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Replicators with random interactions: A solvable model
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Mean-field methods of statistical physics are applied to replicator selection with N randomly in-
teracting species and deterministic self-interaction u. We present the outcome of a replica sym-
metric calculation for the global maximum of the mean fitness which is a Lyapunov function of
the system. The replica symmetric solution is stable and no further equilibrium states exist at
least for u & v2. On the other hand, in the low-u region the dynamics relaxes to states which
diAer from the replica symmetric result.

Replicator dynamics is an evolutionary strategy well es-
tablished in different disciplines of biological sciences. It
describes the evolution of self-reproducing entities called
replicators in various independent models of, e.g. , genet-
ics, ecology, prebiotic evolution, and sociobiology. '

Besides this fundamental importance in theoretical biol-
ogy, replicator selection has been applied to problem solv-
ing in combinatorial optimization and to learning in
neural networks.

Replicator selection can be expressed in terms of the
following nonlinear system of diA'erential equations

dXy =x„(f„f)for v= 1,—. . . ,N.

Here f„,the fitness of species v, is the derivative
f„8f/8x„ofa fitness functional f(xt, . . . ,xtv). This
functional is defined on the unit simplex g„x„1, x„~0
for v 1, . . . ,N. x„denotes the relative weight of species
v in the population and f is the mean fitness f-g„x„f,.
It can be easily seen that f is a Lyapunov function of the
replicator Eq. (1). Thus solving Eq. (1) provides a search
for local maxima of f.

Different biological setups require different choices off
To our knowledge investigations of replicator dynamics
have only been undertaken for finite systems and deter-
ministic interactions between the replicators.

In this Rapid Communication we discuss a system of
replicators where the interaction between species is as-
sumed to be random. By taking the limit N 00 we iden-
tify typical features of replicator selection for large sys-
tems. We refer to the frequently discussed case where
the fitness f, is linear in x,.

We consider the fitness functional

states with a large number of variables x„vanishing.
We shall present the results of an analytic computation

of the global maximum of the fitness functional f f/2
[i.e., the ground state of H in Eq. (2)]. Then, a calcula-
tion for the average number of equilibrium points is
briefly described. Both investigations are based on mean-
field methods of statistical physics. Finally, numerical re-
sults are given for comparison.

Interpreting 0 as energy function we introduce the free
energy F of the system and consider the ground state as
the limiting case for zero temperatures. F is defined for
finite temperatures P

' as

F(P) - —P -'InZ

with the partition function

Z -Tr(e t'"),

(3)

Hp lim F(P ) =1Vq (u/2 —v ), (5)

Tr( ) is an abbreviation for the integral over the phase
space of the system. An extensive free energy is obtained
with the normalization gx, =N.

As usual in the physics of disordered systems the calcu-
lation of F(P) proceeds via its self-averaging property.
Denoting the average over the random interactions ctI by
( ),

„
leads to

F- —(I/P) &inZ).„.
The procedure of calculation is straightforward within a
replica symmetric approach. We shall only report the re-
sults.

For N the ground-state energy is given by

f H =
2 gx~~pxp,

Vll

(2) where v and q are order parameters that satisfy

where c„„c„,(p~ v) are identically distributed Gauss-
ian random variables with mean zero and variance 1/N.
This defines a fully connected network of replicators.
Self-interactions c,„areintroduced, which are not ran-
dom, but which are all equal to a predetermined control
parameter u acting as a cooperation pressure. Large posi-
tive values of u favor fixed points in the interior of the
simplex (x„)0, v 1, . . . ,1V). Small values of u favor

u —v —— q dze- "(z+~),~q " -z 12

42tr "
~ OC

(u —v)'= dze ''(z+a)'
J2tr"

and 5 is an abbreviation for

a- Jq (u —2v) .
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The physical significance of q is

q -&x "x'),„=—gx "x".1

V

By a similar calculation we have obtained the fraction
(1 —ap) of the species, which die out (x„=0)in the
ground state

1.5-

0.5-

~ dz
1
—ap~ e (io) —1 5-

1
—ao is plotted in Fig. 1. A point of particular interest is

u J2 where Hp reverses sign (see Fig. 2). The system
changes its behavior at this value of control parameter u
from mainly competitive (ap ( —, ) to mainly cooperative
(ap& —,

' ).
Evolution according to the replicator equations may get

stuck in metastable states which are diA'erent from the
ground state. %'e calculate an upper bound for the num-
ber of these relaxed states. From Eq. (1) a necessary con-
dition for a fixed point to be metastable is

x, -0 and f (f,
or

x„a0 and f,=f .

Note that the restriction f„(f in Eq. (11) characterizes
local stability with respect to small changes of state vari-
ables which vanish in the relaxed state. But (11)and (12)
are not sufticient to define local attractive fixed points.
Yet the number of equilibrium points I, which satisfy
Eqs. (11) and (12), gives an upper bound for the number
of metastable states. '

To proceed with the calculation of I we define 0 as a
partition of the index set I 11, . . . „N1 into two sets A
and B. 2 contains indices v with state variables which
vanish: x, =0. B comprises indices with state variables
which are diNerent from zero. The number of fixed points
which correspond to partition n is denoted by I (n).
Then we have

r-gr(n),

—2.5
0.5 1.5 2.5 3.5

FIG. 2. The ground-state energy Hp/1V in dependence upon
u. Energies of relaxed states per particle are represented by cir-
cles.

c,„x„=f for v=—P+1, . . . ,N.
p =P+1

These equations determine x), . . . ,Xp+~,f uniquely if we
take into account the normalization of state variables.
Employing this unique solution I (n) can simply be writ-
ten as

v 1 p P+1
(i4)

e(x) is the Heaviside function and f, is given by

Nf„=— g c,„x„.
p P+1

The configuration average I of I is calculated via Eqs.
(13) and (14) by mean-field methods"

where the summation refers to all partitions A. For sim-
plicity of presentation we consider the partition with A
=11, . . . ,PJ and 8=11+P, . . . ,N1 only. Fixed points
which belong to this partition satisfy

x, =0 for v=1, . . . ,P,
and

r -&r),„-g&r(n)),„, (is)
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FIG. 1. The fraction of state variables (I —ap) which vanish
in the ground state in dependence upon u.

where the summation over n leads to an integral over
a = (N —P)/N with a combinatorial weight factor.

Detailed presentation of the calculation will be given
elsewhere. Generally, the number of equilibrium points
increases exponentially with the system size %

XN

However, we find X 0 for u & W2. Decreasing u below
J2 results in increasing k, e.g. , X 0.02 at u = I, whereas
it exceeds 0. 1 for small values of u. Thus, k still remains
very small if u & 1.

The saddle-point integration over a = (N —P )/N,
which appears instead of the summation over 0 in Eq.
(IS), leads to a saddle-point value a in the limit N
It turns out that a is identical with the corresponding
ground-state value ap given by Eq. (10) if u & J2. Since
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FIG. 3. Finite-size corrections to the average energies F. of relaxed states. —F/N is plotted for N 100, 200, and 400 against
1/JN (open circles) for two values of u: (a) u 1, (b) u 0.5. The arrows represent the mean-field results —Ho/N and the dashed
lines join points which are located one standard deviation apart from the average.

the number of equilibrium states in this case is I -1 [Eq.
(16)), the ground state obtained by the replica symmetric
calculation is in fact the true ground state for u above J2.

We have sketched a calculation of the average I (I ),„.
Due to lnI being an extensive quantity, exp(lnI ),„repre-
sents the most probable value of I for a large system and
actually should have been evaluated. However, this is
much more complicated. According to the Peierls in-
equality, we have

(I ),„~exp(1 nI )„.
Thus our calculation of (I ),„gives an exact upper bound
for the number of equilibrium points and metastable
states in a large system.

The analytic results described above imply that meta-
stable states do not exist in the infinite system for u & J2
and suggest that they are of minor importance for the dy-
namics of the system for u above approximately one. This
is confirmed by the numerical results.

In Fig. 2 we have plotted the ground-state energy Ho/N
as a function of u calculated from Eqs. (5) to (8). Results
obtained from numerical solutions of the replicator equa-
tions are included in Fig. 2. The circles correspond to the
mean over 100 samples of different system configurations
with diA'erent initial conditions. The selected system size
is N=200. For high values of u, very good agreement
with the mean-field results for the ground-state energy is
obtained. With decreasing u deviations between theoreti-
cal and numerical results appear. These are due to finite-
size effects. The application of simple finite-size scaling
obviously is sufhcient to restore agreement between theory
and numerical results for u values larger than approxi-
mately 1 [see Fig. 3(a)]. We conclude that the replicator
dynamics typically relaxes to the ground state of the sys-

tern for u & 1. Although metastable states were found in
our numerical calculation they did not modify the average
results for large N values in this range of u.

The situation is more complex for parameter values u

significantly smaller than one. Deviations between mean-
field and extrapolated numerical results appear with de-
creasing u [Fig. 3(b)]. In this region the applied extrapo-
lation procedure to N may not be sufhcient to identi-
fy the thermodynamic limit for very small values of u.
The reason is that only a small fraction of state variables
x„remains different from zero in the relaxed state. Thus
the effective system size decreases with decreasing u.

Up to now it is not yet understood whether the states
found solving the replicator Eqs. (1) for small values of
control parameter u are metastable states or whether we
typically find the ground state. We leave this for further
studies together with investigating the stability of the re-
plica symmetric result.

Let us summarize our findings. We have studied repli-
cator selection in dependence upon the self-interaction u.
The system behavior is mainly cooperative (ao &0.5) for
u & J2, where the replica symmetric theory is exact.
Metastable states typically do not exist. This is at vari-
ance with the results obtained for the region u & J2.
Here, the system behaves mainly competitive (ao & 0.5).
The average number of equilibrium points increases ex-
ponentially with N and it is unknown whether the replica
symmetric ground state looses its stability if u goes down
below a certain limit.
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cussions and constant encouragement during the prepara-
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