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From the explicit solution of a two-level problem previously obtained, it is proved that the
single-particle kinetic energy density functional t, [p] is the density p times a function solely of the
ratio p'/p, with p' the first derivative of p. For an n-level system with a harmonic-oscillator poten-
tial, the form of t, [p] is explicitly obtained. Again t, [p] involves only p and p'; no higher deriva-
tives appear.

I. INTRODUCTION

Recently we have been treating n-level one-dimensional
systems of electrons moving in a one-body potential
V(x). These lead to an explicit expression for the kinetic
energy density though this is given only implicitly in
terms of the density p(x). Our purpose here is to consid-
er more explicitly the single-particle kinetic energy func-
tional T, [p]. We shall show below that the correspond-
ing kinetic energy density t, [p] is, in fact, for a two-level
system in one dimension, a product of p and a function
only of p'/p. Then, for n-levels, we shall work out com-
pletely t, [p] for the example of a harmonic-oscillator po-
tential. As illustrative of the philosophy of this work, we
recall first the approximation due to von Weizsacker, ' as
refined by Kirzhnits (WK). These workers wrote the
low-order expression

A.fi (p' ) Xfif dx = f (s') exp(s)dx .
8m p 8m

(1.2)

In Sec. II, the two-level system will be exploited using
the earlier work of Dawson and March and March and
Nalewajski. Since this argument is somewhat forrnal
and abstract for a general potential, Sec. III treats, quite
explicitly, the single-particle kinetic density t, [p] for a
harmonic-oscillator potential, but for a general n-level
case.

II. GENERAL FORM OF t, [p]
FOR TWO-LEVEL SYSTEM

The work in Refs. 3 and 4 allows the two-level system
to be characterized, for a given potential V(x), by wave
functions

(2.1)&2$, (x)=&p(x)cos0(x)

&2gz(x) =&p(x)sin0(x) .

kA (p')'Tw"[p)=c, fp'dx+ f P dx,
Sm p

(1.1) and

(2.2)

From these references one can eliminate V(x) to obtain a
differential equation for the phase 0 solely in terms of
p'/p, namely

I

0"+ ~0' = 2g' sin(20),
P

(2.3)

where g=(c, —E2)/2, the eigenvalues s& and E2 corre-
sponding to the functions 1b& and g~. The single-particle
kinetic energy density t, [p] is readily found ' as

t, [p]= —,
' -+ —,'p(0') —

—,'p" ., (p')
(2.4)

Since the term in p" integrates to zero when one calcu-

with c& the appropriate kinetic constant in the Thomas-
Fermi limit which is valid asymptotically for large num-
bers of electrons X. The constant k in Eq. (1.1) was set
equal to unity by von Weizsacker. The latter work of
Kirzhnits proved that, in the limit of a slowly varying
electron density, required to validate the Thomas-Fermi
term, the correct value of k is —„'.

The argument below will demonstrate that, while Eq.
(1.1) is a relatively crude approximation to the single-
particle kinetic energy functional, the philosophy of ex-
pressing T, [p] as a function of p and p' is, in fact, well
justified. We note here, for reference later, that the inho-
mogeneity term involving k in Eq. (1.1), is simply written
in terms of 1np=—s: namely
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lates the total kinetic energy

T, [p]=f t, dx, (2.5)

one need only note that the part of t, contributing to
t

T, [p] is p[ —,'( ) + —,'(8') ]. But from Eq. (2.3}, 8' is
p

determined solely by p'/p, and hence one concludes that

T, [p]=fp(x)F x, (2.6)

This clearly is consistent with the philosophy of von
Weizsacker and Kirzhnits, no derivative higher than p
entering the functional T, [p].

In the following section, we shall make the result (2.6)
quite explicit for the simple model of a harmonic-
oscillator potential. Indeed, this model, as will be
demonstrated, can be solved for n levels, with n arbitrary.
The same conclusion, namely that in this example for ar-
bitrary n the kinetic energy involves only p and p' but no
higher derivatives, again follows.

dt pt, pp
dx p p

(3.5}

This first-order differential equation for the kinetic densi-
ty t can be solved using the integrating factor p, to
yield

1 2 I 3

+-,'p'f" ~, dy .
p p

(3.6)

This demonstrates quite explicitly that for this model,
with n levels occupied, and n arbitrary, t is determined
solely by p and p, with no higher derivatives entering the
functional. With regard to the lower limit of the integral
appearing in Eq. (3.6), this has been calculated explicitly
for the case of one level only and has the value —(2)'~ .

The final step to be taken is to show that one can re-
cover the correct Euler equation from the energy varia-
tion principle, built from the kinetic energy density t in
Eq. (3.6) and the independent-particle potential energy

p x V x dx with V x =
—,
' x . The standard procedure

of the calculus of variations leads straightforwardly to
the result

III. n-LEVEL SYSTEM
FOR A HARMONIC-OSCILLATOR POTENTIAL

—
—,'p V' —

—,'p"'=(p —V)p' . (3.7)

(3.1)

Combining this with the customary Euler equation

p —V(x)= 6t
5p

(3.2)

of the density-functional theory, p being the chemical po-
tential, leads to

The object of this section is to make use of the admit-
tedly simple example of a harmonic-oscillator potential
with n-levels occupied to calculate t, [p] and T, [p] explic-
itly.

To do so one used the result for this model,

IV. SUMMARY AND CONCLUSION

The main results of this work are embodied in Eqs.
(2.6) and (3.6). The former Eq. is for a general potential
V(x) but for a two-level case only. As to Eq. (3.6), this is
valid for the general n-level case, but only for the
harmonic-oscillator model. The principal point to be
stressed, based on these two equations, is that in both
cases the single-particle kinetic energy functional in-
volves p and p', but no higher derivatives of p. This
seems encouraging in the context of the continuing
search ' for the general single-particle kinetic energy
functional.

p(p —V) =3t+ —,'p" . (3.3)

From the work of Lawes and March, again specifically
for the harmonic-oscillator model,
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