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Some accurate nonadditive multipolar interaction constants for three hydrogen atoms
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Momentum-space two-body perturbation wave functions are applied to an accurate evaluation of
the nonadditive three-body interaction among well-separated three hydrogen atoms.

It is known' that even for the case of long-range (van
der Waals) interactions among well-separated atoms, the
total interaction energy of more than two atoms is not
equal to the sum of pairwise interaction energies and the
nonadditive three-body term often gives a significant con-
tribution. Axilrod and Teller? derived the explicit expres-
sion for the leading nonadditive energy, the dipole-
dipole-dipole term, and its importance has been thereaf-
ter referred to frequently in connection with the proper-
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ties of rare-gas crystals and atom clusters.

In the present paper, we apply the recently reported
momentum-space perturbation wave function for the
H(1s)-H(1s) van der Waals system™* to the direct and re-
liable evaluation of the nonadditive three-body interac-
tion in the H(1s)-H(1s)-H(ls) systems.

For the well-separated three ground-state hydrogen
atoms, the nonadditive three-body energy appears in the
third order of the perturbation and can be written as
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since the three-body potential ¥''(1,2,3) is the sum of
the two-body potentials V'V(i,j). ¢'V(i,j) is the first-
order wave function®* for the two hydrogen atoms i and

J-
When the multipole expansion is applied to V(i,j),
V (i,j) and ', j) are developed as a power series of the
reciprocal internuclear distance R,]‘, and their individu-
al coefficients are specified by two hydrogenic azimuthal
quantum numbers / and I’.>* Then the three-body in-
teraction energy E\J) is expressed as
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where Z;,~ is the interaction constant arising from the
radial part of '')(i,j), and - - - represents higher-order
interactions, while the geometrical factor Wj.,. comes
from the angular part of ¥'')(4, ;) including the internu-
clear distances. Note that the terms on the right-hand
side of Eq. (2) represent the DDD, DDQ, DDO, DQQ, and
QQQ interactions, respectively, where D, Q, and O mean
dipole, quadrupole, and octupole contributions.

The evaluation of the geometrical factor W, needs
the rotation 7 of the spherical harmonics, since Y,,,’s in-
volved in the two-body function ¥'')(i,j) are defined in
the local coordinate system where the z axis is taken
along the internuclear vector R; (=R;—R;) for each
pair of atoms i and j. The rotational relation is given by’
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where s runs over all integers for which the factorials are meaningful.
Our final results for the geometrical factors Wy, Wi, Wi,,, and W,,, agree with the known results® except for

some constant factors which are absorbed in the interaction constants. The explicit form for W3,
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is newly derived in this study, where 4, B, and C
(A +B +C =1) are the three internal angles of the tri-
angle of the hydrogen atoms. (Note that the expressions
for W,;,, etc. are obtained by the cyclic permutation of
the distances and angles.)

After some manipulations, the nonadditive three-body
interaction constants Z,.,., appearing in Eq. (2), have
been found to be
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where {b\¥!] are the coefficients appearing in the radial
part of the two-body perturbation wave function
¥V, ),>* and
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which result from the radial integrals involving the asso-
ciated Laguerre function.

Convergent values for the five types of interaction con-
stants of the hydrogenic three-body interactions are (in
atomic units):

Z,,=—7.21415484, Z,,=78.707 1664, Z, ;= —1424.06596 ,

Z 1y, =—289.371191, Z,,,=359.157930,

when 55-term expansion is applied to #''(i,j). These
values are considerably accurate and reliable than those
in the literature.%’” The characteristic of the present
values is that they have been determined directly from the

[

perturbation wave functions analytically and explicitly
obtained in momentum space. These interaction con-
stants should be compared with the very recent elaborate
work®? based on the pseudostate method.
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