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A recent and interesting experimental paper [B. McNamara, K. Wiesenfeld, and R. Roy, Phys.
Rev. Lett. 60, 2626 (1988)] has refocused attention on the problem of stochastic resonance by
presenting measurements of the signal-to-noise ratio (SNR) of a noise driven, periodically modu-
lated bistable ring laser. We point out that the theoretical SNR, as defined in this and a previous
work, is always infinity, because additive modulation leads to a & function in the power spectrum

of the output.

Quantitative information on stochastic resonance is contained in the strength of

this & function relative to the noise background. We qualitatively reproduce the SNR data with

an analog simulator using a standard quartic bistable potential.

In this, as in previous experi-

ments and simulations, a peak in the observed power spectrum is a reflection of the § function,
but the amplitude of the peak is rendered finite (and hence measurable) only because of the finite

resolution of the measurement system.

The phenomenon of stochastic resonance was first in-
vestigated by Benzi, Sutera, and Vulpianil and later sug-
gested by Nicolis? and by Benzi et al.® as a possible ex-
planation of the observed periodicity in the recurrence of
the ice ages. In this model, a pair of stable climate states
separated by a barrier is imagined. This bistable system is
driven by noise resulting from random fluctuations of the
solar constant. Using reasonable climate models, it was
demonstrated that such fluctuations could trigger switch-
ing events between the two stable states on time scales
which are in approximate agreement with the period
of the observed recurrences*> (10° yr). The switching
events would, however, be uncorrelated random oc-
currences in time. In order to explain the observed period-
icity, a modulation of the height of the barrier or of the al-
ternate depths of the potential wells was introduced into
the model. The resulting switching events, while still ran-
domly occurring, must now be correlated with the periodic
forcing since the switching probability is a strong function
of the well depth. In the climate models, the modulation
is assumed to result from a weak but periodic variation in
the eccentricity of Earth’s orbit with period =107 yr. Di-
gital simulations of the models show finite amplitude
peaks in the power spectra located at the modulation fre-
quency. '

Several years ago, a physical realization of stochastic
resonance was demonstrated by Fauve and Heslot® using
an electronic Schmidt trigger as a bistable system. They
modulated periodically the depths of the potential wells,
which represent the two stable states of the switch, alter-
nately and simultaneously applied additive white noise.
The measured power spectrum of this system displayed a
sharp peak at the modulation frequency superimposed on
a slowly varying continuum noise background of Lorentzi-
an line shape. These authors defined the signal-to-noise
ratio (SNR) as the (measured) amplitude of the peak rel-
ative to the (measured) noise background. They observed
that the SNR passed through a maximum as the noise in-
tensity D was increased from zero, and that at the max-
imum the value D =D could be associated with the
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period T of the modulating function by a Kramer’s
characteristic time (see also Ref. 2), 7=T «<exp(Au/Dy),
where AU is the unmodulated barrier height.

Very recently, McNamara, Wiesenfeld, and Roy have
observed this phenomenon using a bidirectional ring laser
as the bistable system.” Using an intracavity acousto-
optic modulator, they were able to induce changes in the
direction of the lasing by controlling the acoustic frequen-
cy. Representing the two directions as the stable states
separated by a barrier, it was possible to modulate the
height of the barrier and to introduce external noise as
well by modulating the acoustic frequency. These authors
have observed the same phenomenology as those of Ref. 6.
In particular, they have observed a sharp peak in the
power spectrum of the laser intensity (measured in one
direction) superimposed on a broadband noise back-
ground spectrum. In order to obtain the SNR, they mea-
sured the amplitude of the peak and that of the noise
background at the modulation frequency. Measurements
of the SNR versus the noise intensity in this experiment
demonstrated the characteristic maximum, though the
Kramer’s time was not obtained.

In this Rapid Communication, we point out that, based
on physical arguments alone, the power spectra of all such
systems regardless of the details of the model, but addi-
tively modulated by a single frequency must contain delta
functions. Noise in the system does not alter this so long
as the noise does not multiply the amplitude of the period-
ic modulation. By contrast, experimental measurements
of the power spectra or digital simulations of models, both
obtained from Fourier transforms of time series made at
finite resolution, show noninfinite amplitude peaks. The
amplitudes so obtained reflect both the strength of the
singularity, which contains all the information about sto-
chastic resonance, and the finite resolution of the Fourier
transform technique used. The latter is an entirely instru-
mental effect which also determines the observed line
shape. Results obtained by measurements of the ampli-
tudes only of the peaks in the power spectra therefore tell
only part of the story in the absence of the details of the
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line shape.® While the shape of the stochastic resonance

curve is invariant so long as all measurements are made
with constant bandwidth, as they were in Refs. 6 and 7,
the amplitude of the measured SNR depends on the band-
width as well as other factors, for example, the frequency
stability of the signal generator which produces the modu-
lation. This fact has also been appreciated by Gammai-
toni et al. who have further pointed out that entirely new
insights into the phenomenon can be gained by measure-
ments of the probability density of residence times.’

For the purposes of discussion, we consider two models
represented by the following Langevin equations:

x=ax—x +ecoswt +&(), e<@a?21)'?, (1)
and
x=a()x—x3+&@), a()=2(1+¢ecoswt)'?,
(2)
e<1,

which represent an infinitely damped system moving in
the standard quartic potential,

Ulx)=—(a/2)x>+ 5 x*, 3)

modulated at the frequency w and driven by the additive
noise £(t). Equation (1) represents additive modulation
and additive noise. In this case, the modulation raises and
lowers the depth of each well alternately on alternate
half-cycles. Equation (2) represents the case of multipli-
cative modulation and additive noise.'® In this case, the
height of the potential barrier Au= % a? is modulated
about an average value of 1. Even though the system rep-
resented by Eq. (2) does not show stochastic resonance we
have included it in order to show that a similarly sharp
peak appears in the power spectrum at the modulation
frequency. In experimental realizations of systems exhib-
iting stochastic resonance, such as the bistable ring laser,
it is likely that combinations of multiplicative and additive
modulation occur. The limits on € ensure that the barrier
never vanishes. (In the simulation discussed below, most
of the data were taken for a =2'2 and ¢ =0.4.)

As Eckmann and Thomas have pointed out, calcula-
tions of the statistical properties of such time-modulated
bistable systems are by no means trivial,'! in the first in-
stance because they are nonlinear, and in the second be-
cause they are not stationary. Nevertheless, some general
remarks can be made. Considering Eq. (1), whatever the
Fourier transform of x(¢) may be, we note that the modu-
lation term, ecoswt, stands alone and therefore will neces-
sarily contribute a delta function at @ to the transform
and hence to the power spectrum. In Eq. (2), or in other
versions where the modulation may multiply more highly
nonlinear terms, the situation becomes more complicated
because x(z) itself is a stochastic function. The Fourier
transform can, in principle, be broadened into a continu-
um which may be repeated at harmonics of the modula-
tion frequency. In the simulation of Eq. (2) described
below, however, the measured line shapes seem to be as
sharp as those observed in the simulation of Eq. (1). In
neither case is the line shape observed to be continuously

broadened either by the noise or by the dynamics (see
Ref. 10). Theoretical results recently obtained by Jung
and Hanggi'? and by Jung,'? in an exact analysis of Eq.
(1); by Fox,'* using a perturbation analysis of the associ-
ated Fokker-Planck equation; and by McNamara and
Wiesenfeld,'> using a generalized two-state model, all
predict delta functions in the power spectrum.

The climate models' 2 are based on a Langevin equa-
tion of the type of Eq. (2). The Schmidtt trigger® obeys
an equation of the type of Eq. (1). An accurate model for
the laser is more difficult for two reasons. First, the laser
is a multidimensional system, and even with appropriate
adiabatic eliminations probably cannot be adequately rep-
resented by any less than two coupled Langevin equations.
Second, the details of exactly how the bistable potential is
modulated by the acousto-optic modulator (AOM) are
not well understood.'® Nevertheless, the modulation and
the noise must enter the experimental systems phenome-
nologically either as additive or multiplicative terms or
some combination of the two. We believe that the generic
systems represented by Eqgs. (1) and (2) above will thus
reproduce the phenomenology observed in the experimen-
tal systems.

In order to illustrate these remarks, we have built ana-
log simulators of Egs. (1) and (2) following well
developed techniques.!” The modulation frequency was
always set at f=w/27 =500 Hz, and the modulation am-
plitude was always ¢ =0.4. An example measured time
series x(z), obtained from the simulator of Eq. (1) is
shown in Fig. 1(a). The time scale is delineated by the
plot of the 500-Hz modulation shown in Fig. 1(b). The
switching events occur randomly in time and, in this ex-
ample, on a somewhat longer time scale than the modula-
tion period. They are, however, correlated with the modu-
lation as shown by the sharp peak at exactly 500 Hz in the
measured power spectrum shown in Fig. 1(c). Figure
1(d) shows a power spectrum obtained from a simulator
of Eq. (2). It is very similar except that a small peak ap-
pears at the second harmonic of the modulation frequen-
cy. These power spectra are qualitatively very similar to
the ones published by Fauve and Heslot® and by
McNamara, Wiesenfeld, and Roy’ in the sense that very
sharp peaks are observed superimposed on a broadband
noise background.

The power spectra were measured in the following way:
First 2048 points of time-domain_data x () were digitized
with 12 bit accuracy, each point separated from its neigh-
bors by 300 us. The magnitude of the square of the
Fourier transform was then computed and compressed
into 1024 points. The final power spectrum was obtained
by averaging a number of samples (usually 200) of the in-
dividual spectra. In every case, the peak at the modula-
tion frequency was only a few points wide, and the mea-
sured amplitude of the peak depended upon which indivi-
dual point was chosen as “the maximum.” Increasing the
frequency resolution by increasing the separation time be-
tween digitized points resulted in narrower, higher ampli-
tude peaks and the reverse was also true though we ex-
plored a range of only a factor of 2 in separation time.

Using the definition adopted in Refs. 6 and 7 (the ratio
of the amplitudes of the peaks to the background-noise
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FIG. 1. Example results of the analog simulation. (a) A time
series x (1), measured in volts for Eq. (1) with @ =2'2, D =0.20
v2/Hz, and 7=0.20. (b) The 500-Hz modulation M (t) mea-
sured in volts, which also establishes the time scale for (a) with
€=0.4. (c) An example power spectrum which is the result of
200 averages computed from individual time series obtained for
the conditions stated in (a) and (b). The shape peak at 500 Hz
establishes the frequency scale. (d) A power spectrum obtained
for the same conditions as listed in (a) except from the simula-
tor of Eq. (2), and only 100 averages were accumulated. The
peaks in (d) result from correlated motions of the local minima
of the potential.

power density) we have measured the SNR as a function
of noise intensity D =1(¢ 2) where 7 is the noise correla-
tion time,'® for the simulator of Eq. (1). The data are
shown by the experimental points in Fig. 2 and are self-
consistent, since all points were measured with the same
instrumental resolution. However, it is important to real-
ize that lacking a quantitive measure of the effect of this
resolution, i.e., lacking detailed knowledge of the line
shape, the vertical scale in Fig. 2 has no quantitative
meaning. The error bars shown in Fig. 2 require discus-
sion. They were assigned by making repeatability mea-
surements as well as by testing the results of repositioning
the cursors presumably located at the maximum of the
peak and near the base of the peak at a place which we
hoped would represent the “average” noise power density.
The largest amount of scatter by far was incurred with the
repeatability measurements. The reason is that the modu-
lation peaks are only a few points wide, so that small vari-
abilities from sample to sample in, for example, the signal
generator (modulation) frequency, resulted in large varia-
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FIG. 2. The measured SNR vs D' from the simulator of Eq.
(1) with @ =22 (which implies that AU =0.5), t=0.20, and the
modulation as in Fig. 1(b). For a discussion of the error bars,
see the text. The curve is Eq. (4) with ¢ =60.8 and AU =0.5.

tions in the peak amplitudes as the modulation power den-
sity happened to be shared among a few or several “bins”
as the Fourier transform was processed. We suggest that
the comparably large error bars in the ring-laser experi-
ment’ might have derived from the same variability.

In their original paper, McNamara, Wiesenfeld, and
Roy’ outlined a theory which has now been written up in
detail.'> We quote here only the result

S/N =(c/D?)exp(—2AU/D) , 4)

where S/N is the power density amplitude ratio and c is
some constant. Following the usual definition, the SNR in
decibels (db) is given by SNR =101log;o(S/N). As did
the authors of Ref. 7, we have found it necessary to add an
offset value Do =0.032 v?/Hz to all values of D applied to
the simulator in order to fit the data with Eq. (4).
Presumably, this represents the effect of the internal cir-
cuit noise. For ¢ =60.8 and AU =0.5 the theory is repre-
sented by the curve shown in Fig. 2 which is qualitatively
comparable to that obtained in the Schmidtt trigger and
ring-laser experiments.

We conclude by emphasizing that ideally the power
spectra of stochastic resonance systems with additive
modulation contain delta functions which are rendered
into measurable peaks by experimental systems with finite
frequency resolution. Quantitative measurements of the
SNR of such systems can be obtained by introducing the
details of the instrumentally broadened line shape, or al-
ternatively by integrating the measured power spectra
thus transforming the peaks into steps whose amplitudes
are independent of the line shapes.

We are grateful to Kurt Wiesenfeld for a valuable dis-
cussion. Thanks are also due to Peter Hanggi for remarks
concerning the Fourier transforms of modulated systems.
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Grant No. N00014-88-K-0084, and by NATO Grant No.
0770/85.
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