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High-order direct correlation functions of uniform classical liquids
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Analytic approximations for the third- and higher-order direct correlation functions of uniform
classical liquids are presented. These are derived from a weighted-density approximation for the
one-particle direct correlation function of a nonuniform liquid which requires as input only the
two-particle function of the corresponding uniform liquid. The three-particle result is shown to
have the same accuracy as two recently proposed approximations, but has a much simpler form.
The four- and five-particle results are new, and in principle can be tested by simulation methods.

INTRODUCTION

In the density-functional formalism of nonuniform
classical liquids the n-particle direct correlation func-
tions (DCF's) c "'(r„.. . , r„;[p])are defined as function-
al derivatives of the excess Helmholtz free energy F,„[p]
with respect to the one-particle density p(r):

5"F,„[p]c'"'(r, , . . . , r„;[p])=—P
p r&

. p r„

where P—:I /kit T. These quantities are of direct
relevance to those theories of nonuniform liquids that are
based on expansions of thermodynamic potentials in
hp(r)=p(r) —pi, the departure of the density from the
density pI of a uniform reference liquid. Thus, in the
density-functional theory of freezing due to Ramakrish-
nan and Yussouff —and its later reformulation by Hay-
met and Oxtoby —the reference liquid DCF's co"' ap-
pear as coe%cients in a functional Taylor-series expan-
sion of the crystalline F,„ofthe form

oc'

PF,„[p]=13F,„(pt)—g, Jdr, Jdr„cii" (r». . . , r„;p~)bp(ri) . Qp(r„) .
) n! (2)

In most applications of the theory to date the expansion
has been truncated at second order, succeeding terms in-
volving co ', co ', etc. being ignored entirely. For highly
nonuniform systems —the crystalline phase in studies of
the freezing transition being a prime example —there is
no apparent a priori justification for such a severe trunca-
tion, which is usually made because of a lack of reliable
approximations for the higher-order DCF's. Neverthe-
less, for the hard-sphere liquid the second-order theory
predicts freezing parameters which are generally in
reasonable agreement with computer simulation (the
Lindemann parameter and the latent heat being, howev-
er, notable exceptions). In applications to systeins
characterized by other pair potentials the second-order
theory has proven less adequate. In fact, a recent study
of the freezing of "soft-sphere" liquids, characterized by
pair potentials u(r)-r ", has concluded that the theory
consistently overestimates the stability of the liquid
phase, the disagreement with simulation worsening as the
steepness of the potential n decreases. In applications to
the one-component plasma ' (an assembly of identical
point charges in a neutralizing background) the second-
order theory actually fails to predict a freezing transition
at all. This record of mixed success points to the need for
a careful examination of the truncation approximation on
which the second-order density-functional theory is
founded, and raises the issue of the form and behavior of
the higher-order DCF that reside in the omitted terms.
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The purpose of this work, therefore, is to describe a
simple scheme for approximating the co"' of uniform clas-
sical liquids which yields analytic approximations for the
three-, four-, and five-particle DCF's (and, in principle,
all higher-order functions). These approxiinations may
then prove useful in future assessments of the relative im-
portance of the higher-order contributions to the free en-
ergy expansion of Eq. (2) which are ignored in the
second-order theory. Our scheme may be compared with
two recently proposed approximations ' for the three-
particle DCF that have been used to study the effects of
the neglected third-order terms on the predicted freezing
parameters of hard-sphere' and soft-sphere" liquids. In
the first, Barrat, Hansen, and Pastore (BHP) have sug-
gested an approximation for co

' based on a factorization
ansatz

cubi '(r, r') = t (r)t (r')t( ~r —r'~ ), (3)

with the function t(r) determined by requiring that in
Fourier space cz ' satisfy the exact relation (for n = 3)

(n —1)c(')"'(k, , . . . , k„,, O;po) = c(i" "(ki, . . . , k„ i,po) .
PO

(4)
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They have also determined co ' directly from a molecular
dynamics (MD) simulation of a soft-sphere [U (r) —r ' ]
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liquid near freezing and have found good agreement with
their approximation. In the second, Curtin and Ash-
croft (CA) have pointed out that an approximation for
co ' (and, in principle, all higher-order DCF's), also satis-
fying Eq. (4), is implicit in their weighted-density-
functional theory of nonuniform liquids. ' They showed,
furthermore, that their approximation is in close agree-
ment with both the BHP approximation and the MD
data.

THREE-PARTICLE DIRECT CORRELATION
FUNCTION

We can now proceed to generate approximations for
the higher-order DCF's co"' by taking the required suc-
cessive functional derivatives of Eq. (5) and then proceed-
ing to the uniform liquid limit. Thus, by taking two func-
tional derivatives, we obtain for the three-particle DCF
the approximation' (in Fourier space)

APPROXIMATION SCHEME

c'wDA(r [p]}=co"(P (r» (5)

where co '(p(r)) is the one-particle DCF of an effective
uniform liquid of density p(r), with P(r) defined as a
weighted average of the physical density p(r) according to

p(r)= f dr'p(r')w(~r —r'~;p(r)) . (6)

The self-consistency with respect to p(r) in this definition
is a crucial feature of the WDA, a point emphasized in
Refs. 9 and 12. For completeness, we note that, from Eq.
(1), the quantity co (po) is related to the excess chemical
potential p„of a uniform liquid by

co (po} I p' = ~(p Aid) ~p+In(po~

where p is the total chemical potential, p;d is the chemi-
cal potential of an ideal gas, and k is the thermal de Bro-
glie wavelength.

To ensure that Eq. (5) is exact in the uniform liquid
limit [p(r)~po], the "weight function" w is required to
satisfy the normalization condition

Our approximation scheme is close in spirit' to that of
Ref. 9. In essence, we make a weighted-density approxi-
mation (WDA) for the one-particle DCF c ''(r;[p]) of a
nonuniform liquid and then, as prescribed by Eq. (1), take
functional derivatives with respect to the density to gen-
erate approximations for the higher-order DCF's in the
limit of a uniform liquid. Explicitly, we approximate
c"'(r;[pj) by

co (k k )= [c ~(k}c( ~~(k')+c (k')c '(k)]
Co

( )

co '(k)co( '(k') .
[ o"']'

Compared with the previous approximations (Refs. 8 and
9), the approximation in Eq. (11) is similar in two impor-
tant respects. First, it requires as input only the two-
particle function co ' [since co

' =co '(k =0)]. Second, it
satisfies Eq. (4) exactly for k=0 or k'=0 (though, in con-
trast to the previous approaches, only approximately for
k'= —k). This second feature is a direct and crucial
consequence of the self-consistency built into the
definition of the weighted density p(r) [Eq. (6)]. A
significant practical difference is that, whereas the previ-
ous approaches involve demanding numerical pro-
cedures, the approach presented here leads to an analytic
expression for co ' (and, as shown below, also for higher-
order DCF's) which is trivially evaluated.

We have computed the approximation co ' of Eq. (11)
for the hard-sphere liquid, using the Percus-Yevick ap-
proximation for co

' as input. It is plotted in Fig. 1

versus ka, where a =(3/4irpo)', for the special case of
wave vectors of equal magnitude. Also shown for corn-

I I I I I I

dr'w r —r';po =1 . (8)

A unique specification of m now follows by imposing the
requirement that the relationship between c ' " and c ' ',
which is implicit in Eq. (1), is satisfied exactly in the uni-
form liquid limit; that is,

—lOO
0

6
hrn —,cwDA(r [p]) =co (lr r'I'po) .((r(--(„5p r' (9)

(10}

Equation (9), together with Eqs. (5), (6), and (8), now im-
plies the following simple form for the weight function

co '(r;Po}
w(r;po)=

co (Po)

-200 I I I I I I I I I I I

where the prime denotes a derivative with respect to den-
sity. Equations (5)—(10) constitute our approximation for
c'''(r;[p]). In passing, we note that this approximation
can serve as the basis of an alternative weighted-density-
functional theory of nonuniform liquids.

FICx. 1. Three-particle DCF co ' vs ka for wave vectors all of
equal magnitude. The solid curve is our approximation for hard
spheres; the dashed curve is the CA approximation for hard
spheres; the dotted curve is the BHP approximation for soft
spheres; and the dots are the MD data of BHP for soft spheres.
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parison are (i) the CA approximation for hard spheres,
(ii) the BHP approximation for soft spheres, and (iii) the
MD data, also for soft spheres. The density
poo. =0.871, at which our hard-sphere co ' was comput-
ed, was chosen to enforce agreement with the BHP soft-
sphere approximation at k=O. Using the same criterion,
the CA approximation requires the same density. The
dependence on wave-vector magnitude of our approxi-
mate co ' is clearly in close quantitative agreement with
the BHP and CA approximations, and all three approxi-
mations are together in close agreement with the MD
data, to within statistical uncertainty in the data.

An obvious deficiency of our approximation is the lack
of any dependence of co

' on the angle between the wave
vectors k and k', an absence which can be traced to the
fact that we began with an approximation for c'' (r;[p])
rather than for F,„[p]. The expected angular dependence
can easily be introduced by imposing a simple symmetry
requirement on Eq. (11)of the form

but this symmetry is obtained at a cost, for the symmetric
co '(k, k') now satisfies Eq. (4) exactly only for k =k'=0.
It should be noted that the BHP and CA approximations
naturally contain angular dependence and satisfy Eq. (4)
for k=O, k'=0, or k'= —k, and not only for k =k'=0.
We have compared the angular dependence of the ad hoc
symmetrized form in Eq. (12) with that reported in Ref. 8
and, though it is not in quantitative agreement, the scale
of variation is identical. Since our results pertain to hard
spheres, whereas those of Ref. 8 pertain to soft spheres,
the significance of this discrepancy, and the utility of the
symmetrization approach, is difficult to interpret at this
time. With this proviso, it should be noted that com-
pared with the CA approximation, the angular variation
of our symmetrized approximation is qualitatively the
same, though somewhat smaller in magnitude. '

HIGHER-ORDER DIRECT CORRELATION
FUNCTIONS

co '(k, k') =
—,'[co"(k, k')+co '(k, ~k+k'~ )

+co (k', ~k+k' )], (12)

By taking additional functional derivatives of Eq. (5),
we have also obtained approximations for the four- and
five-particle DCF's. The four-particle result is

co (k k k ):co "w (k)w(k')w (k")+2co'"[w'(k)w (k')w(k")+Pw'(k)w (k')w (k")]
+co ' [2[w'(k)w'(k')w (k" )+Pw'(k)w'(k')w (k")]+[w "(k)w (k')w (k" )+Pw "(k)w (k')w (k")])

(13)

~here, from Fq. (10), w (k) =cz~ (k)/cz'~', and P denotes permutations of k, k', and k". It is straightforward to show
that this approximation for c04~ satisfies Eq. (4) exactly when at least one of k, k', k" is zero. Furthermore, although it

cannot be shown yet that Eq. (4) holds for all orders in our approximation scheme, it is easily verified that it also holds
for n = 5, and there is no reason to suppose that it should fail at higher orders. The evident lack of angular dependence
in Fq. (13) can be remedied, as in the case of co ~, by imposing a symmetry requirement analogous to Eq. (12). Fo«he
special case of wave vectors all of equal magnitude, Eq. (13) reduces to

co4~(k, k, k)=c„"'"w(k)'+6c," "w (k)'w'(k)+3co' 'w(k)[2w'(k) +w "(k)w(k)1 .

The five-particle result, also for the case of wave vectors all of equal magnitude, is

co '(k, k, k, k)=co''"'w(k) +12co""w(k) w'(k)+12co'"w(k) [2w'(k) +w "(k)w(k)]

+4co~"w (k)[w"'(k)w (k)'+9w "(k)co'(k)w (k)+6w'(k)'] .

(14)

(15)

The four- and five-particle results of Eqs. (14) and (15) are
plotted in Fig. 2 versus ka for the hard-sphere liquid (at
the density poo =0.871). Also shown for comparison is
the three-particle result of Eq. (11). The inset shows the
behavior at large k (i.e., ka) 4). There are two observa-
tions worth noting concerning these results. First, with
each increment in the order of the function n, the magni-
tude at k=O increases markedly —by roughly a factor of
5. With the Percus- Yevick form for c 0

' that we have
used, this is an exact result that follows directly from Eq.
(4). Second, the higher the order of the function, the
more rapid is the decrease in the magnitude of co"'(k)
with increasing k. This is illustrated more clearly in Fig.

3 where the normalized functions, from co
' up to co ', are

compared.
As noted previously, the approximations presented

here for the co' can, in principle, be used to study the
rate of convergence of the crystalline free-energy expan-
sion in Eq. (2) for various pair potentials. In practice,
however, the issue can be decided only by explicitly
evaluating higher-order terms in the expansion, taking
into account the effects of the symmetry of the lattice, the
form of p(r) and the combinatorial factor. Of course,
the co"' are also of interest in their own right.

In summary, we have presented here a simple approxi-
mation scheme which generates analytic expressions for
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FIG. 2. Approximate four- and five-particle DCF's vs ka for

wave vectors all of equal magnitude. The three-particle func-
tion is also shown for comparison. Note the difference in scale
compared with Fig. 1. The inset displays the large-k behavior.

the many-particle DCF s of uniform classical liquids, and
which requires as input only the two-particle function.
We have given explicit expressions for the three-, four-,
and five-particle functions and shown that the three-
particle approximation is in good agreement with two re-
cent approximations and MD data. It is hoped that the
simplicity of this scheme will make it of practical value in
future applications of density-functional theory to nonun-
iform systems, and will stimulate further simulation
work, directed especially towards the DCF's of uniform
liquids.
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FIG. 3. Normalized approximate DCF's for wave vectors all
of equa1 magnitude, illustrating the increasingly rapid decrease
with increasing k of the higher-order functions.
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