one-electron potential. A set of integral equations for the evaluation of
the effective potential in the one-pair model is derived. These equations have the same structure as
the Dyson-Schwinger equations of covariant QED and serve a similar purpose. That is, they allow
for the isolation of the divergent self-energy and vertex parts, leaving a finite kernel (the K matrix)
which contains the effects of multiparticle intermediate states. In the one-pair model considered
here the intermediate states consist of an electron and a virtual pair interacting Coulombically. It is
shown that the K matrix can be constructed with the aid of a rigorous minimum principle of the
Rayleigh-Ritz type. That such a minimum principle exists appears to be an advantage of the nonco-
variant Hamiltonian procedure. The inapplicability of standard renormalization methods is, how-
ever, a distinct disadvantage. While some progress (the removal of vacuum divergences and the iso-
lation of divergent parts in the integral equation) is reported, a full resolution of the renormalization
problem in the Hamiltonian formulation remains to be developed.

I. INTRODUCTION

In recent years there has been an increasing awareness
of the need for improved accuracy in the computation of
atomic bound-state energies and wave functions with rel-
ativistic effects accounted for. While the standard
Hartree-Pock-Dirac procedure provides satisfactory re-
sults in many cases of interest, there are circumstances in
which alternative formulations might play a useful role;
one would look for methods which would allow, in prin-
ciple, the efficient and systematic improvement of the cal-
culational accuracy. Quantum electrodynamics, in the
time-independent formulation, provides a proper founda-
tion for the theory, as has been emphasized. ' A possible
practical advantage of this approach is that it may be
possible to borrow techniques developed over the years
for nonrelativistic calculations —for example, the use of
the Rayleigh-Ritz minimum principle in the treatment of
multiparticle Coulomb interactions —and apply them
effectively to relativistic problems. The absence of time
variables is a simplifying feature, and this can be especial-
ly important in dealing with multielectron atoms. One
pays the price for this, of course, in the loss of manifest
covariance, which complicates the problem of removing
di vergences in a systematic and physically consistent
manner.

It is convenient, in the time-independent formulation
of QED, to express the total Hamiltonian as the sum of a
"no-pair" component, which includes the instantaneous
Coulomb interaction between electrons but does not al-

low for virtual-photon or pair creation, and a remainder
taken as the perturbation. There are no formal
difficulties associated with the eigenvalue problem based
on the no-pair Hamiltonian. Since the spectrum is
bounded from below, the Rayleigh-Ritz principle can be
used to And approximate solutions without the oc-
currence of "variational collapse" in the minimization
procedure. Furthermore, in the absence of self-energy
effects the divergence difBculty does not arise at this level
of approximation. Solutions of the no-pair model will
provide energies and wave functions which should prove
to be accurate enough for many applications. (Such solu-
tions would include correlation effects not contained in
the Hartree-Fock-Dirac approximation. )

In order to establish the validity of the no-pair model,
or improve on it when necessary, one must examine
higher-order terms in the perturbation expansion which,
as mentioned, represent the effect of the virtual creation
and annihilation of transverse photons and of electron-
positron pairs. Several specific calculations, based on the
no-pair model and corrections to it, have been per-
formed. The main focus of the present discussion will
be on the formulation of variational methods to carry out
sums over intermediate states. (The utility of such
methods was demonstrated some time ago in connection
with a Lamb-shift calculation in helium. ) A complete
analysis of the renormalization problem in the noncovari-
ant Hamiltonian formulation of QED has not yet been
given and no attempt will be made to provide one here.
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Nevertheless, we are obliged to include some discussion
of divergences in order to verify the validity of the
minimum principle in the evaluation of higher-order per-
turbation terms. In an infinite subset of such terms one
encounters sums over intermediate states corresponding
to a system differing from that of the no-pair model by
the presence of an additional electron-positron pair. The
minimum principle is not directly applicable in this one-
pair sector since the pair can virtually annihilate itself
and then be recreated, and the matrix element for this
process introduces a divergent photon self-energy in-
tegral. (It is, of course, just the divergence problem
which prevents one from applying the minimum principle
directly to the expectation value of the Hamiltonian. ) In
Sec. III A we outline the procedure whereby these diver-
gent contributions (and others associated with the vertex
function) can be isolated. With these divergent parts re-
moved the finite remainder satisfies the minimum princi-
ple, as shown in Sec. III B.

The modified perturbation theory is formulated in Sec.
II A. The resolvent-operator method of many-body per-
turbation theory, developed by Hugenholtz, is adopted
for this purpose. This approach has the merit that it al-
lows, in a straightforward way, for the removal of diver-
gences associated with vacuum-to-vacuum transitions to
all orders in the expansion. For the sake of orientation
we have written out, in Sec. II B, the integral expressions
which represent the second-order electron self-energy
function for a one-electron atom. The calculation illus-
trates how nonco variant contributions involving
Coulomb and transverse-photon interactions can be com-
bined, resulting in a covariant and renormalizable expres-
sion. The divergent photon self-energy function in
second order can be treated in a similar way. (Use of the
Coulomb gauge is not an obstacle to renormalization.
An explicit demonstration of renormalization in the
Coulomb gauge, for the second-order self-energy and ver-
tex functions, has been provided recently by Adkins. '

)

In order to permit an analysis of pair effects in reason-
ably explicit form the discussion has been confined to the
study of a one-electron atom, and contributions involving
only a single virtual pair are considered. This is a rela-
tively simple model. Even so, the treatment of the three-
body intermediate states leading to a separation of diver-
gent and nondivergent parts is fairly intricate. Methods
developed previously for nonrelativistic three-body
scattering problems, involving the use of an effective po-
tential to describe the projectile-target interaction, turn
out to be useful here. It is the eff'ective potential, from
which divergences have been removed, to which the
minimum principle is applied. The integral equations in-
troduced here are similar in form to the Dyson-
Schwinger (DS) equations of covariant perturbation
theory. The effective potential mentioned above has its
analog in one of the "irreducible kernels" of the DS equa-
tions. These kernels have the well-known and important
property of being essentially finite, in the sense that diver-
gences appear only through the insertion of vertex and
self-energy corrections. It is for this reason that the DS
equations provide a convenient framework for renormal-
ization and, more to the point in the present context, al-

low us to identify the matrix elements which are suitable
for variational construction.

II. EFFECTIVE-HAMILTONIAN METHOD
BASED ON THE RESOLVENT OPERATOR

A. Formulation

Consideration of the resolvent operator

R (z) =(z —a)-' (2.1)

provides a convenient starting point for the development
of time-independent multiparticle perturbation theory.
Writing the QED Hamiltonian as H =Ha+ V, and intro-
ducing the resolvent R0(z)=(z H0) —' of the unper-
turbed system, we have the integral equation

R (z}=Ra(z)+Ra(z) VR (z), (2.2)

(n'~R (z)~n ) = (n'~R(z)~n ) e (O~R (z)~0), (2.3)

where the convolution of two functions, say, f (z) and
g (z), is defined as

f(z)eg(z)= . J deaf(z —g)g(g);
2771 c

(2.4)

c is a counterclockwise contour enclosing the singularities
of g (z) on the real axis.

Consider now the sum of all terms contributing to the
perturbation expansion of (n'~R(z)~n) which do not
contain any one-electron intermediate states. We write
this sum as

(z —e„) 'F„.„(z)(z—s„)

where we have used the relation R0(z}~n ) =(z—c.„) '~n ) and have defined

whose iterative solution generates the perturbation ex-
pansion. To simplify the discussion we confine our atten-
tion to a system consisting of a single electron bound in
the Coulomb field of a fixed nucleus. The extension of
the analysis to multielectron systems is straightforward in
principle.

Let us consider the matrix element ( n '~ R (z)
~
n ) . Here

~n ) and ~n') represent eigenstates of H0, corresponding
to a single electron in the presence of the external field of
the nucleus (but unperturbed by self-energy interactions)
with positive-energy eigenvalues c.„and c.„., respectively.
Terms in the perturbation expansion of the matrix ele-
ment can be represented by diagrams in the usual way. A
connected diagram is one which cannot be separated into
two distinct parts without breaking one or more of the
internal propagator lines. Disconnected diagrams con-
tain additional components representing vacuum-to-
vacuum transitions which take place independently of the
n ~n

' transition of interest. The matrix element
(n'~R (z)~n ) may be expressed, according to the
Hugenholtz factorization theorem, as the convolution of
(n'~R(z)~n ), which is the sum of all connected terms,
and (O~R (z) ~0) representing the sum of all vacuum com-
ponents. This is written as
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F„„(z)= (n'~[ V+ VRO(z) V+ ]'~n ); (2.5)

(2.6)

A generalized sum is implied here, which includes an in-
tegration over continuum one-electron states in addition
to a sum over discrete bound states. Only positive-energy
states are included in the sum.

Suppose that (n'~P(z)~n ) has a pole at E„with resi-
due i}„„,and that (O~R (z) ~0) has a pole at Eo with resi-
due go. From the relation

the prime on the bracket enclosing the sum is to indicate
that only connected diagrams are included in the pertur-
bation expansion and no terms with one-electron inter-
mediate states are retained. Since ( n

'
~

R n ) is generated
by stringing together the "one-electron irreducible" dia-
grams in all possible ways we have

(n'~ R(z)~n ) = 5„.„(z—e„)
(+)

+(z —E„) ' g F„,„„(z}(n"~R(z)~n ) .

f u„(x)P„(x)d x =(n'~ W'„) . (2.13)

The function 1it„(x) satisfies a modified Dirac equation
which incorporates self-energy effects. To derive this
equation we use Eqs. (2.10) and (2.9) to write

(+)
[E„—h (x)]ltd„(x)= g u„(x)(E„—„E)(n'~ W„)

n'

(+)= lim g u„(x)(E„—E„)
z ~En n'

X(z E„)(n'~R—(z)~n ) .

(2.14)

From Eq. (2.6) we have

f u„(x)u„(x)d x =5„„, f v (x)v (x)d x =5
(2.12)f v (x)u„(x)d'x= f u„(x)v (x)d'x =0 .

From Eq. (2.10) and the orthonormality property, we
have

a b ab
z —A z —B z —A —B

(2.7)

it follows that (n'~R (z)~n ) has a pole at E„=Eo+E„—
with residue g„„go. The state

lim (z P„)(E„——e„)(n'~R (z)~n )
z~E

n

(+)= g F„„"(E„)(n"~ W„) . (2.15)

~ W„)=i}0 ' lim (z E„)R(z)~—n )
z~E

(2.8)

is an eigenstate of H with eigenvalue E„, as is easily
verified. The normalization has been chosen to ensure
that its projection on state ( n'~ can be expressed as

Equation (2.14) then takes the form

[E„—h (x)]it„(x)= fM(x, x', E„)g„(x')d x', (2.16)

where the effective potential is given by

(n'~ W„)= lim (z E„)(n'~P(z—)~n ) .
z~E

n

(2.9) (+) (+)
M(x, x', E)=g g u„(x)F„„-(E)u„"(x').

II
n

(2.17)

n' n'

The spinors u„(x) satisfy the Dirac equation

h (x)u„(x)=E„u„(x), e„&0

where, with A=c =1,
h (x)=a ( i V }+Pm —+ V,„,(x) .

The negative-energy solutions, satisfying

h(x)v (x)=E v (x), E &0

(2.10)

(2.11a)

(2.11b)

(2.11c)

will be needed later on. The orthonormality relations
satisfied by these functions are"

The energy E„,measured relative to the (divergent) vacu-
um self-energy, is the eigenvalue of physical interest.

Configuration-space representations of the preceding
relations are obtained by introducing the wave function
P„(x)=(x~ W„). Since the only one-electron com-
ponents of

~ W„) generated by the perturbation expansion
are those with positive energy we may insert a positive-
energy projection operator to obtain the expansion

(+) (+)
q„(x)=y ( ~xn')( 'n~ W„)=y u„( )(xn'~W„) .

Since M is energy dependent the eigenvalue must be
determined self-consistently from Eq. (2.16), a feature fa-
miliar from standard Brillouin-Wigner perturbation
theory.

While we are studying a relatively simple one-electron
problem, in which the negative-energy states correspond
to positrons, it should be mentioned that very similar
techniques could be applied to the study of a multielect-
ron atom where, by suitable choice of Fermi energy level,
the collection of negative-energy states is allowed to in-
clude, in addition to the positron degrees of freedom, oc-
cupied electronic levels. Renormalization effects associ-
ated with virtual excitation of occupied levels are finite
and an analysis of higher-order corrections associated
with virtual excitation of electron-hole pairs, along the
lines given in the following, is immediately applicable. '

We recall here the form of the QED Hamiltonian. The
unperturbed part Ho =HD+H„z is the sum of the parti-
cle and radiation-field energy operators, which are ex-
pressed in terms of the field operators 1tD(x) and A(x).
The particle field operator may be expanded as

(+) ( —)

QD(x) = g A„u„(x)+g B v (x), (2.18)

where An and B are electron and positron annihilation
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operators with the property

W„lo&=B lo&=0.

The anticommutation relations are

(2. 19a)

der. To do this we first evaluate the sum of matrix ele-
ments

(n'lHcln &+(n'lHT(E H—o) 'HTln & .

I 3„,3„}=5„„, }B,„,B } =6 (2.19b)

with all the other anticommutators vanishing. When put
in normal-ordered form HD becomes

After removal of vacuum components this combination
gives the second-order contribution to F„„(E),Eq. (2.5).
The effective potential is then obtained from Eq. (2.17).

We begin with some definitions. The electron propaga-
tor is given by

(2.20)

A(x) =g (2k, )
'~ [a,U, (x)+a, U,*(x)], (2.21)

With the radiation field quantized in a box of volume L
the vector potential can be expanded as

~+i u (x)u (x')
s + (x,x', E)= g F —c. +ig

and the positron propagator is

v (x)v (x')
s '(x, x';E) = g

, E —IE, I+in '

(2.27)

(2.28)

where the index s specifies both the photon momentum k,
and the double-valued polarization index A, The photon
wave function is

with g a positive infinitesimal. The transverse-photon
propagator is

U, (x)=L ' e 'exp(ik, x), (2.22)
U„(x)U,*,'(x')

2k, E —k, +ig, ,' x, x', E = (2.29)

with k, e ' =0 in the Coulomb gauge adopted here. The
relations

a, lo&=0,

[a„a, ]=5„, [a, , a, .]=[a, , a, . ]=0, (2.23)

characterize the photon creation and annihilation opera-
tors. In its normal-ordered form the radiation-field ener-
gy is

where U„ is given by Eq. (2.22) with the polarization vec-

tor e ' replaced by its ith Cartesian component.
The second-order effective potential M' '(x, x', E) is the

sum of six terms which are represented diagrammatically
in Fig. 1. The Coulomb interaction generates the contri-

H„,„=gk, a,. a, . (2.24)

The perturbation operator is V =HT+H&, with

Hr=e J PD(x)agD(x). A(x)d x (2.25) (b)

representing the interaction with the transverse radiation
field, ' and

e2
Hc= —,

' J ltD(x)l(D(x), PD(x')PD(x')d x d x'
4~ix —x'l

(2.26)

representing the (instantaneous) Coulomb interaction.
When the particle field operators are expanded as in

Eq. (2.18), one sees that Hc can be expressed as a "no-
pair" interaction plus a remainder. The former may be
combined with Ho, giving a new "unperturbed" Hamil-
tonian whose eigenstates define the no-pair approxima-
tion. Corrections are obtained through a modified per-
turbation expansion accounting for the creation and an-
nihilation of electron-positron pairs as well as the effects
of transverse-photon exchange.

B. Effectiv potential in second order

To provide a simple illustration of the formalism just
developed and to establish notation that will be used later
on, we now determine the effective potential in second or-

(c)

(e)

FIG. 1. Diagrammatic representation of the contributions to
the effective potential in second order. The Coulomb interac-
tion is represented by a dashed line, transverse-photon propaga-
tion by a wavy line, and solid lines represent electron or posi-
tron propagation. Diagrams (a), (c), and (d) describe fluctuation
effects and diagrams (b), (e), and (f) correspond to the effect of
vacuum polarization in the presence of an external field.
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bution M +Mb with'

e2
M, (x, x';E)= f L +'(x, y)L' '(y, y')

4n. [y y'—
[

XL'+'(y', x')d y d y',
2

Mb(x, x', E)=f L'+'(x, y)[TrL(y, y')]
4m.

/ y —y'
f

XL'+I(y', x')d'y d'y' .

(2.30)

(2.31)

(
—)

L' '(x, x')=g U (x)u (x') (2.33)

M, (x, x', E)

is the negative-energy projection operator. ' The
vacuum-Auctuation contribution arising from the emis-
sion and reabsorption of a transverse photon is M, +Md,
with

Here L(x, x')=—[LI I(x, x') L'+—'( x, x')]/2, where

(+)
L' '(x, x') = g u„(x)u„(x') (2.32)

=g f L'+'(x, y)ea, p, ,'(y, y', E)es'+I(y, y';E)
l, l

Xea, ,LI+'(y', x')d y d y', (2.34)

is the projection operator onto positive-energy states and and

Mz(x, x';E)= —g f s'+'(x, y;E)sea, s' (y, y', E)ep;,'(y', y;E)e a,'e s'+'(y', x';E)d y d y' . (2.35)

and

Xea; L' '(y, x')d y d y', (2.36)

M&(x, x', E)

=g f L'+'(x, y)ea, p...(y, y', E)es'+'(y, x';E)

XTr[L(y', y')ea, ']d y d y' . (2.37)

The appearance of the symmetrized projection operator
L in Eqs. (2.31), (2.36), and (2.37) results from the use of
symmetrized charge and current operators (which has the
consequence that the vacuum-polarization effect vanishes
in the absence of an external field, as it should). '

Coulomb and transverse-photon propagators may be
combined in the form of a photon propagator identical to
that which appears in the covariant formulation in the
Coulomb gauge. ' For example, the Auctuation terms
shown in Figs. 1(a) and 1(c) may be combined in the form

M (x,x';E)+M, (x, x';E)

3 3 f L'+'(x, y)ea„P„„(y,y', E)

Xea„.L'+'(y', x')d y d y' .

Here we introduced the propagator

P„„(y,y', E)=p„„(y,y', E)v s'+ (y, y', E)

(2.38)

(2.39)

for a photon in the presence of a spectator electron; ao is
defined as the unit 4X4 matrix, and

(Note that the convolution operator is associative and
commutative. ) Finally, the transverse-photon contribu-
tion to the vacuum-polarization effect is M, +MI, with

M, (x, x';E)

=g f Tr[L(y', y')ea, ]s'+'(x, y;E)ep;,'(y', y;E)

1
(y, y', E)=

4m (y —y'
(2.40)

with po;=p;O=O, i =1,2, 3. The wavy line in Fig. 1(c)
representing the transverse-photon propagator wi11, in di-
agrams introduced later on, be understood to represent
the combined Coulomb-transverse-photon propagator.

The level shift in second order is obtained from the ex-
pectation value of M' '(x, x';e„) in the state ~n ). An ex-
act correspondence with the covariant expression for this
leve1 shift' may be established by inserting the Fourier
transforms of the photon and electron propagators which
appear in the latter expression (these transforms are given
in the Appendix) and then carrying out the integrations
over the time and energy variables. This correspondence
allows one to set up a renormalization prescription for
the second-order level shift in the Hamiltonian formula-
tion parallel to the Coulomb-gauge version of the covari-
ant prescription. ' Use of the Hamiltonian formalism is
likely to provide computational advantages in the calcu-
lation of higher-order corrections, particularly in the
evaluation of sums over low-energy intermediate states'
in which the instantaneous Coulomb interaction plays the
dominant role. In the following, we attempt to put this
observation in more specific form through an analysis of
the one-pair approximation.

One must recognize, of course, the danger in too strict
an enforcement of the limitation to intermediate states of
a particular type. Thus in a no-pair approximation the
contribution to the effective potential shown in Fig. 1(d)
would be omitted with a resultant loss of covariance and
renorrnalizability of the self-energy. Similarly, in a one-
pair approximation the fourth-order diagrams of Figs.
2(a) and 2(b) are included but those shown in Figs. 2(c)
and 2(d), which differ only in the "time"-ordering, would
be omitted since they contain two-photon intermediate
states; this would leave nonrenormalizable self-energy
functions. In the following, the one-pair model is adopt-
ed in a strict form —only intermediate states consisting
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minimum principle for the K matrix is derived in Sec.
III B.

Fourth-order contributions to the one-electron
elfective potential M(x, x', E) in the one-pair approxima-
tion are pictured in Figs. 2(a) and 2(b). (Self-energy
corrections to internal electron lines, omitted here, must
ultimately be included self-consistently. ) The pair-
annihilation vertex appearing in these diagrams has asso-
ciated with it the (lowest-order) vertex function

(c) (o)

g„(x;y,z) =L ' (z, x)ea„L ' (x, y),
and the pair-creation vertex is represented by

g„(y, z;x)=L'+I(y, x)ea„L' (x, z) .

(3.l)

(3.2)

FIG. 2. Fourth-order terms represented by diagrams (a) and
(b) contribute to the effective potential in the one-pair model.
Diagrams (c) and (d) represent terms which arise from different
time orderings; they contain two-photon intermediate states and
are omitted in the one-pair model as defined in Sec. III of the
text. (Wavy lines in this figure stand for the combined
Coulomb-transverse-photon propagator. )

of an electron plus a pair, or an electron plus a photon,
will be introduced. This is done to simplify and focus the
discussion; it will be understood implicitly that the model
must eventually be enlarged to include all time-orderings
necessary for renormalizability.

III. ONE-PAIR APPROXIMATION

A. Description of the model

The effective potential in the one-pair model is defined
by an infinite collection of perturbation terms corre-
sponding to a restricted class of intermediate states.
These terms may be formally summed using integral
equations which, upon iterative solution, generate the
desired series expansion. The effect of repeated pair in-
teractions is accounted for through the introduction of
two-body Green's functions. Successive interactions in-
volving different pairs are summed with the aid of three-
body integral equations of the Faddeev-Watson type.
These integral equations could be used as the basis for
numerical computation. Here, however, they are intro-
duced merely as a technical device which facilitates the
separation of one-photon intermediate-state contributions
to the electron-positron Green's function from the (non-
divergent) remainder. This leads to the definition of an
irreducible kernel, the E matrix, which describes the
Coulomb interaction of the three-body system and which
can be calculated by means of a Rayleigh-Ritz variational
procedure. The details of this analysis will not be
presented here. (A very similar derivation was used pre-
viously in the development of an effective-potential for-
mulation of the nonrelativistic three-body scattering
problem. ') Rather, in this section we write down the
final form of the integral equations and define the various
components (kernels, propagators, vertex functions) in
terms of which these equations are expressed. The

Figure 2(a) shows a self-energy correction to the photon
propagator. This, together with higher-order iterations
in the one-pair model, gives rise to the vacuum fluctua-
tion diagram of Fig. 3(a); the modified photon propagator
is given by the sum of "bubble" diagrams shown in Fig.
3(b). With the photon self-energy denoted as
n„,,(x,x';E)—it is defined explicitly in Sec. III 8—the
sum may be represented as the solution of the integral
equation

p„'„.(x, x', E)=p„„.(x, x', E)

+ g f p„,, (x, y;E)rr, ,,;(y, y';E)

Xp'„„(y',x', E)d y d y' .

(3.3)

XL'+'(y', x', E)d y 1'y' . (3.4)

The contribution to X corresponding to the fluctuation
diagram of Fig. 3(a) is

+ ~ ~ ~

FIG. 3. Diagram (a) represents a vacuum-fluctuation contri-
bution to the one-electron effective potential. The modified
photon propagator appearing there is pictured as the sum of
"bubble" diagrams in diagram (b).

The one-electron effective potential in the one-pair model
is of the form

M, (x, x';E)—= f L +'(x, y)X(y, y';E)
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XF(x,x', E)=f I „' '(x;y, z)P„' (y, z;y', z';E)I', , '(y', z', x').

(3.5)

an is Hc; =h (1)+h (2) —h (3)+v;. These operators act
in a subspace projected onto by the operator
L + (1)L'+ (2)L' ~(3). The associated Green's func-
tions are

(To simplify notation, here and in the following a single
integration sign will imply the instruction to carry out
the sums over repeated photon indices and integration
over repeated position labels. ) In Eq. (3.5) we have intro-
duced the electron-photon propagator

and

G (E)=(E H—c)

G, (E)=(E Hc—
, )

(3.12)

(3.13)

P„',(y, z;y', z', E)=p„'„(y,y', E)es'+'(z, z';E), (3.6)

along with the bare vertex functions

I „' '(x;y, z) =I „(y,z;x) =ea„5(x—y)6(x —z) . (3.7)

Here I „ is a modified vertex function satisfying the in-
tegral equation

I „(y,z;x;E)= I ~ '(y, z;x)

+ K„,, y, z; y', z', E P '„,; y', z'; y",z";E

XI „.(y",z";x;E) . (3.9)

The kernel K sums all photon-electron interactions evolv-
ing through intermediate states consisting only of an elec-
tron and a pair. Photon-electron intermediate states ap-
pear only in the propagator P' in Eqs. (3.8) and (3.9); they
are excluded from the K matrix. For later reference we
note that an alternative version of Eq. (3.8) is (with posi-
tion labels now completely suppressed, and sums over re-
peated indices implied)

X(E)= I „(E)P„' (E)I ~, '(E), (3.10)

where I „satisfies the adjoint version of Eq. (3.9).
An explicit expression for the kernel K is obtained in

the course of the analysis leading to Eqs. (3.8) and (3.9).
To write it down we need some additional notation. We
are dealing with a system of two electrons (particles 1 and
2) and a positron (particle 3) interacting through pairwise
Coulomb potentials in the presence of an external (nu-
clear) potential. The appropriate Hamiltonian is

The lowest-order contribution to the remainder X —XF is
the term pictured in Fig. 2(b). To this we add the contri-
bution obtained by including all Coulomb interactions in
intermediate states of the e e e + system. In addition,
we must account for the fact that the positron can in-
teract with each of the electrons through the annihilation
and creation mechanism and its iterations. It is impor-
tant to isolate these divergent photon self-energy parts.
This is accomplished by expressing the kernel X in the
form

X(x,x';E)= f I „' ~(x;y, z)P„',, (y, z;y', z';E)1 (y', z', x;E) .

(3.8)

Note that G i (E), for example, is the convolution

G, (E)=g, (E)os'+ '(1;E), (3.14)

11 21K„„.=K„„.—K„„., (3.17)

where K„'~„.,i,j =1,2, corresponds to an electron-photon
interaction in which electron j and a photon of index p'
appears in the initial state, and electron i along with a
photon of index p emerge in the final state. Here we use
the language of scattering theory, and if we continue to
do so we may say that the initial-state "wave function" is

where s + (1;E) is the propagator for the spectator elec-
tron and g, (E) is the Coulomb Green's function of elec-
tron 2 and the positron. We now introduce, for i =1 or
2, the function

P„;(y', z'; x;E) = f g, ( y', z'; y, z; E)g„,(y, z; x ), (3.15)

and its adjoint

P„,(x;y', z';E)= f g„;(x;y,z)g, (y, z;y', z';E); (3.16)

g„; and g„; are the vertex functions defined in Eqs. (3.1)
and (3.2). To study the structure of Eq. (3.15) in more de-
tail we write, in condensed notation, with pair index om-
itted, P„=gg„and observe that g satisfies the linear in-

tegral equation g =go+go vg; go is the free Green's func-
tion for the pair. An iterative solution for g leads to the
expansion P„=go(g„+Ugog„+ . ). In going beyond
the leading term divergence diSculties arise which must
be treated by renormalization procedures. To do this
properly one must include vertex corrections arising from
transverse-photon exchange in addition to the Coulomb
corrections indicated explicitly above. Renormalization
can then proceed along standard lines; use of the
Coulomb gauge introduces no obstacles. ' Without pur-
suing the matter further here we emphasize that with the
divergent vertex function and photon self-energy function
isolated, we are left with a well-defined calculational
problem —construction of the K matrix —which we now
consider.

The electrons may be treated, temporarily, as distin-
guishable particles with the properly antisymmetrized K
matrix then formed as the difference between direct and
exchange amplitudes. Thus the K matrix appearing in
Eq. (3.9) is given by

Hc =h (1)+h (2) —h (3)+ Vc . (3.1 1)

Here h (i) is the Dirac Hamiltonian, Eq. (2.11b), for the
ith particle and Vc =v, + v z + v z, with v, representing
the Coulomb interaction between particles 2 and 3, etc.
If only the ith pair is interacting, the relevant Hamiltoni-

@„,(E)=P„)(E)+s'+'(j;E)

and the final-state wave function is

4„,(E)=P„,(E)e s' '(i; E)

(3.18)

(3.19)
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(with P and P playing the role of target bound-state wave
functions). We find from our analysis of the one-pair
model that the K matrix is given by

K,",„,.(E)=4„,(E) (E H—c+ Vc)(1 —5,, )+ g v,„
m-+i,j

+( Vc —
v, )G(E)( Vc —

v, ) N„, (E),

(3.20)

K„'~„,= 4„, (E H—c+ Vc)(1 —6,, )+ g v

m g-l, J

+4„,( Vc —
v, )qj„., +4„,( V —

v, )N„.,
++„;(Hc —E)qI„

The error is

bK„"„=—A4„;(Hc E)b,—+„J .

(3.27)

(3.28)

where position variables have been suppressed to simplify
the writing.

This is not diagonal in the particle indices i and j, but the
antisymmetrized combination shown in Eq. (3.17) can in
fact be represented as the diagonal matrix element

B. Variational principles and minimum principles Kpp —g K a ) (3.29)

The Green's functions g, (E) and G (E) which appear in
Eqs. (3.15) and (3.20) each satisfy a minimum principle
and this can be useful in the approximate evaluation of
matrix elements in which these functions appear. The
photon self-energy, for example, has the form

~„„(x,x';E) = f g„(x;y, z)g (y, z;y', z', E)g„(y', z', x')

with G, (E) representing a trial estimate of G(E). With G
on the right-hand side of Eq. (3.22) replaced by G, +b, G,
the identity becomes

G =G„—b, G(Hc E)b G, —
where

G, , =G, +G, [1+(Hc E)G, ] . —

(3.23)

(3.24)

With AG assumed to be a quantity of first order, the error
G —G, , is of second order so that G, represents a varia-
tional estimate of G. Moreover, since E lies well below
the minimum eigenvalue of H&, the error is a negative
operator. That is, diagonal matrix elements of the error
will be negative, and this provides the basis for the
minimum principle. Let us define the trial functions

(3.21)

in the one-pair model. A minimum principle for g can
(after suitable regularization of the integrals) be translat-
ed into a minimum principle for diagonal elements of the
self-energy matrix; the trial functions determined in the
course of the calculation provide approximate solutions
of Eqs. (3.15) and (3.16). The utility of the minimum
principle lies in the fact that it provides a criterion for the
optimum choice of variational parameters which appear
in the trial functions. Similar remarks can be made with
regard to the construction of the K matrix defined in Eq.
(3.20).

To develop this point in more detail we observe that
the Green's function in Eq. (3.20) satisfies the identity

G(E)=G, (E)+G(E)[1+(Hc E)G, (E)], —(3.22)

where K„„ is the 2 X 2 matrix with elements K„'~„and

(3.30)

The minimum principle applies to K„„(y,z;y, z;E).
The result just obtained is not yet in its most useful

form since the minimum principle applies only to ele-
ments which are diagonal, in position variables as well as
photon indices. A more satisfactory (though necessarily
more elaborate) procedure is one which relates K directly
to the energy eigenvalue —the number of physical
interest —and which preserves the minimum principle.
As a first step toward a formulation of this procedure we
invoke the Rayleigh-Ritz principle for determining the
energy eigenvalue from the modified one-electron Dirac
equation, Eq. (2.16). With the energy parameter in the
effective potential M fixed at a trial value E„, we have
the estimate

E„„=f P„,(x)[h (x)5(x—x')+M(x, x';E„, )]1(„,(x'),

(3.31)

where P„, is a normalized trial solution of Eq. (2.16) satis-
fying L' 1(„,=g„,. Suppose that a trial function 1(„, has
been chosen, based on some first (perhaps crude) estimate
of the kernel M, and we wish to improve on the calcula-
tion through a more refined determination of M. Actual-
ly, we may focus our attention on X since M —X is just a
sum of second-order terms [shown in diagrams (b) and
(d) —(f) of Fig. 1] which may be assumed to be known. We
consider, therefore, the problem of estimating the diago-

A.
nal matrix element Q„,X(E„,)1t„, for a given 1(„,. (Here
we revert to the condensed notation in which integration
variables are suppressed. ) The kernel X is defined in Eq.
(3.8). A variational principle for X (the dependence on
the energy parameter E„, will be left implicit) is provided
by the expression

and

=G, ( V~ —u )N„ (3.25) +r„,(a„'.K.,s,'.—p„',, )r.. . (3.32)

~„,=e„,(v, —
U, )G, . (3.26)

With G replaced by its variational estimate in Eq. (3.20),
we obtain a variational approximation for the K matrix
of the form

which is stationary about the exact expression (3.8) under
independent variations of I „, about the exact solution of
Eq. (3.9) and of I „, about the exact solution of the ad-
joint of Eq. (3.9). [In verifying that first-order variations
of X, vanish, one makes use of Eqs. (3.8) and (3.10) for
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X.] Of course, the exact K matrix is unknown, and must
be determined by an iterative procedure, which might
proceed along the following lines. Let K''' be a first esti-
mate, obtained, for example, from the variational expres-
sion (3.27). Trial functions I „, and I „, are constructed
variationally from Eq. (3.32) with K~'~ as input. An im-
proved estimate K ' is generated by substitution of the
variational expression (3.27) for K into Eq. (3.32). The
optimum choice of parameters appearing in the trial
functions 4„, and 4'„. in Eq. (3.27) are found by minim-
izing the diagonal matrix element

(2)q„,r„,p„'.K.,P„,r„t(„, .

If necessary, the process may be repeated with K ' as the
initial choice. Thus the minimum principle for the K ma-
trix may be imbedded in a well-defined variational
scheme leading to the evaluation of the ground-state en-

ergy eigenvalue in the one-pair model. The procedure
may be modified in a straightforward manner to allow for
the determination of excited-state energy levels.

IV. SUMMARY

An analysis has been presented of the one-pair model
for a hydrogenic atom based on a time-independent Ham-
iltonian formulation of QED. The effective one-electron
potential has been defined for this model and the integral
equations required for its construction have been
derived —they provide an analog of the Dyson-
Schwinger equations of covariant QED. An advantage of
this integral-equation approach lies in the fact that it al-
lows for a separation of the various divergent quantities
which appear as elements of the calculation from those
which are finite. With this separation accomplished it be-
comes possible to set up a rigorous Rayleigh-Ritz princi-
ple for the evaluation of that nondivergent quantity, re-
ferred to here as the K matrix, which plays a central role
in the theory. The K matrix contains the effects of the in-
stantaneous Coulomb interactions in a system consisting
of two electrons and a positron in the presence of the
fixed nuclear charge.

In assessing the potential utility of the time-
independent Hamiltonian approach one must first ac-
knowledge that the divergence difFiculties have yet to be
fully resolved. For one thing, the isolation of multiparti-
cle Coulomb interactions in the construction of the E
matrix is not a covariant procedure. These Coulomb in-
teractions, however, are very likely to be significant for
only a restricted range of energies of the particles which
appear in intermediate states. At very high energies co-
variant treatments, in which the dynamical complexity of
the Coulomb interaction is omitted, may su%ce and these
allow for renormalization by standard methods. (Ideas
along similar lines, involving a separation of covariant
and noncovariant contributions, were successfully imple-
mented in previous studies of the Lamb shift in hydro-
gen'- ' and helium. '

) An attempt to resolve the diver-
gence problem would seem to be well worthwhile since
the Hamiltonian method appears to be computationally
simpler than strictly covariant treatments based, for ex-
ample, on generalized Bethe-Salpeter equations. It pro-

vides, furthermore, a natural extension of the Fock-Dirac
techniques currently in use, allowing for a study of the
range of validity of these techniques and for the introduc-
tion of corrections when greater accuracy is required.
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APPENDIX

with

~+~ u (x)u (x') i
—

~ v (x)v (x')
s(x, x';E)= g + gE —cq+ln

q
E —

cq
—/~

(A2)

The projection operators defined in Eqs. (2.32) and (2.33)
are given by

L' —~(x, x')=+ lim U, (,x x';q) .
g~O+

The causal photon propagator is represented as

D„,, (x —x')=(2tt) J D„,, (k)e'' " ~d k . (A3)

In the Coulomb gauge we have

Dpp(k) = ik i

D, ,'(k)=( —k +ig) ' g e, e, ,

(A4)

and D, o
=Do, =0. From this we obtain

1
Dpp(x x ), ,

~

5(xp xp )
4~~ x —x'

D, , (x —x') = dE d, ,'(x, x';E)e1

2'
(A5)

reverting to box normalization for the radiative field we
have

U„(x)U,'; (x')
d, , (x, x';E)=g

E —k +ig
with U, (x) given in Eq. (2.22). With the substitution

(Z' —~k, ~'+ iq)-'

(A6)

=(2lk, I)-'[(E —Ik, + ig) ' —(&+ Ik, I

—ig) '],
(A7)

We specify here the relations between the time-
independent noncovariant propagators used in the text
and the standard covariant forms. (We use the notation
of Jauch and Rohrlich, " for the latter. ) Let S, (x,x')
represent the causal electron propagator which includes
the effect of the external potential V,„,(x). The time-
evolution operator for the electron is then given by
U, (x, x';t —t')=S, (x,x')P. The Fourier transform is

1
U, (x, x';t —t) = — dE s (x,x';E)e

27Tl

(A 1)
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the expression (A6) for d, ,' becomes the sum of two terms,
corresponding to photon propagation forward in time
[that is just the term p, , given in Eq. (2.29)] and propaga-
tion backward in time, in analogy with the decomposition
shown in Eq. (A2) for the electron propagator. These
decompositions are useful in the evaluation of the covari-
ant second-order vacuum-fluctuation contribution to the
electron self-energy. Integration over the time and ener-

gy variables is easily carried out with the aid of the repre-
sentations of the electron and photon propagators given
above. The result is just the sum of M, and Md, the non-
covariant amplitudes defined in Eqs. (2.34) and (2.35) and
pictured in Figs. 1(c) and 1(d). The correspondence be-
tween covariant and noncovariant expressions for the
remaining contributions to the second-order self-energy is
also established without difficulty.
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