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The dependence of the energy levels of doubly excited states of heliumlike ions on the nuclear
charge Z is studied. By expressing the energy levels of doubly excited states for intrashell states in
the form of a double-Rydberg formula and for intershell states using the quantum-defect method,
we expand the quantum defect in each formula in powers of 1/Z. Using known energy levels for
the low-Z ions, we extract parameters of the quantum defect which allow the calculation of accurate
energy levels of other ions along the helium isoelectronic sequence.

I. INTRODUCTION

In recent years, experimental studies of collisions of
multiply charged ions with atoms or molecules have es-
tablished that doubly excited states are formed easily in
these collisions. Doubly excited states are formed either
through double-electron capture or through transfer exci-
tation where. a projectile electron is excited while one of
the target electrons is captured to the excited states of the
projectile. Energy-gain spectroscopy was used in the ear-
lier studies where groups of doubly excited states of the
form nln'l’ with fixed n and n’ were observed. In recent
works, high-resolution Auger electron-spectroscopy tech-
niques have been used.' > To obtain information about
the collision process, individual doubly excited states as-
sociated with these electron spectra have to be identified.
Since many doubly excited states are usually grouped in a
narrow energy range, accurate calculations of the energy
levels of these states are often not available for most
atoms. Therefore a procedure for the interpolation and
extrapolation along the isoelectronic sequence using ex-
isting calculated energy levels is desirable.

Doubly excited states have been investigated extensive-
ly over the last two decades.® The understanding of the
properties of doubly excited states has resulted in a new
classification scheme’ where the states are classified as
(K, T)}(‘, 2S+1p 7 Such a classification scheme is used to
replace the nINI' notations used in the independent-
electron model. In the notation above, L, S, and 7 have
their usual meanings; n and N denote the principal quan-
tum numbers of the outer and the inner electrons, respec-
tively. The quantum numbers K, 7, and A4 replace / and
I’; they are used to characterize the correlations of the
two electrons. The procedure for assigning the quantum
numbers; K, T, and A are given in detail in Refs. 6 and 7.
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Briefly, for each N, the range of K and T are determined
byB

T=0,1,2,...,min(L,N—1),
K=N—1-T,N—-3-T,...—(N—1—-T1),
and A is governed by the rule’

m(—DSTT if K >L—N
~ |0 otherwise ,

where 7 is the parity of the state. We just emphasize
here that A can take values of +1, —1, and O only. For
the A= +1 states the two electrons have in-phase radial
stretch, while for 4 = —1 they have out-of-phase radial
stretch. For 4=0 states, there are little radial correla-
tion between the two electrons and they are similar to
singly excited states. The quantum number K has to do
with angular correlations. For states with positive K, the
two electrons tend to stay on opposite sides of the nucleus
while in states with negative K the two electrons tend to
be on the same side of the nucleus. The quantum number
T is the projection of the total orbital angular momentum
along the bielectronic axis.*°

There are a number of advantages of classifying doubly
excited states using this scheme: (1) If the energy levels
are ordered according to the K, 7, and 4 quantum num-
bers, the energy spectra of doubly excited states exhibit
rotor structure,® ° meaning that states with the same K,
T, and A will have higher energies for increasing L if
A=++1 or —1. (2) The energy level of the lowest
member of each (K, T)" or (K, T)™ rotor series increases
with decreasing K and for a given K, with decreasing T.
These systematics allow us to identify the relative posi-
tions of doubly excited states for any heliumlike ions. (3)
Experimental evidence indicates that only a certain class
of doubly excited states is formed in collisions. Such
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quasiselection rules are quite evident for photoabsorp-
tion,'° for electron-impact excitations,!"!? and to a less
extent for electron capture in ion-atom collisions.!*> In
general, states with 4= +1 and positive values of K are
formed in the collision, while doubly excited states with
other K, T, and A quantum numbers are rarely observed
in experiments. (4) There is evidence that the Auger or
autoionization widths of doubly excited states behave
regularly in each rotor series.'*

In this article, we address the question of fitting the en-
ergy levels of doubly excited states along the isoelectronic
sequence where each state is classified according to the
LK, T){ scheme. According to this classification
scheme, states in the same Rydberg series differ only in
the quantum number n. We propose the double-Rydberg
formula for fitting energies of intrashell states and the
quantum-defect method for intershell states. These
methods are summarized in Secs. II, III, and IV below,
together with test results and the fitted parameters. In
Sec. V a brief discussion of the extrapolation of energies
along the double-Rydberg series is given; a short sum-
mary in Sec. VI concludes the paper.

II. DOUBLE-RYDBERG FORMULA

The ,(K,T)# classification scheme allows us to organ-
ize the energy levels of doubly excited states. Based on
the angular correlation properties of doubly excited states
for positive K, Lin and Watanabe'’ generalized the dou-
ble Rydberg formula'®!” for the energy levels of intra-
shell states of heliumlike ions. In this formula, the ener-

gy level of an intrashell doubly excited state is given by!®

_ 2
E=—E 70 ), )
where
0=2{24+(2/N*)[T(N+K +1)N +K —1)+7T?
—6L(L+1)+12]} 1?2 )

is related to the expectation value of {cos6,,), where 6,
is the angle of the two electrons with respect to the nu-
cleus. This expectation value can be expressed in terms
of quantum numbers K, 7, and L if the doubly excited
states are approximated by wave functions derived using
the SO(4) theory.® In deriving (1), the two electrons are
assumed to stay at equal distances from the nucleus. This
simple expression gives energy levels of intrashell doubly
excited states (for positive K) accurate to the order of
about 19%."> To achieve higher accuracy, we generalize
(1) to
2
E=—127090 (4, 3)
(N —8)?
where § is the quantum defect. For each state, o is given
by Eq. (2) and 6 is to be treated as a fitting parameter. To
account for the variation of 6 with respect to the nuclear
charge Z, we expand

8=a/Z+b/Z*+c/Z° . 4)

In this way, each intrashell doubly excited states along
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TABLE I. Comparison of fitted energy levels with calcula-
tions of Bachau for “3s®” or ;(2,0); 'S¢ state for Z =5-10.
Two- and three-term 1/Z expansion of the quantum defect are
used to fit the double-Rydberg formula. Entries are the binding
energies in eV’s measured from the double-ionization threshold.

z Two term Three term Bachau®
5 69.11 69.11 69.09
6 101.03 101.03 101.00
7 138.99 139.00 138.99
8 183.00 183.00 182.99
9 233.06 233.06 233.05

10 289.16 289.17 289.16

“From Ref. 21.

the isoelectronic sequence is parametrized by the con-
stants a, b, and c. We note that o is independent of Z.

Systematics of the energy levels of doubly excited
states are not available. The more accurate variational
calculations are usually limited to a few lower states and
to low-Z ions.'® 72! One of the more extensive energy-
level tabulations is the large-scale configuration-
interaction calculations done by Lipsky et al.'® where the
energies of 2/nl" and 3/nl’ states for n <7 and L <4 for
Z =1-5 have been calculated. We use their data for
Z=2, 3, and 4 to solve for the parameters a, b, and c.
From these values of a, b, and ¢, the energies for other
Z’s are easily calculated from Eq. (3).

In this paper, we use three parameters for fitting the
quantum defects. In fact, for states with large K where
the double-Rydberg formula is expected to work better, a
two-parameter fitting is quite adequate. In Table I we
show that the energies of the “3s%” or the ;(2,0); 'S¢
state for Z =5-10 calculated using a two- (with the Z=2
and 3 data) or a three-parameter fitting of the quantum
defect give practically the same results. The energy levels
in this article are given in eV to the second decimal point.
This is more accurate than the highest resolution one can
achieve in Auger-electron spectroscopy to date. To the
second digit, we note that the two-parameter results are
identical to the more limited configuration-interaction
(CI) calculations for the Z =5-10 ions of Bachau.?!
Similarly, in Table II we show the energy levels obtained
from such a procedure for the “3s3p” or the ,(1,1); 'P°
state for Z =5-10 and the comparison with the results of
Bachau. The discrepancy is again quite small.

TABLE II. Comparison of energy levels for “3s3p” or
J(1,1)f 'P° state using a three-term fitting and the results of
Bachau.

Z Three term Bachau®
5 67.50 67.48
6 99.04 99.02
7 136.64 136.62
8 180.27 180.24
9 229.96 229.92

10 285.68 285.65

“From Ref. 21.
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TABLE I11. Energy levels of 2/2/’ states for Z=35 calculated using the fitting procedure as compared

with the calculations of Lipsky et al. (Ref. 18).

Two term Three term
Double- Quantum- Double- Quantum-
Rydberg defect Rydberg defect

State formula theory formula theory Ref. 18
(1,0)*'s* 153.87 153.63 153.90 153.90 153.90
ipe 152.55 152.30 152.60 152.61 152.60
'D¢ 146.41 146.20 146.57 146.58 146.58
(o,1)*1p° 145.81 145.66 145.91 145.92 145.92
3pe 148.46 148.32 148.58 148.59 148.58
(—1,0)"'s° 138.68 139.56 139.21 139.16 139.22

III. QUANTUM-DEFECT METHOD

For intershell states where the two electrons have
different radii, the concept of the double-Rydberg formu-
la does not apply. In this case, one may apply the con-
ventional single-channel quantum-defect theory where
the energies are expressed as

Z> (Zz—-1)
2N?  2(n—8)

where we can also expand the quantum defect 8 in the
form of Eq. (4) for each state. This method was used
often in the analysis of the spectra of singly excited states
along the isoelectronic sequence. The question may arise
as to whether one should also use (5) for intrashell doubly
excited states, particularly for those intrashell states
which have negative values of K. These latter states are
often not “pure” intrashell states, meaning that in a CI-

E(n,N)=—

(a.u.), (5)

type calculation the coefficients of intershell configura-
tions are often not small. This can be easily understood
since for negative K states, the two electrons tend to stay
on the same side of the nucleus. To maintain such a
strong angular correlation, one of the electrons has to
move farther out from the other electron to achieve a
weaker electron-electron repulsion. Such a geometry is
described by configurations where n and N are different.
In this respect, a quantum-defect-type fitting of the ener-
gy levels is also possible. Thus the question arises as to
which formula is more appropriate.

To answer this question, we use the Z=2 and 3 data or
the Z=2, 3, and 4 data for the 2/2/’ states from Ref. 18
for a two-parameter or a three-parameter fitting to the
quantum defect. From these parameters the energies of
the corresponding states are then calculated for Z=35 and
compared with the results of Ref. 18. In Table III we
show such a comparison for all the 2/2/' states. We first

TABLE 1V. Binding energies of the 3/3/’ states for Z=35 calculated using the fitting procedure as
compared with the calculations of Lipsky et al. (Ref. 18).

Two term Three term
Double- Quantum- Double- Quantum-
Rydberg defect Rydberg defect
State formula theory formula theory Ref. 18

(2,0)*'s° 69.11 69.01 69.11 69.11 69.11
3pe 68.89 68.79 68.89 68.89 68.90

D¢ 68.27 68.16 68.27 68.27 68.27

3F° 67.23 67.13 67.24 67.25 67.24
(,n*ipe 67.51 67.40 67.50 67.51 67.50
D¢ 66.78 66.67 66.78 66.79 66.78

'Fe 66.38 66.30 66.34 66.34 66.34

ipe 67.73 67.62 67.73 67.74 67.73

'De 67.11 67.01 67.13 67.13 67.13

3Fe 65.49 65.43 65.54 65.54 65.54
(0,2)Y'D¢ 65.87 65.80 65.88 65.89 65.88
3pe 65.97 65.90 65.99 65.99 65.99
(0,0)" 's° 65.77 65.68 65.75 65.76 65.75
3pe 65.40 65.34 65.43 65.43 65.43

D¢ 63.01 63.02 62.99 62.98 62.99
(—1,1)*1pe 62.21 62.32 62.17 62.16 62.18
ipe 63.80 63.93 63.88 63.88 63.89
(—2,00"!s° 59.43 60.49 59.53 59.42 59.57
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note that the three-term fittings using the two different
formulas give practically identical results and agree with
the calculation of Ref. 18. To assess which formula
works better for the intrashell doubly excited states, we
look at the fitted energies using the two-parameter fitting.
In Table III we see that the results fitted with the

double-Rydberg formula are generally more accurate.
Thus we believe that the double-Rydberg formula (3)
should be used to parametrize the energy levels for intra-
shell excited states. A similar comparison is made for the
313!’ intrashell doubly excited states, as shown in Table
IV. The double-Rydberg formula again works better.

TABLE V. Screening charge o and the quantum-defect parameters a, b, and c for intrashell doubly
excited states of heliumlike ions. The states are labeled by N, K, and T quantum numbers; the fourth
column gives the spin, L, and parity of the state.

N K T State o a b c

2 1 0 IS¢ 0.2626 0.033 0.030 0.021
2 1 0 3po 0.2774 0.023 0.019 0.042
2 1 0 'D¢ 0.3162 —0.115 0.096 0.140
2 0 1 1pe 0.3244 —0.125 0.129 0.085
2 0 1 ipe 0.3244 —0.007 —0.008 0.100
2 —1 0 IS¢ 0.3651 —0.247 —0.090 0.493
3 2 0 1s¢ 0.2500 0.085 0.062 0.003
3 2 0 ipe 0.2554 0.079 0.062 0.009
3 2 0 D¢ 0.2673 0.040 0.100 0.008
3 2 0 SR 0.2887 —0.016 0.150 0.020
3 1 1 pe 0.2860 0.006 0.152 —0.019
3 1 1 D¢ 0.3030 —0.020 0.142 0.021
3 1 1 1o 0.3354 —0.265 0.512 —0.121
3 1 1 pe 0.2860 0.042 0.093 0.015
3 1 1 D 0.3030 0.031 0.076 0.048
3 1 1 ‘Fe 0.3354 —0.051 0.085 0.143
3 0 0 s¢ 0.3198 —0.105 0.264 —0.041
3 0 0 ipe 0.3313 —0.084 0.137 0.086
3 0 0 D¢ 0.3586 —0.366 0.581 —0.076
3 0 2 ‘D¢ 0.3273 —0.044 0.137 0.040
3 0 2 ip° 0.3273 —0.026 0.106 0.051
3 —1 1 1pe 0.3638 —0.461 0.647 —0.099
3 -1 1 ipe 0.3638 —0.142 0.017 0.254
3 -2 0 IS¢ 0.3873 —0.717 0.559 0.306
4 3 0 IS¢ 0.2434 0.133 0.067

4 3 0 ipe 0.2462 0.124 0.077

4 3 0 'D¢ 0.2520 0.100 0.100

4 3 0 SFe 0.2615 0.065 0.136

4 3 0 'G* 0.2760 —0.010 0.214

4 3 0 ‘He 0.2981 —0.073 0.261

4 2 1 tpe 0.2685 0.075 0.131

4 2 1 D¢ 0.2760 0.051 0.164

4 2 1 'Fo 0.2887 —0.017 0.221

4 2 1 3Ge 0.3086 —0.084 0.269

4 2 1 ipe 0.2685 0.082 0.126

4 2 1 'De 0.2760 0.075 0.137

4 2 1 3Fe 0.2887 0.042 0.171

4 2 1 'G° 0.3086 —0.001 0.201

4 1 2 D¢ 0.2965 0.025 0.187

4 1 2 SFe 0.3123 0.024 0.170

4 1 2 iDe 0.2965 0.028 0.185

4 1 2 'F¢ 0.3123 0.019 0.174

4 1 0 se¢ 0.2933 —0.003 0.210

4 1 0 ipe 0.2981 —0.004 0.212

4 1 0 D¢ 0.3086 —0.064 0.265

4 0 3 1Fe 0.3266 —0.030 0.234

4 0 3 3F¢ 0.3266 —0.017 0.221

4 0 1 1pe 0.3244 —0.146 0.328

4 0 1 ipe 0.3244 —0.076 0.268
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TABLE VI. Quantum-defect parameters a, b, and c for inter-
shell doubly excited states of the 2/3/’ types.

A K T State a b c
1 1 0 e 0.904 0.220 0.889
1 1 0 ipe 0.827 0.033 1.033
1 1 0 ‘D¢ 0.339 —0.369 1.641
1 0 1 1pe —0.080 0.598 0.572
1 0 1 3pe 0.384 —0.156 0.875
1 -1 0 IS¢ —0.795 0.513 0.044
-1 1 0 ise 1.262 0.290 0.670
—1 1 0 1pe 1.147 0.274 0.659
—1 1 0 HE 0.806 0.291 0.580
-1 0 1 3pe 0.752 0.236 0.334
-1 0 1 1pe 0.811 0.199 0.334
—1 -1 0 3§ 0.217 0.154 —0.405
0 —1 0 ipe —0.050 —0.459 —0.559
0 —1 0 1pe —0.528 —0.021 0.009
0 0 1 3pe 0.274 0.176 —0.472
0 0 1 D¢ —0.344 1.031 —0.566
0 0 1 3De 0.137 0.075 0.009
0 0 1 'De 0.447 0.170 —0.581
0 1 0 3F° 0.459 0.180 —0.236
0 1 0 2 —0.521 1.537 —0.490

We have tested this procedure for some higher-Z ele-
ments and compared results with those available from
Bachau. We conclude that the present procedure is quite
adequate in predicting the energies accurate to the order
of 0.01 eV. To assist with the prediction of energy levels
for other heliumlike ions, we show the calculated param-
eters a, b, and ¢ and the o calculated from (2) in Table V
for the nlnl’ (n =2-4) intrashell states. Using these pa-
rameters in Eqgs. (3) and (4) would allow the calculation of
the energy levels of the nlnl’ intrashell doubly excited
states to an accuracy of the order of 0.01-0.05 eV for any
Z until relativistic effects become important. We remark
that the parameters a, b, and c are obtained from the data
of Ref. 18 for Z=2, 3, and 4 for the 2/2’ and 3/3!/’ states.
For the 414!’ intrashell states only a subset of positive K
is given using a two-parameter formula. There are less
extensive data available for the latter set. We used Z=1
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results from Ref. 20 and Z=7 results from Ref. 19 to find
a and b for the 4141’ states.

IV. INTERSHELL STATES

We applied the quantum-defect formula (5) to analyze
the energy levels of the 2/3/' states. Using the data for
Z=2, 3, and 4 from Ref. 18 we calculated the parameters
a, b, and c for the quantum defect for each state. The re-
sults are given in Table VI. Using these parameters and
Eq. (5), we calculated the energies of 2/3/" states of Ne®™
measuring from the 1s threshold for Ne®*. These ener-
gies correspond to the Auger energies for each state if
such transitions are allowed. We compare our results
with the calculations of Karim et al.?? where they calcu-
lated the energy of each state using a single configuration
in a Hartree-Fock-Slater potential. In Table VII we show
the Auger energies calculated using the fitted quantum-
defect parameters and using the (K,T)? classification,
and compare the results with those of Karim et al.
Discrepancies of a fraction of 1 eV to several eV’s can be
seen. We believe that the present results are more accu-
rate since CI mixings were not considered in the calcula-
tions of Karim et al.

It is worthwhile to discuss the systematics of the ener-
gy levels of intershell doubly excited states. We show in
Fig. 1 the energy levels of the 2/3/’ states of Ne®™ or-
dered according to the (K,T)" designations. We first
note that the rotor structure for the (1,0)" and the (1,0) "
groups. For each given 4= +1, —1, or 0 group, we also
note that states with the most positive K have the lowest

energies. For the same K and T, the 4 = —1 states have
lower energies than the 4= +1 states. We note that in
the 2/3/' manifold, any state with 4 =—1 is the lowest

member of the Rydberg ,(K,T)y series, while the state
with 4= +1 belongs to the second member of the
2(K,T)y series, with n =N=2 state being the first
member of the series. We also note that for 4=0 states,
the singlet and triplet states for each K and T occur in
pairs; the triplet state has lower energy than the singlet
state if the parities of the states are given by w=(—1)%.
For states where 7=(—1)* ! the opposite is true. Such
spectroscopic regularity can be expected for any inter-

TABLE VII. Auger electron energies of heliumlike neon calculated from the 1/Z expansion of the quantum defect vs results from
Ref. 22. The states are designated using the correlated classification scheme as well as the single-particle notation. Blank entries un-
der Karim ez al. indicate states which do not decay via autoionization.

Independent- Independent-

Present Karim particle Present Karim particle

State results et al. notation State results et al. notation
(1,0)* 's° 889.93 890.83 2s3s (1,0)” 3s°¢ 886.61 887.83 2s3s
3pe 890.77 891.92 2s3p pe 887.69 889.08 2p3s
'De 895.29 896.40 2p3p ‘D¢ 890.76 2p3p
(0,1)* 1p° 898.05 899.27 2s3p (0,1)7'3p° 891.31 892.75 2p3s
3pe 894.79 897.36 2p3p 1p¢ 890.83 2p3p
(—1,0)* 'S¢ 903.78 905.29 2p3p (—1,0)" s 896.04 2p3p
(—1,0)°3p° 898.76 900.23 2p3d (—1,0)°'P° 902.15 903.52 2p3d
(0,1)°3D¢ 895.55 896.97 2p3d (0,1)°'D*¢ 899.92 901.49 2p3d
(0,1)°3D° 896.74 2s3d (0,1)°'D° 894.10 895.68 2p3d
(1,0)°3F° 893.96 895.76 2p3d (1,0)°'F° 900.91 902.71 2p3d
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FIG. 1. Energy-level diagram of 213/’ states of Ne*". Ener-

gies are measured from the 1s threshold of Ne’". The states are
labeled according to the (K, T)* quantum numbers.

shell n/n’l" manifolds.

Using the quantum defect for each of the (K, T);
states, one can calculate the energy levels of the other
members of the Rydberg series if one assumes the quan-
tum defect along the series is a constant. For doubly ex-
cited states such an estimate is usually adequate if the ac-
curacy of the Auger electron energies is limited to the or-
der of 0.1 eV. Furthermore, using the energy diagram
similar to Fig. I the relative positions of the doubly excit-
ed states are known. Such a procedure would allow the
identification of the observed Auger spectra for the
higher members of the Rydberg series even if accurate
energies are not known.

Before leaving this section, we should point out that
the quantum defects calculated from the parameters list-
ed in Tables V and VI are negative for most states with
negative K, in contrast with the familiar positive quan-
tum defects in singly excited states. Such negative quan-
tum defects are the results of correlations in doubly excit-
ed states. We note that for negative K states, the two
electrons are on the same side of the nucleus and thus the
Coulomb repulsion between the two electrons is larger
than one would have expected from the averaged
configurations. Similarly for positive K states one would
expect a larger positive quantum defect because of the
relative reduction of the Coulomb repulsion as the two
electrons in this case tend to stay on opposite sides of the
nucleus. For intrashell doubly excited states a negative
quantum defect could also due to the overestimate of the
screening charge given in Eq. (2).

V. EXTRAPOLATIONS ALONG THE
DOUBLE-RYDBERG LADDERS

The (K, T)# classification scheme can be used to ex-
amine the systematics of energy levels along the double-
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Rydberg ladders. For intrashell states the states in the
ladder are those where the correlation patterns are al-
most the same but the “orbital™ size of both electrons in-
creases simultaneously. An example of such a ladder is
the group of intrashell states (N —1,)y 'S¢ (In the
conventional notations, these states are labeled as
Ns2'S¢) Using the double-Rydberg formula (3), we can
extrapolate the quantum defect along N for each fixed Z
to obtain energies for the states in the ladder. For exam-
ple, we can use the data in Table V to find the quantum
defects for the states y(N —1,0), 'S (N=2, 3, and 4) for
a fixed Z. From these data we can fit the N dependence
of the quantum defect to a quadratic equation for each
ladder which can then be used to calculate the quantum
defects for higher N's. We have checked this procedure
for states with positive K. The resulting N dependence of
6 is quite small. In fact if we just use the quantum defect
calculated for N=4, and compared with the quantum de-
fect fitted using the aforementioned procedure, the
difference in the energies of doubly excited states calcu-
lated using both methods is less than one part in 10°. For
the purpose of estimating the energy levels of higher Z
and higher N, we suggest that one can use the assumption
of a constant & along the double Rydberg ladder. Note
that this method was used in the fitting procedure for cal-
culating the energy levels of doubly excited states of
He 1516

Such a method of estimating the energy levels of high-
lying doubly excited states for high-Z ions is useful in the
study of double-electron capture in the collision between
multiply charged heavy ions with atoms at low energies.
To estimate the principal quantum number of the intra-
shell doubly excited states populated in such collisions,
we consider the simple curve-crossing model. The
asymptotic potential curve in the entrance channel is
given by E; plus the polarization potential of the neutral
target atom by the incident charge Z. The possible exit
channels are doubly excited states with energies E, plus
the Coulomb repulsion between the heliumlike ion with
charge Z —2 and the doubly ionized target. Transition
occurs when the potential curves of the entrance and exit
channels intersect. If the small polarization potential is
neglected, then the crossing occurs when

E,=E,+2(Z—2)/R, . (©6)

Experimental evidence indicates that if R is in the range
of 4-8 a.u., the transition probabilities are usually large.
This is understood by the fact that if the crossing occurs
at larger R, the crossing is more likely to be diabatic,
while if the crossing occurs at smaller R, it is more likely
to be adiabatic. If Eq. (3) is used to estimate the energies
of the final states E,, from Eq. (6) one can identify the
doubly excited states populated in the collision. For the
lowest member of the NINI' states, one can even set the
quantum defect § in Eq. (3) to be zero.

VI. SUMMARY AND DISCUSSION

In this article we show that the energy levels of intra-
shell doubly excited states can be easily expressed in a
double Rydberg formula where the quantum defect can
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be expressed as a two- or three-term 1/Z expansion. By
determining the parameters from calculations carried out
for low-Z ions, we show that the formula allows the cal-
culation of energy levels of other ions along the isoelect-
ronic sequence. For intershell states we show that the
conventional quantum-defect theory can be applied
where the quantum defect can be expanded also in
powers of 1/Z. The parameters shown in Tables V and
VI are useful in calculating energy levels of any helium-
like ions of interest.

We have not extended the analysis to other higher dou-
bly excited states. For higher nINI' states existing calcu-
lations are not complete. Only the lower few states with
positive K have been calculated. We believe that in fu-
ture theoretical work, one does not need to extend the
calculations to many Z’s. Instead, one should carry out
extensive calculations only for two or three Z’s and use
the method outlined here to calculate energy levels for
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any other Z’s.

We also have not analyzed the dependence of the au-
toionization widths with the nuclear charge Z and with
the K, T, and 4 quantum numbers. There is some evi-
dence of simple systematics for autoionization widths,
but definite conclusions are still not available since accu-
rate calculations for widths are still rather scarce.

Energy levels of doubly excited states with 1s or 1s?
cores are also needed for experiments in the collision of
multiply charged ions with atoms. A similar parametriz-
ation procedure like the present one is currently under
study.
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