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We consider the effects of impurities on the velocity selection of a needle crystal, in the small
thermal and solutal Peclet numbers. As in the case of the growth in a pure melt, steady solutions
for needle crystals are found only if surface tension is anisotropic. When anisotropy is small, the
variation of o* with impurity concentration is found, in agreement with results given by the heuris-
tic model of Lipton et al. [Metal. Trans. A 18, 341 (1987)].

I. INTRODUCTION

Much progress has been made recently in the under-
standing of dendritic growth rates in undercooled sample
of pure fluids. The growth is limited by the diffusion of
latent heat released at the interface. The crystal appears
as a moving boundary for the temperature field on which
thermodynamic relations are applied. The corresponding
free boundary problem admits a discrete family of solu-
tions of needle crystals of stationary shape, moving with
constant velocity when the surface tension is anisotropic
(Meiron,! Ben Amar and Pomeau,? Barbieri et al.,> and
Ben Amar.*) Only the fastest one is linearly stable with
respect to the tip-splitting modes (Kessler and Levine,’
and Bensimon et al.®% When the undercooling
A=(Ty—T,)/(Q/c,) is small, the velocity of a two-
dimensional crystal is given by (Pelcé and Pomeau’)

U=(16/m*C)(Dy/dy)A* . (1

Here, T is the temperature of the undercooled liquid;
Ty, the crystallization temperature of the pure liquid; c,,
the specific heat; and Q, the latent heat released per unit
volume of solid. dq=y.c,T, /Q?% is the capillary length
where y, is the mean value of the surface tension. The
constant C is an eigenvalue of a nonlinear integro-
differential equation, which is a function of the anisotro-
py factor B. (f3 appears in the relation: effective surface
tension (oc=y+y’") versus the growth direction as
o=oy[1—Bcos(40)].)

In the case of dendritic growth from an impure liquid
(an alloy) one must take into account, in addition, the
diffusion of impurities (of solute) partially rejected by the
moving interface. This implies the introduction of a new
control parameter, the concentration ¢, of impurities in
the liquid, far from the crystal. Measurements of the
variation of the crystal velocity when an impurity is add-
ed have been performed (Chopra®). It appears that, at
fixed undercooling with respect to the liquidus tempera-
ture, the velocity of the crystal increases when ¢ in-
creases, reaches a maximum for some finite value of ¢,
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and then decreases for a large value of the concentration.
Phenomenological models have been proposed (Karma
and Langer,9 Karma and Kotliar,'© and Lipton et al. 1
which explain qualitatively this behavior. We propose
here a more rigorous treatment of the question, by using
the same models as in Refs. 9-11, in order to obtain
quantitative agreement between theory and experimental
data.

In a first part, one introduces the two-dimensional free
boundary problem defined by the equations of diffusion of
heat and concentration of impurities, with thermodynam-
ic boundary conditions applied at the interface and write,
in a second part, the corresponding integral equations.
When surface tension effects are neglected, this free
boundary problem admits a one-parameter family of
Ivantsov parabolas that we determine in a third part.
Then, we introduce the effects of surface tension in the
problem.

We study the experimentally relevant limit of small
thermal and solutal Peclet numbers. In this regime, the
solution of the problem appears very close to the case of
growth in a pure melt. One derives first an integro-
differential equation for the shape of the crystal in which
the velocity appears as an eigenvalue, which has solutions
only when surface tension is anisotropic. This equation is
studied both analytically, in the Wentzel-Kramers-
Brillouin approximation, and numerically. Results are
compared with the one obtained by the solvability condi-
tion. As shown by Pelcé and Bensimon'? (see Pelcé!?
also), this condition can be written as the vanishing of an
integral in which only the Ivantsov solution and the mar-
ginal mode of the dispersion relation for perturbations for
the planar interface enter. Then all these theoretical re-
sults are compared to experimental data.

II. THE MODEL OF GROWTH

The liquid-solid interface is a region which is in general
very small compared to the macroscopic scale (some
angstroms). During crystal growth, it is here that the la-
tent heat is released and that the density of the material
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and the concentration of an impurity vary rapidly. In or-
der to study the dynamics of growth, one can consider
the interface as a discontinuity for the fields of tempera-
ture and concentration of impurities on which boundary
conditions are applied.

A. The interface

The interface is assumed to be rough so that the kinetic
time of transfer of molecules between solid and liquid is
very fast compared to the characteristic diffusion time of
heat or of an impurity. Thus one can consider the limit-
ing case where the conditions of growth are out of equi-
librium because of the presence of temperature or con-
centration gradient in the medium, the interface being it-
self at equilibrium. In these conditions, a thermodynamic
relation, the Gibbs-Thomson relation, gives the tempera-
ture at the interface, as a function of the local curvature
1/R of the front and of the local concentration of impuri-
ty. For simplicity, one considers here a two-dimensional
model so that the temperature T at the interface is

T
T=T0—mc—§0% . 2)
Here c is the concentration of impurity in the liquid; m,
the absolute value of the slope of the liquidus line in the
binary phase diagram; o, the effective anisotropic liquid-
solid surface tension; and 1/R, the curvature of the inter-
face.

B. Diffusion fields

The temperature satisfies the diffusion equation in both
liquid and solid:

0T /ot =DpAT , (3)
and the concentration of impurity satisfies
dc /dt=D_Ac 4)

in the liqud only. At the interface, the conservation of
heat and impurities must be satisfied, i.e.,

Ovn=D;c,(VI,—VT;)n (5)
and
c(1—K)v-n=—D_Vc'n. (6)

Here, v-n is the normal velocity of the interface and K
the partition coefficient for impurities. Dy and D, are,
respectively, the diffusive coefficients for temperature and
concentration, and one has usually D, <<D; (10”2 on the
order of magnitude). Far at infinity ahead of the crystal,
temperature and concentration are uniform and, respec-
tively, equalto T, and ¢, .

III. INTEGRAL EQUATIONS

One first determines the relation between temperature
(concentration) and released heat flux (concentration flux)
at the stationary interface, moving with constant velocity
U. In the case of temperature field, the diffusive
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coefficients for the temperature can be assumed equal in
the liquid and solid phase (symmetic model). Thus the
relation between temperature and heat flux at the inter-
face of equation z=¢§(x) can be written as (see, for in-
stance, Langer and Turski'%)
T—T, =DTf +wdl’GT(x,§)x',§')(V'TS —V'T;)n .

(7
Here [/ is the curvilinear coordinate and G is the Green
function of the diffusion field with coefficient of diffusion
D7, in a frame moving with a constant velocity U. It,
satisfies the equation

U(3/82')G(p,p' ) —DyA'Gr(p,p )=8(p —p'), (8

whose solution can be written as
Gy(p,p')=Q2mwD;) 'exp—[(U /2D )(z—2z")]
XKo(U/2D7|r—1']) . 9)

Here p is the point of coordinates (x,z), |r—r'|
=[(x—x')?+(z—z')*]'?, and K|, is the modified Bessel
function of zeroth order.

In the case of the concentration field, the coefficient of
diffusion is negligible in the solid phase and can be taken
as zero (one-sided model). Thus the relation concentra-
tion and concentration flux at the interface (see, for in-
stance, Caroli et al.,?

(c—

_.CL)—_D f+°°dllG( | 1o '
> = eJ (x,81x",5")V'ecn

—U [ Tdx'(c—c,)G.(x,Elx",¢)

+D, [ TTdl'lc—c, VG (x,¢lx".¢)m .
(10)

Here, G, is the same Green function as before [see Eq.
(9)] but with a coefficient of diffusion equal to D,.. In the
particular case where ¢ is constant on the interface, Eq.
(10) can be simplified by using an integral relation that
satisfies the Green function G.. When one integrates Eq.
(8), one obtains the equation

%:Ufj:dx’Gc(x,ﬂx’,é")
—D, [ TTdI'V'G.(x,Elx",¢)n (11)

Thus, if ¢ is constant on the interface, by using (10) and
(11), one gets the equation

c—c,=—D,  TdI'G.x.tlx\,{Wen, (12

which is similar to Eq. (7). This property comes from the
fact that, when c is constant on the interface, it is uni-
form in the whole solid, and thus the fact that the con-
centration diffuses or not in the solid has no importance.

By using Egs. (5) and (6) giving the different fluxes
released at the interface, one can rewrite Egs. (7) and (10)
as

T—Tx:“Z—Qfﬂcdx'cr(x,glx',g') (13)
» — o

and
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(c—cy) + o

—2——=U(1—K)f* dx'cG,(x,E|x",¢")
—Uf (c—c, )G (x,Ex",E)
+D f “dl'(c—c ,)V'G,(x,Elx",E)n

(14)

Thus the free boundary problem to solve is given by
Eqgs. (13) and (14) with the boundary condition (2) at the
interface. Far at infinity, ahead of the finger, T=T, and
C=cC,

IV. THE CASE WITHOUT SURFACE TENSION

In this case [0 =0 in Eq. (2)], T — T, is simply propor-
tional to ¢ at the interface. A family of exact solutions
can be found when T and c are constant on the interface
T=T, c=c;. It corresponds to the family of the
Ivantsov-Horway-Cahn parabolas,16 17 L(x)= —x2/2p,
where associated thermal and solutal Peclet numbers, re-
spectively, Pr=pU /2D, and P, =pU /2D, satisty the re-
lations

A~:(T,-—Tw)cp= 4 |p fw exp( —x2/4)
T Q Z R (x24+4P;)
(15)
(c;—cy) =4 x%/4)
=i el P, —J’-—~ )
A c;(1—K) f x%-+4P,) (16

Thus, when ¢, and T are given, one has three un-
known T, c;, and pU, which are determined by Egs. (15),
(16), and (2). As is the case for the crystallization in a
pure liquid, the velocity of the crystal is not determined
at this level, thus leading to the existence of a one param-
eter family of homothetic parabolas. Usually, thermal
undercooling A is small compared to unity so that Eq.
(15) can be rewritten as

Pr=A%/m, (17
and thus the thermal Peclet number is small. Similarly,
in the case of the solute, one has

P.=A/7 . (18)

By using Eq. (2), (17
Pr=(A2

), and (18),.one deduces
g/m)[1+mc,(1=K)c,/Q(Dy/D, N2 (19

Here Aq is the effective supercooling with respect to the
liquid temperature:

= (To—mec,—T,)c,/Q . (20)

|

1-k) [ "

+D, f “dI'8cV'G.(x,6lx", 6

dx[c +8¢)G

(x,81x", 80 =€, Gelx, &I 6,1 = U [
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As the ratio Dy /D, is large, but mc ,, ¢, /Q small, the fac-
tor mc ,, /Q Dy /D )72 is not larger than unity and Pr
is of order Ay As P,=(D;/D_.)Pr, the condition for
small solutal Peclet numbers is that

0<Az<<(D,./Dy)*. 1)

Let us discuss here the axisymmetric case before going

further. In the small-Peclet-number limit Egs. (17) and
(18) become
Pr=[—Ap/2In(A7)], (22)
P =[—A./2In(A)], (23)
so that Eq. (19) becomes
Pr=Ag/2{In(A g1+ mc,(Q/c,)
X(1—K)Dy/D)]} . (24)

From this it follows that P, is small if

0<A.<<D./Dy . (25)

V. EFFECT OF SURFACE TENSION

When effects of surface tension are introduced, temper-
ature and concentration of impurity are no longer con-
stant on the interface and a parabolic shape is no longer a
solution of the free boundary problem. One must come
back to the integral equations (13) and (14) and to Eq. (2).

A. The eigenvalue equation

The procedure is similar to the one developed by Pelce
and Pomeau.” The radius of the crystal is small com-
pared to the corresponding diffusive length and one can
solve the integral equations with a matched asymptotic
expansion procedure. Far from the tip, the curvature
effects due to surface tension are negligible and the shape
of the crystal is an Ivantsov parabola of tip radius p,
growing with the same velocity as the considered needle
crystal. In this region, the temperature T; and the con-
centration c¢; are constant and determined by Egs. (15)
and (2), in which the surface tension effects have been
neglected. Close to the tip, the integral equations (13)
and (14) can be simplified as follows: first one substracts
from (13) and (14) the equivalent relation obtained with
the Ivantsov solution. If one writes T=7T;+8T and
¢ =c; + 8¢, one has

sT="2 [ dx'[Gylx,£lx",6) = Grlx, o X ET
p =]

(26)

dx'SCG (x,Elx", &

27
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The integrals are noticeably different from zero only
around the tip so that lengths can be scaled by 2p and the
Green functions can be expanded for small values of the
argument. One uses Eq. (9) for small values of the argu-

ment and obtains
G(x,¢x",&)=—(1/27D)In(U /2D|r—1'|) , (28)

so that Eqgs. (26) and (27) can be rewritten at dominant
order

sT=— LU Q progon, | lemrl
T DT CP i 'riv—riv
|
2mc ,(1—K)c, | D
(1—300549)—%=£ 1+ —= TP | 7T
(1+¢&7%) / 27 o D,
1 + +
+— dx'W(x,x’ "
wf’oc x'W(x,x") fﬁwdx
where

Wix,x )=[(E—E)—(x —x")AE/3x"]
X[(x_x/)2+(§_§l)2]—]

and C, the eigenvalue (4p°U)/Dyd,. (C is related to o *,
used in Ref. 11, but is not in general simply inversely pro-
portional to it. Here C is defined with the tip radius of
the parabola towards which the shape of the crystal is
asymptotic far from the tip, and o * is defined with the tip
radius R. In general, the shape of the tip is not a parabo-
la and the tip radius R is different from p. When C is
large, the shape of the tip is close to the parabola and C
and o * become inversely proportional.)

B. The eigenvalue problem in the WKB limit

First, we propose a WKB analysis of Eq. (31), valid in
the limit of large C values. We sum up the main steps of
the demonstration since analogous treatments of non-
linear and nonlocal equations have been extensively ex-
plained by Ben Amar and Pomeau? and Ben Amar* for
the symmetric model of solidification [which corresponds
to W(x,x')=0 in (31)] and extended to the one-sided
model by Misbah'® [which formally means that the first
term in the integrand of the second integral in the right-
hand side of Eq. (31) is equal to zero]. This method con-
sists of solving Eq. (31) in the complex plane (variable z)
and focuses on the calculation of the first derivative of §
at the origin, since the solvability condition requires

d&(C)/dx=0 at x=0 .

We choose an integration path in the complex plane com-
ing from — o, on the negative real axis, passing across an
internal region located at i/2, where § is singular, and
going to zero along the imaginary axis. The first step of
this analysis requires the asymptotic behavior of ®, the
deviation of { from the Ivantsov parabola
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where §,,(x)=—x2 and
Uc  (1—K) o -
2 ™ DC e ‘riv_riv|

bl [ g (6D —x AL /0x')

2m 7w (x—x'2+(E—¢)?

(30)

By using Egs. (2), (29), and (30), one finally obtains

f +c>°d)c'ln _‘~___|r—r,'

o ]riv_riv

L | = +<1—/3cos49')——§—’f'2"—'—37 , @D

27 !riv 1v| (1+§x’)

f

D(z)={(z)+z2?
We expect ® to decrease more quickly than £, (x)=—x2

as x goes to —oo. As a consequence, Eq. (31) can be
linearized around §,;, and one derives a slightly different
inhomogeneous integral equation when compared to the
symmetric model for which ¥=0. If only the largest
terms are taken into account, we obtain

_._27_11‘*'&[1[ 1
(1+4x2)*% 7 J = [1+(x+1)2)(1+41%)?
:_C_‘_I:f+wdtd>(x)—d>(z) x +t (32
2r Y- x—=t  1+(x+1)

where I'=1+2mc (1=K )c,(Dy/D.)Q. From Eq. (32),
one can notice that ®(x) is defined up to an arbitrary ad-
ditive constant. One can choose a function ®(x) decreas-
ing faster than any constant at infinity. In that case, one
expe;nds Eq. (32) at large x and obtains, from the terms in
1/x°,

[ oax = .

o or (33)

Anyway, this additional term does not modify the singu-
lar behavior of ®(z) when
z=x+i/2—ie with e>0,

which is given by (1/CT )(ix)*/? and is crucial for the
matching of @ in the internal region. In this region,
around i/2, we adopt a stretching transformation

®(z)=C %F(CPu) with z=i/2+u and a,8>0 .
(34)

We assume that we can linearize the integral terms and
only keep the nonlinearities of the local curvature term.
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This hypothesis, already used in Refs. 2 and 4, must be
checked once the scaling exponents a, 3 are calculated.
Once linearized, the double integral in Eq. (31) simply
reads

4222+ 322 — 4zt —41*—T1°+6
[1+(z+2)?])[4+(z—1)2)(1+41?)
(35)

< +c’odt d(1)
217' —

When the integration is performed on the real axis (vari-
able ?), one can notice that this term is never singular as z
approaches i /2. Therefore, we do not need to take it into
account in the internal region. The last integral involving
the curvature term is already present in the one-sided
model of solidification, so we conclude that we can
reduce Eq. (31) in the internal region in the same way as
for the one-sided model, with the same exponents (a= )
and 8= Z%). Finally, we can linearize completely Eq. (31)
around §;, on the imaginary axis and neglect the nonlocal
term involving the curvature since it is not multiplied by
C. We notice that the additional term (35) is purely real
as z=it. Therefore, focusing on the imaginary part of ®,
we derive the same equation as in Ref. 18. Consequently,
the solvability condition of Eq. (31) is exactly the same as
for the symmetric model and is due to a turning point lo-
cated on the imaginary axis and introduced by the aniso-
tropic surface-tension effects. We conclude that Eq. (31)
has an infinite discrete set of solutions, such that

c
C, = R 36)
" +2mcw(l—K)cp D, (
Qo D,

C; being the eigenvalue set of the symmetric model of
solidification. One can reasonably expect that, as is the
case for the growth in a pure melt, only the first eigenval-
ue (n =1) is relevant in experimental situations.

In order to make a more quantitative comparison with
the experiments (more precisely, Fig. 3 of the work by
Lipton et al.,!! let us introduce the dimensionless quanti-

ty
_ D4,

=——, (37)
R°U

o*(cy,

where R is the tip of radius. Lipton et al.!! found that

g*(c,) 142 c,(1—K)c, Dy
R m—= P ,
Op Q Dc

(38)

i.e., a formula identical to (36) if one identifies R and p.
As can be seen from the eigenvalue equation (31), this is
true only if C is large, i.e., when the WKB approximation
applies. When C is large, the integral of the logarithm
must be very small in order that the other terms balance
and thus r is very close to r;,. As can be deduced from
the relation (36) this occurs when C¥ is large since the
denominator is of order unity, or when the anisotropy is
small.>? This is the case of the succinonitrile-acetone
mixture which is used for experiments in Ref. 11.
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C. Solvability condition method

1. Stability analysis of a planar interface moving
with constant velocity

Consider first the motion of a planar interface moving
at constant velocity V in the z direction. The stationary
profiles of temperature and concentration of impurity
are, respectively,

T,=T,+ —Q—exp —zl , T.=T_ + Q , (39
Cp DT Cp
c=c,tc;(1—Kexp | —z— (40)

D

c

Consider now a small deformation of the interface
£(x)= A exp(wt +ikx). The corresponding perturba-
tions for the temperature and concentration fields are, re-
spectively,

T, =B explwt +qz +ikx) ,
T,=Cexplot+q'z+ikx), 41)
c¢'=Dexplowt+q"'z+ikx) .

Here, g and g’ are the roots with, respectively, negative
and positive real parts of

w—Vqg=Dr(g*—k?) (42)

and g’’ the root of Eq. (4.2) with negative real part, where
Dy is changed by D.. Then, by using Egs. (2), (5), and
(6), one finally obtains

v Q 4
C=B——%X A=—m |D———c,(1-K) 4
Dy c, " l D, ¢ )
—0g—2(1—B) Ak? , (43)
1Y)
v I'o
QwA=Drc, |g°C—qB D, ;A], (44)

and

¢;(1—K)oA=—D[V(1—K)+q"D,]

VZ
—c;(1—-K)—4 , 45
c;( )D (45)

c

from which one deduces the two coupled relations (the
coupling parameter is h =D/ 4)

= Vgt V(g —g) e (1 K)DT
w=—Vq 9 =95 D,
—dy(1—B)D kg —q’)
y? mc,
—~—4D (g—q')h 46)
D, T 0 q—q

and
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w=—h 47)

v, Dg” ]_ v

¢ ¢(1—K) D,

The dispersion relation w(k) is obtained by eliminating
the coupling parameter & between relations (46) and (47)
and by writing g, ¢, and g’ as a function of k£ and w [see
Eq. (42)].

2. The solvability condition

As mentioned in Ref. 12, the solvability condition can
be written as

[ Td1 GLXy(Dlexp

ik ar | =0 @)

Here, X,(/) is the Ivantsov parabola function of the
curvilinear coordinate /; G, the curvature operator; and
k,,, the local nonzero marginal mode of the conjugate
dispersion relation, written in a frame moving with con-
stant velocity U in the z direction (frame at rest with
respect to the unperturbed solution).

Consider now a planar interface moving with constant
J
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velocity U in the z direction, but tilted at an angle 6. One
considers first a frame with axis normal and tangent to
the interface and whose origin moves normally to the in-
terface at the velocity ¥'=U cosf. Because of the rota-
tional symmetry of the system, a perturbation of wave
number k grows with the g rowth rate w(k) determined
by Egs. (46) and (47). If now the origin of the frame
moves in the z direction with the constant velocity U, the
growth rate of the same perturbation will be
w(k)+iU sinBk, due to the tangential velocity of the new
frame U sin6. Thus the marginal mode k,, which ap-
pears in relation (48) satisfies w(k,, )=iU sin6k,,, since it
is a zero of the conjugate of the dispersion relation writ-
ten in the frame moving with constant velocity U in the z
direction.

In the small-Peclet-number limit (thermal and solute),
relevant wave numbers are large compared to the inverse
of the diffusive lengths, and the quasistationary approxi-
mation applies. It follows from Eq. (42) that
q'=—q~=—q"{k}, where {k}=k if Rek >0 and —k if
Rek <0. By eliminating 4 between relations (46) and (47)
and by neglecting V' /D compared to k, one finally obtains

o 2me, D 2mec, Dy
—iUsinbk,, |1+ 0 c,-(l—K)D— +{k, ] |UcosO |1+ c,-(l——K)D —2D;dy(1—Bcos40)k} | =0 . (49)

c c

[

It follows that axis because it is not multiplied by C. The CT values de-
dme c(1—K) D |2 scribe the narrow interval between [C5,C°5], confirming
k, =k} et T ] , (50)  the validity of our WKB treatment for large C values. As
m o D, expected, our numerical results based on our model do

where k; is the marginal mode obtained in the sym-
metric model for growth in a pure melt. Thus computa-
tion of the integral (48) involves the same steps as the one
described in the pure case.>'>!* As in the small solutal
Peclet-number limit, ¢;~=c, the solvability condition
leads to relation (36).

D. Numerical computation of the eigenvalues

Let us now come back to experiments.!' The plot
(o* /o) versus ¢, is clearly checked at small ¢ values,
but seems not to be valid as soon as I' is of order 1.5.
Our result, consistent with the heuristic models proposed
by Lipton et al.'’ and Karma and Langer'® cannot ex-
plain the abrupt rise of o* as I'=4, so we perform a nu-
merical analysis of Eq. (31) in order to check the assump-
tions of the analytical treatment. The main lines of our
code, for the symmetric model, have been published else-
where;'’ we have added both integral terms in (31), using
exactly the same method as in Ref. 19. In Table I, we
give the numerical values obtained for CT as ¢, varies,
for three different values of the anisotropy coefficients.
First of all, we must mention a slightly different numeri-
cal eigenvalue between the symmetric (CS) and one-sided
(C°S) model of solidification, although the previous
WKB treatment predicts identical results for the two
models. This discrepancy comes from a contribution of
the nonlocal curvature term, neglected on the imaginary

not explain the experimental results. The latest seem to
have been obtained at small thermal and solute Peclet
numbers, which correspond to the main assumption of
our analysis. We have no explanation of this behavior
since we cannot invoke a different result in three dimen-
sions, if we refer to Ref. 4.

When the eigenvalues are known, growth rates are ob-
tained by using relation (19) and the definition of C. One
obtains

TABLE I. Calculated eigenvalues CT for different values of
the anisotropy coefficient S3.

B
a® 0.05 0.075 0.1 0.15
st 1203.44 672.14 449 42 261.76
0.1 1204.31 672.98 450.23 262.49
1.0 1208.25 676.76 453.92 266.03
5.0 1211.81 680.19 457.22 269.22
10.0 1212.68 681.02 458.02 269.99
0s¢ 1213.72 682.04 459.02 270.95
‘a=2mc..(1—K)/(Q /c,)Dy/Dc=2CoDs/D,. C, has been

defined in Ref. 11; also,a =T —1.

"Eigenvalue of the pure thermal model (symmetric model of
solidification).

‘Eigenvalue of the pure impurity model (one-sided model of
solidification).
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U=—-1p2. (51)

In the two-dimensional (2D) model, in the case of small
thermal and solutal Peclet numbers, and in the case of
small anisotropy in surface tension, relations (19) and
(36), respectively, apply and one obtains

2me.,(1—K)c, Dy |*

U:E[gm,’ﬁ @ D A4
T d, mc ., (1—K)c, | Dy 172 )4 Telt
|4 —=
Qo D,

(52)

so that the growth rate has a maximum for some finite
value of the concentration of impurity, as observed in ex-
periments.

VI. CONCLUSION

We studied the effect of the presence of impurities on
dendritic growth rates in the limit of small thermal and
solutal Peclet numbers.

As in the case of growth in a pure melt, steady solu-
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tions of needle crystals are found only if surface tension is
anisotropic. The shape of the crystal is a parabola far
from the tip and satisfies an eigenvalue equation close to
the tip.

When surface anisotropy is small, the whole shape is
close to a parabola and the corresponding eigenvalue C
can be computed by using WKB approximation. The re-
sults obtained are in agreement with the previous work of
Lipton et al.,'' ie., the ratio of the first eigenvalues
C*/C(c,, ), which in this case is the same as the ratio
0*(c,)/0y, is a linear increasing function of the concen-
tration.

For anisotropy of order unity, the eigenvalues are com-
puted numerically and behave similarly. In the frame
work of this model, no abrupt rise of o* was found for
some finite value of the concentration, as is the case in ex-
periments.
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