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Normal-mode diagonalization for two-component topological kinks
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We present a linear-stability analysis for the kink solutions of a two-component nonlinear scalar

model in (1+1)dimensions. The study follows the traditional approaches which directly treat the

normal-mode problem.

The classical solutions of nonlinear-field theories exhib-
iting a topological flavor (lumps, kinks, and solitons),
with a special attention perhaps to the two-dimensional
case, are widely employed in the most varied physical
systems. Normally the work concerning these solitary
waves has focused on the one-component real-field sys-
tems as the (XP ),+, model or sine-Gordon theory be-
cause the explicit analytical solutions are known for both
of the aforementioned cases. ' Nonetheless, treating gen-
eral situations, the fields to be considered contain more
than one component, even if the restriction to one spatial
dimension is retained.

Before the phase stability analysis of the kinks in N-
component nonlinear models, the fundamental problem is
finding the classical solutions. In fact, the conventional
methods oA'er no systematic way of solving general cou-
pled nonlinear-field equations; "trial and error" tech-
niques, therefore, yield at best some solutions. Once we
have determined particular topological kinks associated
with a two-component nonlinear interaction model, we
shall carry out a linear stability analysis following the
traditional approach which directly treats the normal-
mode Auctuations built over the background provided by
the classical solutions. We also notice the existence of
stability analysis in terms of the Morse index, which coin-
cides then with the number of independent unstable per-
turbation modes. '

We start from a general theory governed by the density
Lagrangian

Cf 02 = —o. +o +dp o. ,
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Applying the aforementioned "trial and error" method
in order to find some topological kinks, the orbit going
from one of the minima to the other can be chosen as

g(cr, p)=p" a(l——o. )=0, (5)

with o. and n to be determined. Following the conven-
tional steps it is not di%cult to see that the orbit written
in (5) leads to the classical solutions2
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if the conditions
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are satisfied. Then the orbit represents a semiellipse (see
Fig. 1) connecting the two minima of the potential. We
shall refer this particular solution as the type-II kink.

Moreover, another classical solution of Eqs. (3a) and
(3b) with a topological flavor is easily obtained taking
p=O. Then we get

In order to impose a model containing topological
kinks, we can make, for the V(o,p) potential, the choice

o, (x) =tanh

p, (x)=0,

X Xo
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V(o,p)= —,'(o —1) + ,'fp + —,'Ap + —,'dp (o ——1) . the so-called type-I kink (Fig. 1).
In order to investigate the linear stability of the

solitary-wave solutions found so far, we examine small
perturbations over the static classical solutions

(9a)cr(x, t)=cr, (x)+h (x, t),
p(x, t)=p, (x)+g(x, t) . (9b)

Substituting Eqs. (9a) and (9b) into the time-dependent
general equations [(3a) and (3b}] and retaining only terms
linear in the small perturbations h and g, we have
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Thus the potential has two degenerate absolute minima
at (o =+1, p=0) if f, d, and X are all positive, and
A, &(d f) . More para—meters could be introduced into
this potential while keeping the same polynomial form,
but they can always be removed by rescaling the fields
and space-time coordinates.

The general classical solutions will satisfy

which for the static case reduce to (10a)
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the only free parameter of the model the condition

f&
9

(16)

type II

Nonetheless, we are disposed to make the linear stability
analysis according to the normal-mode fluctuations de-
scribed in (15).

Type-II kink. Taking the classical solutions associated
to this case (6), the normal-mode equations are simply

d2
+6f tanh (&fx)+2—6f $=Q P, (17a)

dx
type I

d2 +3f tanh (&fx)—2f rI=Q rt.
dx

(17b)

FIG. 1. The two diFerent topological kinks. For the (17a) one there are two eigenfunctions belonging
to the discrete spectrum with

Qo=(2 —4f), Q, =2—f, (18)

+ [ f —3Ap, ——d (o, —1)]g
2 Q~ 2

—2dp, (r, h =0 .

Taking the explicit form

h (x, t) =h (x)exp(

isn't),

—

g (x, t)=g (x)exp( icot—),
the coupled pair (10) transforms into

d A +(3o, +dp, —1)h +2dp, cr, g =co h,
dx

(lob)

(1 la)

(1 lb)

(12a)

V"(o„p,}=
3g 2+dp2 —1

2dp 0

2dp 0'

f +3', +d (cr, —1)

d g +[f+3k,p, +d(cr, —l)]g+2dp, r,ch =co g .
X

(12b)
Now if solutions of Eqs. (12a) and (12b) exist only for

co )0, the kink (o „p,) is linearly stable; on the contrary,
if co &0, negative eigenvalues appear and then the soli-
tary wave corresponds to the unstable type. To make a
detailed analysis of these equations we need the diagonal-
ization of the matrix whose elements are the second
derivatives of the potential V(o,p) taken in the (o.„p,)
point, namely,

both positive within the range marked out by Eq. (16);
moreover, we can find the scattering solutions starting
from 0 =2. Going to the second equation, again only
two eigenfunctions constitute the discrete spectrum,
namely, those of eigenvalues

(&13—1) (&13—3)

(19)

The continuous part begins at Q =f. Being Qo & 0 the
linear instability of this type-II kink is proven.

Type-I kink. Using now the simple topological kink of
(8) we directly obtain the uncoupled pair

+3 tanh — —1 Q=Q P,
dx

(20a)

d' f 2 x+ 1 —— tanh
dx v'2

—1 g=Q g.
(20b)

(&9 4f —1)—
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Equation (20a) correspond to the one-component kink of
a (XP ),+, model with QO=O and Q, =—', . ' Therefore, the
main interest is focused on the second one, exhibiting an
eigenfunction belonging the discrete spectrum with

which is a negative eigenvalue within the validity range
outlined for the f constant, a fact also indicating the in-
stability for the type-I kink.

Following the simple approach which directly treats
the normal-mode fluctuations over the background pro-
vided by the classical solutions, we have performed a
linear stability analysis for the two di6'erent topological
kinks arising in a two-dimensional model.

(13)

After an easy by tiring task, and bearing in mind the
conditions written in (5) and (7), we can see that with the
choice

d=1 ——
2

(14)

the Hessian matrix adopts the diagonal form
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