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Characterization of chaotic systems at transition points through dimension spectra
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We study the behavior of chaotic systems at transition points (intermittency and crisis) through
their dimension spectra f (a). In the transition regions the finite-statistics f (a) curves display a
characteristic doubly peaked structure whose convergence to the asymptotic concave shape occurs
for exceedingly large numbers of points. This slowing-down effect is studied for both the Dufting
equation and the Henon map and is used as a guideline in the interpretation of the spectra of
NMR-laser experimental data sets.

Sudden qualitative changes in the dynamics of chaotic
systems upon variation of a control parameter ("crises", '

intermittency ) appear in many diverse systems. Such
events are determined either by collisions between the
chaotic attractor and some unstable periodic orbit or by
tangent bifurcations. Just above the crisis point, the tra-
jectory is confined for a long time in a small region of
phase space containing the unstable periodic orbits gen-
erated by successive bifurcations of the original one (this
structure mimics the presence of a "small" strange at-
tractor for long times). The remaining part of the dy-
namics consists of a spatially extended "chaotic tran-
sient. " Similarly, just below the intermittency threshold,
a long laminar (regular) phase alternates with a chaotic
burst. The average lifetime of the "transient" states has
been studied as a function of the control parameter.
Here, we investigate the dimension spectrum f(a) (Ref.
6) of systems in the vicinity of such transitions, showing
that the convergence of the computed f (a) curves to
their asymptotic shape (infinite number of points n)
displays a characteristic critical slowing down. This
phenomenon is investigated for the NMR laser.

In order to introduce the dimension spectrum f (a), we
choose, at random from the natural measure p(y) (Ref. 8)
on the attractor, a set of m reference points y and consid-
er balls of size e and mass P(e;y) centered on each of
them. The pointwise dimension a(y) (Ref. 8) is then
defined as the limit for e~O of a(y;e) =lnP(e;y)/in@.
The scaling properties of the invariant measure p(x) can
be characterized either by means of the dimension func-
tion D (q), —~ & q & + ce, or by introducing the scaling
function f (a) which describes the spread of values as-
sumed by the pointwise dimension a(x). As for D(q),
f (a) can be defined both for fixed-size and fixed-mass
methods: here we recall only the latter definition. Let
P(a;p) be the probability density for a ball of mass p, cen-
tered on y, to yield a pointwise dimension a(y) in the in-
terval [a,a+da]. Then f(a) is implicitly defined, for
p ~0, by the asymptotic relation

The function f (a) is concave and is tangent to the curve
f (a)=a at a=D(1). Given a number n of data points,
we consider m balls containing a mass p which can be ap-
proximated by the fraction kin (k, n ~ Oe, k/n &&1),
where k is the number of points in the ball. Therefore,
Eq. (1) can be rewritten as'

f( ) 1
lnP(5 n k)

1 (nkln)

where P (5, n, k) is the probability density for the size of a
ball containing a mass p =kin to lie in the interval
[5,5+d5]. The quantity P(5, n, k) can be measured nu-
merically, thus obtaining a histogram, on which 5 is the
independent variable and n and k are parameters. The
limit curve is then approximated by plotting f (a; n, k) for
large n and various choices of k, keeping k/n small. The
normalization of the f (a) curves [which are, in general,
vertically and horizontally displaced from their true posi-
tion, due to the presence of unknown prefactors in the
power laws defining a and f (a)] is obtained by shifting
the curves until they are tangent to the bisector f (a) =a
at a=D(1). Thanks to the statistical properties of the
method, the large-a tail of f(a) and high-dimensional
sets (e.g. , embedded experimental signals) can also be an-
alyzed: the convergence criteria for the algorithm are
given in Ref. 10, by studying systems of known dimension
spectrum. In the study of an experimental signal, a suit-
able embedding dimension E is selected on the grounds of
the convergence of D(1). The m reference points y and
the n data points x,- in the embedding space are then
chosen from a random permutation of the original se-
quence, in order to eliminate possible correlation effects
between consecutive iterates.

We applied our method to the study of the Poincare
section of the Duffing equation x +0. 154x —x +4x
= A cosset, with frequency co = 1. 17. The integration
was performed using 1000 Runge-Kutta steps per period
of the external modulation. We first considered ampli-
tudes A of the external forcing slightly larger than the
value A = A, =0.100476 at which a period-1 attractor
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FIG. I. Dimension spectrum f (a) vs a of the Poincare map
of the forced Duffing system for A =0. 1005 (dot ted line),
3 =0.103 (dashed line), and 3 =0. 1 (solid line). In the compu-
tation we used m =56000 reference points, n =925 139 data
points, nn-order k=100, and we constructed the histograms
over 64 bins. The bisector f(a)=a is also indicated (long
dashes).

undergoes a crisis. In this situation, the dynamics of the
map restricted to the "chaotic period" generates essen-
tially the same spectrum of local dimensions as the logis-
tic map at crisis, i.e., the triangular distribution
f (a)=2a —1 for 0.5 a 1, and f(a)= —oo elsewhere.
The iterations in the transient, instead, contribute a com-
ponent to f(a) which resembles the spectrum corre-
sponding to A ))A, . A further component, with ap-
parent dimension close to that of phase space, is generat-
ed by the re-entries from the transient into the basin of
the period since, for finite n, it is not possible to resolve
the Cantor structure in small regions around the chaotic
period. Its contribution to f (a) depends on the number
of iterations necessary to shrink the immediate basin of
attraction onto the nearly one-dimensional chaotic
period. In Fig. 1 we show the results of a numerical in-
vestigation, performed with rn =56000 reference points,
n =925 139 data points, nn-order k =100, and construct-
ing the histograms over 64 bins. The curves in the figure
were obtained for A =0.1005 ) A, (dotted line),
A =0.103 (dashed line), and A =0. 1 (solid line). The
finite-n curves, when A is close to A„present a doubly
peaked structure, with a spurious tail at large a values.
This phenomenology can be explained in the following
way. Just above the crisis point very few iterations be-
long to the transient, and nn distances 5(n) from refer-
ence points in that region are affected by large statistical
fluctuations. This gives rise to spuriously large dimen-
sional values (i.e., the decrease rate of the 5's may be
smaller than the asymptotic one). Notice that the ran-

domization of the indices of the original data string
renders immaterial the order of appearance of both refer-
ence and data points. As n is increased, the spurious tail
persists over many decades in n, becoming gradually less
pronounced. Eventually, a strictly concave structure is
recovered and the f (a) curves attain a shape similar to
that measured at larger A (solid line in the figure). The
line segment visible at left of the tangency point in the
solid-line curve reveals the existence of a "true transi-
tion, " in the framework of the thermodynamical formal-
ism [discontinuity in some derivative of the f (a) spec-
trum]" ' as expected for a nonhyperbolic system. The
segment does not reach the a axis because of a lack of
statistics (few reference points with small pointwise di-
mension a). Measurements performed on the Henon
map showed the presence of a straight-line behavior, with
slope in good accordance with the theoretical prediction.
The segment, which is already present for a moderately
small number of data points, extends gradually with an
increasing number of reference points, eventually reach-
ing the horizontal axis. ' Notice that the "phase-
transition, " in the case of intermittency, is of infinite or-
der. ' The minimum number of data points no needed to
observe a concave f(a) increases as the control parame-
ter approaches the critical value A, . Our results agree
with the conjecture that no —( A —A, ) ~, where y is the
critical exponent of the transition. Notice that the
Lyapunov exponents follow an analogous power-law be-
havior. ' Therefore, also the pointwise dimensions [and,
consequently, the f (a ) curve] should vary smoothly
across the transition point. ' The observed slowing down
is not an artifact of the method, but rather an intrinsic
feature of transitions between different chaotic states. In
fact, the same behavior is found by using fixed-size algo-
rithms which, in addition, exhibit bad convergence prop-
erties for large cz, independently of the presence of a tran-
sition. ' The same qualitative behavior above discussed
for the Duffing system is displayed by the Henon map
with parameter values a =1.755 18 and b = —0.015, just
above the crisis of a period-3 attractor, which occurs at
a =a, = l. 75 516.' The numerical analysis (with
m =320000 reference points, nn-order k=100 and 64
bins) yields, for small n, a doubly peaked curve which, for
n =300000, gives place to a strictly concave spectrum.

The intermittency transition produces similar effects.
We have studied the Du%ng equation numerically with
A =0.1275053 and co=1.17, close to the birth of a
period-5 attractor by tangent bifurcation, where intermit-
tent behavior is observed. The main difference is that the
left tail now extends to +=0 and disappears at small n

values than for crisis events.
The critical slowing down in the convergence of the

f (a) curves to their asymptotic shape should be carefully
taken into account in the interpretation of the calculated
dimension spectra of experimental signals. The appear-
ance of the above-described phenomena is an indication
that the system is close to a transition which, in the case
of crises, may not be easily detectable by inspecting two-
dimensional projections from the embedding space. On
the other hand, if the spectrum f (a) is determined as the
Legendre transform of D (q), the two peaks appear to be
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connected by a line segment. This shape could be errone-
ously interpreted as due to a "phase transition" in the
sense of the above-mentioned thermodynamic formalism
for dynamical systems. Of course, spuriously large values
of the pointwise dimension a also lead to overestimates of
the dimension function for small q. Convergence to the
correct D (q) is obtained only for roughly the same
amount of data as for f (a).

We have applied the above results to the interpretation
of the dimension spectra of the NMR laser with exter-
nally modulated cavity Q factor (with modulation fre-
quency f,d

= 160 Hz). The output signal, proportional
to the transverse magnetization M, of the spin system,
was sampled about five times per period of the external
forcing field and recorded with a 12-bit resolution. In
Fig. 2, a two-dimensional projection of the output signal
x(t) is shown for a modulation amplitude Q,d=0.27,
corresponding to a slightly chaotic situation. The f(a)
spectrum of this attractor is shown in Fig. 3 (dashed-
dotted line), as was obtained using embedding dimension
E =9, m =8000 reference points, nn-order k =10, 32
bins, and n =1091664 data points. The convergence
with k in the range 10 & k & 100 and with E in the range
7 & E & 21 was proven to be very satisfactory. At
Q,d =0.275, the attractor undergoes a crisis. This event

appears, in the bidimensional projection x, —x, +&, as a
sudden filling of the inner region of the "loop" seen in
Fig. 2. The corresponding f (a) spectrum (shown in Fig.
3, dashed line, for E =9, I =160000, 64 bins, k =50,
and n =477 174) has the same shape discussed in the
preceding paragraphs. The spurious high-dimension tail
is even more evident in the spectrum of the attractor just
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FIG. 3. Dimension spectrum f (n) vs a of the NMR laser at-
tractor of Fig. 2 (dashed-dotted line) and for attractors corre-
sponding to Q,d=0. 275 (dashed line), Q,d=0. 32 (dotted
line), and Q,d =0.358 (solid line). In the computations we used
embedding dimension E =9.

above a second crisis event, taking place at Q, d =0.32
(dotted line in Fig. 3). The crisis appears, in the bidimen-
sional projection x,- —x, +, , as a sudden slight expansion
of the attractor, without noticeable change of its form.
Conversely, at increased distance from the crisis
(Q,d =0.358, solid line), the same amount of data yields
a concave spectrum and 32 000 reference points are
sufficient to obtain a smooth histogram. The presence of
a line segment in the left part off (a), indicating, as men-
tioned above, the occurrence of a true "phase-transition, "
is evidenced here for the first time in an experimental sig-
nal.

Recently, a procedure for a hierarchical approximation
of the f(a) spectrum has been proposed, ' based on the
localization of all unstable periodic orbits of order n and
on the calculation of local Lyapunov dimensions. ' The
method, although appealing, leads in the present case to
many difficulties. In fact, close to a transition, the
relevant periodic orbits are very long and, therefore, their
number is very large. Moreover, they are rather close to
one another for a large number of iterates, so that it is
not easy to resolve them with good accuracy and the cor-
responding Lyapunov exponents cannot be computed
with meaningful precision. Work is in progress to test
applications of both methods to high-dimensional experi-
mental systems.

FICx. 2. Two-dimensional projection of the output signal x (t)
of the NMR laser, for modulation amplitude Q,d =0.27, and
frequency f „d = 160 Hz. The signal was sampled at intervals of
1.25 X 10 s. The picture contains 10000 points.
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