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Breakdown of the Boltzmann equation in cellular-automata lattice gases
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In lattice gases the Boltzmann equation is not valid at low densities, if the collision rules admit
reflections of unlike particles because of long-lived correlated ring-type collisions. This is shown
for a simple mixture, a Lorentz gas, by comparing theoretical and molecular dynamics results for
the diffusion coefficient.

Simulations of cellular automata (CA) models for
two-dimensional nonequilibrium fluids seem to yield re-
sults for hydrodynamic and transport phenomena that are
very well described by the nonlinear Boltzmann equation
which only accounts for uncorrelated collisions. This is
true not only at low and high densities (because of
particle-hole symmetry), but, surprisingly, also at inter-
mediate densities, where at most small deviations from
Boltzmann occur. It holds for the viscosity, ' as well as for
tagged particle diff'usion both in CA games with deter-
ministic or stochastic collision rules. Similar quantitative
agreement has been found in lattice versions of Lorentz
gases.

To investigate this puzzle one needs to develop a sys-
tematic kinetic theory for CA fluids that enables one to
calculate systematically higher-order density corrections
to the Boltzmann equation. We further want to avoid the
difficulties, inherent to two-dimensional fluid-type models,
in which transport coefficients are proportional to the log-
arithm of the system size. In order to do so 'we have
chosen a simple CA fluid, namely a lattice Lorentz gas,
which consists of fixed scatterers on a fraction c of the N
sites (chosen at randoin) of a square lattice with unit lat-
tice distance. Independent particles move at integer times
t 0, 1,2, . . . from one site to its nearest-neighbor site
along straight lines in any of the four lattice directions, e,
(v=1,2, 3,4 [mod(4)]) and are scattered upon collision
with scatterers. Examples of deterministic scattering
rules are given in Refs. 3 and 4.

Here we choose stochastic collision rules, defined
through the three probabilities a, p, and y with the nor-
malization a+p+ 2 y = 1, where a is the transmission
probability, p the reflection probability, and y the
deflection probability in an orthogonal direction. By vary-
ing these parameters one may possibly fine tune to certain
pathological features of the lattice models; backscattering
(PeO) is one of them.

It is well known in the literature that the possibility
of backscattering and retracing trajectories may create
long-time memory effects that can change the (low densi-
ty) Boltzmann value of the diffusion coefficient by a sub-
stantial fraction [as is the case in a one-dimensional (1D)
gas of hard rods (Ref. 5)] or it can even make the
diffusion coefficient vanish [as is the case in the Ehrenfest
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FIG. 1. Collision sequences: (a) uncorrelated, (b) simple

rings, and nested rings (c) with and (d) without reflections.

wind-tree model with overlapping trees (Ref. 6)]. Similar
things are happening in lattice-gas models.

To illustrate this we will compare the phase space of all
possible scatterer positions, compatible with the collision
sequences in Figs. 1(a)-l(d). This will be done in the
limit of small density of scatterers c and of large times t
where t is typically on the order of the mean free time
t~f I/c. In the case of uncorrelated collisions [see Fig.
1(a)], which are accounted for in the Boltzmann equation,
the phase space for k uncorrelated collisions is proportion-
al to (ct)"—O(l). In a similar way one estimates the
phase space of ring collisions [see Fig. 1(b)] and orbiting
collisions (as defined in Ref. 6) to be c(ct)" ' —O(c); the
phase space for retracing "nested" ring collisions with
backscattering [see Fig. 1(c)] is the same as for the un-
correlated collisions; without backscattering [see Fig.
1(d)] one has c(ct)' ' O(c)—

These estimates show the breakdown of the Boltzmann
equation for models with backscattering (p~O). Here, at
low densities the contributions to transport coefficients
and time correlation functions of the correlated collision
sequences in Fig. 1(c), for times on the order of several
mean free times, are of equal importance as the uncorre-
lated collisions of Fig. 1(a). The Boltzmann equation only
sums these uncorrelated collision sequences. In order to
calculate the leading low-density behavior the correlated
collisions sequences of O(1) have to be summed as well.

In models without backscattering (p=0) the Boltz-
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mann equation does take the dominant low-density contri-
butions into account. To calculate the first density correc-
tion of relative O(c) one has to sum not only the ring col-
lisions of Fig. 1(b), but also the orbiting collisions and the
nested ring collisions of Fig. 1(d).

After these phase-space arguments we outline our
quantitative calculations. A more detailed analysis will be
published elsewhere. We start from the Chapman-
Kolmogorov or stochastic Liouville equation for the prob-
ability distribution of finding a particle at time t arriving
at site n with velocity v (i.e., coming from site n —e, ) in a
given configuration of scatterers {en]. With each site n a
random variable c, is associated that assumes the values 0
or 1 with probability 1 —c or c, respectively, correspond-
ing to the absence or presence of a scatterer at site n. We
use a 4N &&4N matrix notation with labels (nv, mp) and
write the Liouville equation for the matrix of conditional
probabilities as

P(t +1)=S '(1+CT)P(t),

with P(0) =1 and P(1) =S '. Here S is the translation;
C is the fluctuating density of scatterers with C„m„
=c„6„m6» and T is the collision operator with Tgymp
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FIG. 2. DiAusion coefficient vs density of scatterers. Dashed
and solid lines show theoretical results from the Boltzmann
equation and eAective medium approximation; dots with error
bars show results of molecular dynamics simulations. Model
ly= —,', a=p 0} has no reflections (Boltzmann and eff'ective

medium approximation curves coincide). Models {a=P y= —, j and {a=0, P = y= —,
' j have reflections.

T„„=(a —I )8,,„+PS„„+2+y(8,„+)+6,„—() .

To obtain the average probabilities the matrix P(t) (or its
generating function) must be averaged over all config-
urations of scatterers {cJ,

g &'(P(t)) -([(I+z)S—1 —CT] ')
f=]

with g =1/(1+z). The quantities of main interest in this
article are the dift'usion coefficient D and the velocity au-
tocorrelation function (VACF) p(t), defined as

p(t) =(4N) ' g e,„e„,(P„, „(t)) .
lly, mp

The average depends only on n —m because of transla-
tional invariance. The brackets represent an average over
the quenched variables {e,}. The diffusion coefficient is
given by

D=-,' + g y(t).
f=l

We start our kinetic theory analysis by considering the
Boltzmann approximation, which sums all uncorrelated
collision sequences (in which a moving particle never re-
turns to the same scatterer). This approximation is ob-
tained from the Liouville equation by replacing the matrix
of fluctuating densities of scatterers C by its average
(C) =c. Then the subsequent equations yield the well-
known Boltzmann results pe(t) =

2 (1 —cr~)' and Da
=(2cr~) ' ——,

' with r~ =1 —a+P. In Fig. 2 the
Boltzmann value Dz is shown by dashed lines (for y= —,

'

dashed and solid lines coincide). These results are exact
for c =1, ~here our model reduces to a random walk on a
uniform lattice. We note that D~ contains a term —4,
which is of relative O(c) as c 0.

To study correlated collision sequences we perform a

formal perturbation expansion of (P(t)) in powers of the
fluctuation BC =C —e, using standard methods of kinetic
theory. The terms in the perturbation expansion are ana-
lyzed in the limit as z 0 (corresponding to t ~).
One finds that the ring, nested ring, and orbiting collision
terms are dominant and yield the estimates given at the
start of this article with ct replaced by c/z. In the low-

density limit the nested ring collisions are resummed by
the following self-consistent equation for the 4x4 ring
matrix R(z), which is similar in structure to the self-
consistent mode coupling equations'

R(z) = {(1+z)e' "—1 —c{T+TR(z)T]jJq
with the 4X4 matrix (V, )„,=e„8„,with a=x,y. The
symbol fq represents a volume average over the first Bril-
louin zone. If R(z) on the right-hand side is set equal to
zero, this equation reduces to the simple ring integral,
which has for small z and

~ q ~
a structure identical to the

continuous Lorentz gas. The diA'usion coefficient that fol-
lows from there as c 0 is

D=(2cr)) '(I+r)r)) ——,',
where r~ is an eigenvalue of the ring matrix R(0). In the
limit of z 0 and small c the eigenvalues of R(0) can be
determined analytically. Two essentially diAerent cases
have to be distinguished: Without refiections (p =0) the
relevant eigenvalue is found to be r

~
=cro(1 —2 y)/

(1 —3y/2), where ro = —(I/tr ——,
' ) y is the corresponding

eigenvalue of the simple ring matrix. With re/i'ections
(p~O) the relevant eigenvalue is r~ = ——,

' +a/Il+
(1+Sab) ' ] with a =(a+ y)/(P+ y) and b =(a+P)/
(2y).

Some comments on the low-density results are in order:
Without reflections the (negative) r ~ gives an O(c)
correction to cD~ in the last equation. If r] is replaced by
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ro one includes only the O(c) terms from simple ring col-
lisions [see Fig. 1(b)]. It is also remarkable that in the
special model with only right and left turns (y =

2 ',

a =P =0) the eigenvalue ro of the simple ring is nonvan-
ishing, but the corresponding eigenvalue r ~ of the summed
(nested) rings is vanishing (ring terms are canceled by
nested rings). In general, the correction

~
r~/2c

~
in the

equation for D is very small (less than =0.01). The O(c)
term is not exact because we have neglected the orbiting
events, mentioned in the introduction.

The models with re+ection yield very difl'erent results.
Here the contribution r ~, originating from the nested ring
collisions, is seen to be independent of the density as
c 0, in agreement with the estimates at the start of this
article. The value of D is 25 to 50% smaller than Dg as
c 0 (depending on the model parameters a,P, y), as can
be seen in Fig. 2 by comparing dashed and solid lines for
y~ —,'. This demonstrates the breakdown of the Boltz-
mann equation as a valid low-density kinetic theory in
models with reflection. However, the diff'usion coe%cient
D~R(c), calculated from the last equation for the nested
ring collisions, does not represent the exact value of cD(c)
as c~ 0. In fact, all treelike collision trajectories [as in
Fig. 1(c)1, in which the branches are retraced an arbitrary
number of times, are proportional to (et)"—O(1) for
i ~ and c 0, similar to those in Figs. 1(a) and 1(c).
We have not yet been able to sum all treelike collision tra-
jectories and determine the exact value of eD(c) at
c 0+ for models with reflections.

In the high-density limit, at a low concentration of
"holes" (empty sites), one can apply similar perturbation
techniques as for small c, and use p =1 —c as a small pa-
rameter.

For intermediate densities we have developed an
effective medium approximation (EMA), in which the
matrix T+ TR(z)T in the equation for R(z) is replaced
by an effective medium collision matrix T,&(z). The
EMA equations can be solved numerically and yield the
results shown as solid (almost straight) lines in Fig. 2. In
the low-density limit the EMA equations reduce to those
for the nested ring collisions.

The above results can also be compared with computer
simulations. Ruijgrok has performed preliminary molecu-
lar dynamics (MD) simulations using an ATARI ST1040
for the models: y= —,', a =P =0, and a =P = y= 4 using
lattices of 360 x 360 and up to 200 time steps. Simulation
data are obtained by averaging over 10 configurations of
scatterers and over 2500 particle trajectories per config-
uration. Preliminary runs for models with reflections were
performed at Centre Europeen de Calcul Atomique et
Moleculaire, University of Orsay. The data points shown

are obtained on a SUN3-160 using typically 40
configurations of scatterers on lattices up to 500&&500
sites and typically 2000 particle trajectories (of up to 1500
time steps) per configuration. The data are shown in Fig.
2. There is very good agreement between the simulation
and the EMA results at all densities. The present theory
also oA'ers an explanation of the simulation results for the
difl'usion coefficient, obtained by Ruijgrok and Cohen
for the lattice Lorentz gas with a fifty-fifty mixture of
fixed mirrors, scattering under angles of plus or minus
m/2. If the total concentration of scatterers is not too
high, and the time not too long, their model is expected to
correspond to our stochastic model with left-right scatter-
ing only.

What are the implications of the above analysis for CA
models of nonequilibrium fluids? The concept of back-
scattering or reflection is meaningless in single-component
CA fluid of indistinguishable unlabeled particles as in the
Hardy, de Pazzis, and Pomeau (HPP) model or the
Frisch, Hasslacher, and Pomeau (FHP) model. ' Howev-
er, it is a natural collision rule to be allowed in collisions
between unlike particles in CA mixtures. The phase space
for ring-type collisions with reflections at low densities
and long times is again of the same magnitude as that of
the uncorrelated collisions. Consequently, we expect a
breakdown of the standard nonlinear Boltzmann equation
with Fermi exclusion as a valid kinetic equation at low
densities. If reflections are not allowed, we expect that the
Boltzmann equation is correct at low densities.

It would be of interest to test these expectations by
computer simulations on the simple example of mutual
dift'usion in a spatially inhomogeneous mixture of red and
blue particles, that are otherwise identical. If one disre-
gards the color, the mixture is in thermal equilibrium.
The simulations can be performed on the usual FHP mod-
els, if one assigns an extra Boolean color variable to the
link e, at node n, if the link is occupied.
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