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Coarse-grained Flory approximation for a polymer chain at the 0 point in two dimensions
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An interpretation of the Flory approximation as a course graining of the free energy of a polymer
chain, recently introduced by R. Dekeyser, A. Maritan, and A. L. Stella [Phys. Rev. A 36, 2338
(1987)] is used for the discussion of the conformational properties of a polymer chain at the 8 point
in two dimensions. With the inclusion of a short-range nonintersection condition together with
long-range three-body repulsion, and the use of scaling invariance arguments, the estimate
ve= —,'~ =0.583. . . is obtained for the scaling of the average end-to-end distance with the number of
monomers. This is in very good agreement with experimental and numerical work, and just 2%%uo off'

the conjectured exact value vo= —=0.571. . . .

The conformational properties of a flexible polymer
chain in a poor solvent result from the competition be-
tween excluded-volume effects (which tend to swell the
chain) and net van der Waals attraction between mono-
mers. ' At high temperatures, excluded volume dom-
inates and the self-avoiding random walk (SAW) model is
a good description for the problem. As temperature is
lowered, the relative importance of van der Waals forces
grows, until the chain collapses at a critical temperature
T, =8. Below T„attraction wins over excluded volume,
and the chain is compact. At the 0 point, repulsion and
attraction somehow balance each other, giving rise to a
third (intermediate) behavior between SAW and that of
the collapsed state. Considering the average end-to-end
distance ( R& ) '~ for an N-monomer chain in space
dimensionality d, one then has

SAW

(R2)trz N o

T(0
where vs~w—=3/(4 +2), as given by the Flory formula,
for 1 ~d ~4.

The details of the mechanism responsible for the inter-
mediate behavior at the 0 point are not entirely clear as
yet. kt is usually accepted that the two-body attraction
cancels the excluded volume condition at the 0 tempera-
ture and that a three-body net repulsion then becomes
the leading term in the free energy. However, in d =3
the three-body interaction becomes irrelevant and a
three-dimensional chain at the 0 point behaves ideally
(that is, vQ= —,

' ). Actually, since d =3 is the upper criti-
cal dimensionality for the three-body interactions in this
case, logarithmic corrections are expected, but these are
extremely dificult to observe. Experiments and numeri-
cal work support v= —,

' in this case. In the only other
physically realizable dimension, d =2, three-body repul-
sion is relevant, and one must have

2 (vQ(vs~w 4.
Experiments and numerical work ' indeed give vQ in
the range 0.55 —0.58. It has been proposed that a poly-

mer chain in two dimensions at the 0 point has the same
statistics as the hull of a two-dimensional percolation
cluster, ' for which the (conjectured) exact value of the
exponent v is —', . ' (Actually, the equivalence is between
the hull of the percolation cluster and a SAW with an-
nealed obstacles, which in turn is believed to be in the
same universality class as a polymer at the 8 point' '' .)
Thus one predicts vQ= —'=0.5714. . . , in agreement with
the above-mentioned estimates.

In spite of the general belief in the three-body mecha-
nism, it is important to note that this is not explicitly in-
cluded in numerical work, either in three or two ' di-
mensions. What researchers do, is insert only the follow-
ing two elements: (i) the SAW condition and (ii) two-
body attraction between nearest-neighbor visited sites
which are not adjacent along the chain. From this, they
find SAW behavior at high temperatures, collapse at low
temperatures, and an intermediate state in between,
which is then identified with the 0-point regime. To the
present author's knowledge, a three-body interaction
term has been explicitly taken into account only in the
early work of de Gennes; ' through an c, expansion in the
context of a field-theoretical study of the tricritical point
of the zero-component vector model, the estimate
vQ=-0. 5055 in d =2 was obtained there. Very recently, it
has been shown' that SAW's with annealed obstacles in
2(d &4 are identical to the standard model of' the 0
point in the sense that the annealed disorder induces
two-body attractive plus three-body repulsive forces. At
d =2, however, all orders of interactions are relevant in
the annealed disorder model, and one cannot draw a con-
clusion about the 0 point behavior. On the other hand, a
simple Flory approximation (to be discussed in detail
below) which includes three-body repulsion correctly pre-
dicts ideal behavior in d =3, but gives vQ= —', -=0.67 in
d =2. Thus one may well ask whether modeling a chain
at the 0 point explicitly through a three-body repulsion
or through the SAW condition plus two-body attraction
are physically compatible descriptions. The above-
mentioned results seem to indicate that the answer is no,
and that experimental results tend to favor the latter pic-
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F-aN R "+$R N (2)

Assuming R -N and minimizing F relatively to R, one
obtains

vo=2/(d + 1) (3)

for d ~ 3. For d ) 3, the Flory approximation correctly
predicts the energy to be irrelevant, thus v= —,'. The loga-
rithmic corrections at the borderline dimension d =3
cannot be obtained from this approach. The result for
d =2, however, overshoots the conjectured exact value 4

by =17%%uo. This means that the repulsive energy has
been greatly overestimated, and screening effects must be

ture. However, for the following reasons it is not easy to
discard the three-body repulsion scenario completely.
First, it correctly predicts that the chains at the 0 point
are ideal in d = 3 and slightly swollen (but not as much as
pure SAW's) in d =2 (this is obtained only a posteriori
from calculations performed on SAW's with two-body at-
tractions). Second, since the 0 transition always takes
place in the limit of very low monomer concentration p,
properties such as the osmotic pressure must be properly
described by the nonzero term of lowest order in a virial
expansion in powers of p,' as the 0 transition is usually
associated to the vanishing of the second virial coe%cient
(although this is not rigorous, see below), the physical
picture at the 0 point must be dominated by the third
virial coe%cient, related to a three-body interaction.
Third, it can be argued that the numerical result of de
Gennes is poor because its obtainment involves the
stretching, up to c.= 1, of an expansion to second order in
the (supposedly small) parameter e—:3 —d.

In what follows, we show that a Flory-like approach to
the conformational properties of a polymer chain at the
0 point in d =2 gives results entirely in agreement with
experiment and numerical work (although there is a
slight discrepancy relative to the conjectured exact
vo= —', ). To the standard arguments (which give vo= —', )

we add (i) the assumption that, on small scales for d =2,
the excluded volume condition prevails, as has been no-
ticed in extensive Monte Carlo work in d =3; and (ii)
scaling-invariance ideas derived from an interpretation of
the Flory approximation as a coarse graining of the free
energy, which in turn has been introduced by Dekeyser,
Maritan, and Stella. ' ' The physical picture emerging
from this indicates that, while the long-range SAW con-
dition is balanced by the two-body attraction, the short-
range SAW condition actually screens the three-body
repulsion to some extent; by lowering the number of con-
tacts between monomers on short scales, the SAW condi-
tion acts as a centrifugal force between parts (each com-
posed by several monomers) of the chain (blobs). This
lowers the repulsive energy originated from three-blob
contacts.

The standard Flory approach for a chain with N mono-
mers and end-to-end distance R, with three-body repul-
sion, goes as follows: the energy is approximated as the
integral over the volume (-R ) of the cube of the aver-
age density [-(N/R ) ]; the entropy is that of a random
walk ( -R /N). The free energy is then

present in the actual physical problem. Below, we first
reobtain the unscreened energy in the coarse-graining in-
terpretation, then proceed to include screening within the
same context.

Following Dekeyser, Maritan, and Stella, ' we divide
the chain into segments with l rnonomers each
(1 « 1 «N). In the spirit of the Flory approach, each
segment is considered as a noninteracting random walk,
with linear dimension -&I. In space dimension d, the
average number of three-segment encounters (self-
intersections) will be -(N/1) (R/v I ) ", again in the
mean-field context. In order to give the energy, that is,
the total number of three-monomer interactions, this
must be multiplied by the number of intersections be-
tween independent replicas of segments (mutual intersec-
tions). This is the average segment elongation ( —v'I )

raised to the fractal dimension of the set of mutual inter-
sections. Now, for the energy to be properly I indepen-
dent one must consider the fractal dimensionality of the
set of triple intersections of random walks' ' ' [which for
general k-multiple intersections in dimension d is given
by kd —(k —1)d, where d =2 is the fractal dimension
of a random walk]. Thus we have the number of mutual
intersections -(v'I ) . Although in the special case
d =2 this set has dimension 2 for any k (see above), thus
our argument below is insensitive to this, we note that
this is the only way for the coarse-grained energy to be l
independent for generic k and d in this approach. This
implies that the fractal dimension of k-multiple points
(instead of, e.g. , double points) must be considered when
counting mutual segment-segment intersections. This
point has not been made previously. The unscreened
three-body interaction is then given by
(N/1) (R/~l ) "(Vl )" =N R, as before. The
entropy in this picture is —(R/Vl ) /(N/l)=R /N,
remaining unchanged as well. We now specialize to
d =2.

Screening effects are included by recalling that, in
d =3, short-range chain stiffness has been noticed to per-
sist even at the 0 point. As the authors of Ref. 5 point
out, at the 8-point two-body attractions and long-range
SAW condition cancel, but the short-range SAW condi-
tion remains. This is the only remaining interaction,
since in d =3 the three-body term is already irrelevant,
and does not have any long-range effect. On the other
hand, if we assume that in d =2 the short-range SAW
condition persists as in d =3, its effects on the three-body
(long-range) term can be calculated as follows.

It has been found by Dekeyser, Maritan, and Stella'"
that the number of mutual intersections of ¹tep 5-
tolerant walks in d =2 is lowered by a factor N rela-
tive to self-intersections of the same walk (which is -N).
This screening is due to the existence of self-repulsion
eff'ects which eventually induce SAW behavior (if it were
otherwise, the number of mutual intersections between
two pure random walks would differ from that of self-
intersections of a single walk). It is found numerically
that n= —,', and a simple fractal argument' shows that in

general d, a=dvs~w —1 (in d =2, with vs~w= —,', a= —,
'

follows immediately). As the energy term has been calcu-
lated with the three-body interaction alone, we now in-
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elude the additional short-range SAW condition via the
screening of mutual intersections on the segment scale
[number of steps =l, thus screening —(l) ' in d =2].
That is, instead of being —(&l ) =(&1 ), the number
of mutual intersections will be —( &I ). The
identification of the (immaterial) segment length l with
the range of the SAW condition must not be taken literal-
ly: all that matters is that short-range efT'ects be properly
taken into account under coarse graining. Now, for the
energy term to remain l independent (which is a neces-
sary requisite in this interpretation of the Flora ap-
proach'9), the self-intersection term (X/l) (R/v l )

must be multiplied by I' . As it is the number of inter-
sections (and not, e.g. , a distance) which is being renor-
malized, the proper combination is (X/I) ' . Thus the
energy becomes

N
I

—1/2 3 —2d

( i/l )
6 —

2d( l )
—I /2

l v'i

-X' R " (4)

Vp
in d =2. Assuming R -N, and with the entropy writ-
ten as R N ', the usual minimization gives

vo= —,', =0.583. . . (d =2) . (5)

This is in very good agreement with experiment [which
gives vo=0. 56+0.01 (Ref. 6)], and numerical work (e.g. ,
Ref. 12 gives vo =0. 570+0.015 ), although slightly
overestimated. The situation is similar to that of pure
SAW's in d =3, where the Flory approach gives v= —', ,

while experiment and numerical work point to v-0. 59.
Assuming vo= —', to be exact in the present case, the

discrepancy is -2%%uo, of the same order as that for 3d
SAW's.

It will not be surprising if the value vo= —,', turns out
not to be exact; at the moment, however, numerical accu-
racy does not seem enough to allow a clear decision be-
tween it and the conjectured —,

' (or to show that neither is

true). On the other hand, the main point of this work has
been to show that the picture of a polymer at the 0 point
as a SAW with two-body attractive interactions is corn-
patible with that of a random walk with three-body
repulsion, provided that a short-range SAW condition is
included in the latter. This is consistent with the idea
that the 8 temperature is not coincident with the Boyle
temperature, at which the second virial coefficient van-
ishes' (see also Fig. 13 of Ref. 5). One could speculate
that the value of vo =—', for the unscreened three-body in-

teraction in d =2 would relate to a second transition, at
the Hoyle temperature. There is, however, no evidence
that such a transition occurs; on the contrary, theoretical
work points to the existence of a unique 0 transition in
d =2.

In summary, it has been shown that, for polymers at
the 0 point in d =2 the following physical picture is con-
sistent with experimental and numerical work. Although
long-range SAW condition and two-body attraction can-
cel each- other, a short-range SAW condition persists,
which actually screens the (longer-range) three-body
repulsion, thus causing in d =2 a decrease in the linear
dimensions of the chain, relative to what these would be
with the bare three-body term. In d =3, this mechanism
is irrelevant. From a Flory approach incorporating the
basic remaining interactions, and with the help of a
coarse-graining interpretation, together with scaling-
invariance concepts, the value of vo= —,', has been ob-

tained. This is in very good agreement with experimental
and numerical results (which are in the range 0.55 —0.58)
and only -2%%uo off the conjectured exact vo= 7.
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