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Dissipative evolution, initial conditions, and information theory
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An information-theoretic approach is used to give a straightforward procedure that allows one to
determine whether dissipative behavior can be attained for a given Hamiltonian. This technique
stresses the importance of an adequate set of initial conditions in order to obtain dissipative evolu-
tion. It is shown that, although dissipative solutions may be compatible with the set of dynamical
equations, they may not be realized just because it is impossible to construct the adequate set of ini-

tial conditions that would result in dissipative behavior. This is illustrated by reference to the well-

known Bateman generalized problem of two interacting harmonic oscillators. We demonstrate the
impossibility of obtaining dissipative evolution in linear, time-independent Hamiltonian systems
generated with any combination of bilinear products of creation and annihilation operators.

I. INTRODUCTION

The statistical description of temporal evolution has
been extensively studied within the information-theory
(IT) context beginning with the pioneering work of
Jaynes. ' Extensions of concomitant ideas to some
quantum-mechanical problems have been proposed dur-
ing recent years that explicitly exploit the dynamical
relevance of the entropy S. Within such a framework,
the search of dissipative temporal evolution, starting
from a microscopic Hamiltonian remains an open field.
The irreversible dissipative behavior characteristic of
many physical phenomena contrasts with the reversible
intrinsic nature of microscopic physical models. '

Dissipation is, in general, the result of interactions be-
tween the "observed system" and some other (observed
or tacit, i.e., a heat bath) into which energy can (low in an
undetermined, uncontrolled (and for this reason irreversi-
ble) manner. It is generally believed that no damping
occurs at the microscopic level, the observed phenomena
being the result of a "collective" many-body effect, in
which a given particle interacts with a field arising from
the motion of the remaining particles. It is the dissipa-
tion of energy, ceded to this field, which would originate
the observed damping. Classically, the corresponding
many-body situation can be reduced to an effective one-
body problem and one then faces the familiar situation in
which a particle is subjected to the action of a damping
force.

In the quantum case, however, serious difficulties ensue
if one wishes to work along similar lines, and two
diff'erent quantization procedures have been followed: (i)
An explicit time-dependent Hamiltonian is introduced,
with a canonical momentum which is not the usual (ki-
netic) one (ii) A nonlinear Hamiltonian is introduced,
which includes a "friction" potential that depends upon
the expectation values of canonically conjugate variables.
Kanai's treatment has received a considerable amount of
attention, ' but it produces some results that are con-
sidered unphysical. "Among these difficulties, one should

especially single out the fact that the Kanai approach ap-
pears to violate the uncertainty principle. The second
quantization procedure referred to above, i.e., the non-
linear approach, poses a severe problem of interpreta-
tion. "' ' Moreover, solutions can not be superimposed
and, until a careful study of their regions of stability is
carried out, perturbation theory methods cannot be
confidently applied. ' Consequently, although this way
of tackling the problem provides one with rewarding in-
sights, it cannot be denied that it by no means precludes
the necessity of investigating other possibilities, along to-
tally different lines.

This is precisely the aim of the present effort in which
we are going to analyze an information-theoretic treat-
ment of the quantum-mechanical description of dissipa-
tive temporal evolution. A very simple mechanism will
yield some original insight into the problem of quantum
dissipation. To this end a brief resume of basic IT con-
cepts' is given in Sec. II. Our theoretical approach to
dissipative temporal evolutions is developed in Sec. III.
Section IV is devoted to an illustrative example which
generalizes the quantum theory of the damped harmonic
oscillator based on the Bateman dual Hamiltonian, ' '
finding in a completely different and very general theoret-
ical context the same difficulties in obtaining a normal-
ized density matrix previously reported in Ref. 19. Final-
ly, in Sec. V, some conclusions are drawn.

II. BASIC IT CONCEPTS

Within the IT context, the statistical operator (or den-
sity matrix) p is constructed ' ' starting from the
knowledge of the expectation values of, say, M operators
Oz (Oo =I=identity operator),

( O~ /p ) =Tr[p( t )0, ]=o~, j=0, I, . . . ,M .

The subindex "0" refers to the normalization condition
Trp=1. The operator p is expressed, within the IT
framework, by
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M
p=exp —l(,01—g A, 0

j=1
(2.2)

S[p]=—Tr(p lnp)=AOI+ g Aj(0jlp) (2.3)

subject to the constraints Eq. (2.1). The operator p(t)
obeys the equation of motion

iA =[8(t),p(t)] .
at

(2.4)

It is well known that if p is constructed so as to fulfill Eq.
(2.4), then S is a constant of the motion. Consequent-
ly, one should endeavor to find those (relevant) operators
entering Eq. (2.2) so as to satisfy Eq. (2.4), in order to
guarantee that S is a constant of motion. Using Eqs. (2.2)
and (2.4) it is easy to verify that the relevant operators
are those that close a partial Lie algebra under commuta-
tion with the Hamiltonian 8,

[8,0]=i' g 0 G,
j=o

(2.5)

where the G;. are the elements (c numbers) of a X q ma-
trix G (which may depend upon the time if is time
dependent). For our present purposes we shall consider
the case M=q. Equation (2.5) constitutes the central re-
quirement to be fulfilled by the operators entering the
density matrix. Moreover, the closure condition (2.5) on
the 0 leads to the fact that the time-dependent
Schrodinger equation can be replaced by a set of coupled
equations for the A, , 's,

dA, ; =gG;, A, (2.6)

which is easily obtained using Eqs. (2.2), (2.4), and (2.5).
The Lagrange multipliers are related to ( 0„/p ) by'

8ko = —Tr(O, P)= —&0, /P& . (2.7)

Since p is a positive operator, its diagonal and nondiago-
nal elements satisfy

and

p WO

pu p jj —
I pij I

(2.8)

(2.9)

Therefore, the mean values are correlated by equations

and

rC, , =(S& 0, ) )'=
& 0') ——(0 ) ' 0 (2.10)

SC„SC,, =(S(O, &)'(a&0, ) )'

~( —,'( IO;, 0 I+) —(0;)(0 &)
—=K; . (2.11)

in terms of the M + 1 Lagrange multipliers
i =0, 1, . . . ,M, determined so as to fulfill Eq. (2.1). The
density matrix p maximizes the entropy S[p] given (in
units of the Boltzman constant) by

d(0;),
(Oj ),Gj.;, i =1,2, . . . , q

i=o
(2.12)

which provides us with a set of coupled linear differentia
equations that completely determine the time evolution
of the expectation values (0 )„provided one knows the
corresponding initial values Oj. ),

(0, /p), =F& 0, /P&, , (2.13)

where F denotes the transposed of a square matrix F
defined by

=FG .
aF

(2.14)

Therefore the entire dynamics of the problem is embedded
in the Value of the structure factors G&, , as long as we

confine our interest to the time evolution of the set I 0; ].
Using the preceding procedure, we shall now show how
dissipative solutions naturally emerge, in principle, as a
consequence of the structure of the Hamiltonian and its
concomitant algebra, but with the requirement that a
proper set ofinitial conditions is at hand.

III. DISSIPATIVE TEMPORAL EVOLUTIONS,
INITIAL CONDITIONS, AND THE 6 MATRIX

As expressed above, dissipation arises as a consequence
of interactions between a given subsystem and the "rest
of the universe, " often referred to as the "reservoir, '"

whether it is thermal or not. By restriction of our atten-
tion to the subsystem of interest, the usual procedure for
dealing with irrelevant variables is to eliminate them
from the corresponding picture by means of some ade-
quate projection operator. Instead, we will suggest a
redefinition of what we are to understand both by the
"system" and by the "rest of the universe, "assuming that
both are parts of a "super system, "described by a Hamil-
tonian.

It was shown in Ref. 3 that, given a Hamiltonian and
an (initial) set (Oj ) of operators [i.e., Eq. (2.1)] whose
corresponding observables are accessible to experimental
manipulation (the superscript "m" stands for "measur-
able*'), a definite prescription for constructing a suitable
subspace (the "relevant" one) of the appropriate Hilbert
space can be given, based upon the closure procedure of
Eq. (2.5). In other words, the set of measurable operators

The restrictions imposed to the possible initial mean
values by Eqs. (2.10) and (2.11) are generally enhanced by
the existence of Casimir operators of the Lie group,
which is another interrelation between the initial condi-
tions. Thus they would play a crucial role in the dynami-
cal behavior as they can not be arbitrarily chosen. As
shown in Ref. 3, the same Hamiltonian (i.e., the same
dynamical problem) can lead to difFerent physical situa-
tions if a different set of initial conditions is chosen. The
temporal evolution of the expectation values of the opera-
tors [Eq. (2.1)] can be obtained by recourse to Ehrenfest's
theorem. Assuming that 0 does not depend explicitly
upon the time we find
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gives rise to additional operators that can either augment
the size of the initial set or, contrary wise, be regarded as
"nonmeasurable" ones. For example, in the harmonic os-
cillator case we can begin with [x,P,x,P j2m [ as
measurable operators and Eq. (2.5) leads to E =xp+px
as a "nonmeasurable" operator (the identity operator is
always included among the 0 to ensure that the density
matrix is normalized).

Our approach to dissipative temporal evolutions con-
sists of (1) defining our supersystem as described by all
the measurable and nonmeasurable operators, both
defined by Eq. (2.5), and (2) assuming that the latter give
rise to the unknown energy fiow, while the former de-
scribe "our system. " The closure relations decouple the
"super system" from the "real" external universe. Into
this context, the energy and the entropy of the supersys-
tem are time-dependent constants of motion. Instead,
the energy and entropy of "our system" vary with time.
Dissipation is the result of looking at a part of the super-
system, defined as the system under study.

One finds in Ref. 3 the general form of the solution of
Eq. (2.12), which determines the temporal behavior of
the mean values for a given Hamiltonian. The situation
becomes particularly simple when 8 is independent of
time, for which the coefficients 6; of Eq. (2.12) are time
independent. The (0; ), are then the solutions of a sys-
tem of linear differential equations with constant
coefficients. Consequently,

IV. DISSIPATIVE TEMPORAL EVOLUTIONS
IN TWO COUPLED OSCILLATORS MODEL

In this section, we resort to a prescription for the mod-
eling of two interacting systems, in order to apply the
formalism described in Sec. III. We shall apply it to a
generalization of the well-known Bateman Hamiltoni-
an. ' ' Let 8 and 8 be the second-quantization boson
operators for one of them and b, b the corresponding
ones for the second, so that

8, =c,,(a+8+ —,')=e, f', ,

Ab =eb(b+b+ —,
' }—sbf'b,

(4.1a)

(4.1b)

are the unperturbed Hamiltonians. In order to introduce
the interaction we define the quasispin operators

hand, that closes a partial Lie algebra under commuta-
tion with the Hamiltonian 8 (the g;J elements of the ma-
trix G determines the dissipative or conservative behavior
of the temporal evolution of the operator's mean values
[see Eq. (2.12)], and (b) the existence of a coherent set of
initial conditions for all those relevant operators. In or-
der to stress the importance of both conditions, in Sec. IV
we discuss an example which is characterized by real ei-
genvalues of the G matrix, satisfying only condition (a)
for dissipative temporal evolutions, but not condition (b)
on the initial mean values.

r
(O. ), = g exp(R;t) g a J't (3.1) S =b&, (4.2a)

m=0

where k is the number of different roots R; of the corre-
sponding secular equations, the a J' are constants to be
determined by the initial conditions, and y+ 1 is the mul-
tiplicity of the R;. Thus it can be clearly seen that the ei-
genualues of the 6 matrix (R; ) determine the character of
the solution at least in the case of time-independent Ham-
iltonians. So, a necessary condition to obtain dissipative
temporal evolutions is the existence of real eigenvalues of
the G matrix. In this case, using the Lie group's theory,
we may assure that the F matrix, defined via Eq. (2.14),
must be related with a noncompact Lie group. Therefore
this group must have an infinite volume.

One should here stress the importance of the initial
conditions in giving a correct description of the problem
at hand. As mentioned in Sec. II, the algebra constructed
under commutation with the Hamiltonian determines not
only the dynamical aspects of the problem, but also the
possible expectation values of the relevant operators. As
it was said in Sec. II [see Eqs. (2.10) and (2.11)], this re-
striction appears because all the relevant operators,
measurable or not, must satisfy Eq. (2.1}and the normali-
zation condition imposed on the density matrix. Thus we
can not select the mean values of the operators in a com-
pletely independent way without violating the normaliza-
tion condition or the probabilistic character of the densi-
ty matrix.

Therefore we have two special features of our ap-
proach: (a) assume the existence of a set of operators
[O, ,i =1,. . . , q ], relevant to the physical problem at

S+=8 b

f',
b =S++S

S,b =i(S+ —S ),
and cast the total Hamiltonian in the form

8=Ag +Ab + U i f~b +UzS~b

so that the following partial Lie algebra is closed:

[8, f', ]=[8,f'„]=i ( u, S,b uz f',„), —

[8,f',b j= —i [(e, +eb)S,b+2uz(f', + f'b)],

[B,S, ]=i[(e,+e )f', +2u, (f', +f' )j .

(4.2b)

(4.2c)

(4.2d)

(4.3)

(4.4a)

(4.4b)

(4.4c)

From the closure condition Eq. (2.5) we see that the ma-
trix 6 reads ( 00 = 1, 0, = f'„Oz = f'b, Oi = f',b, and
04=S b)

g04=g4U=0~ g34= g43=(ea+~b)~~ ~ (4.5a)

g14 g24 2U 1 ~~& g4i =g4z=2vi/fi, (4.5b)

g13 g23 2 & g31 g32 2U2 /R (4.5c)

while the remaining elements are zero. As it was demon-
strated in Ref. 2—6 the 6 matrix defined by Eq. (2.5) con-
tains the whole dynamics of the system and, in particular,
the different roots of the secular equation corresponding
to the G matrix are the coefficients accompanying the ex-
ponential functions that characterize the appropriate
solutions (we assume 8 to be time independent). When
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these roots are real, dissipation can indeed take place if
some very special initial conditions are selected. The equa-
tions of motion for the relevant operators adopt the ap-
pearance

d&s., ), = —
j (2u, /1ii )( ( T, ),+ ( Tb ), )

+ [(e, +eb )/fi]( T,b ), I .

These can be easily integrated by solving

(4.6d)

d(T". ),
=(u2/A')( T,b ), —(u, /irt)(S, b ), ,dt

d(1b),
=(v2/fi)( T,b ), —(u, /iri)(S, b ), ,

d&f'.b&, =(2u /R)(( T, ), + ( T &, )

+[(..+., )/x](s., ), ,

(4.6a)

(4.6b)

(4.6c)

det(G —kI) =0 .

We obtain that the eigenvalues of the G matrix are

A =[4(u, +v2) E]/f—i

where

E, =Ea +Eh

Therefore the solutions of Eqs. (4.6) are

(4.7)

(4.8)

(4.9)

&&. &, =(&.&o—,, I2(u'+u,')((&.),+(& ),)+E(u, (&., ),+u, &s., ),)

—[exp(At )f(t)+ exp( At )g(A. ) ]/—2 I, (4.10)

& T, &, =(&, ),—,, [2(",+u,')((T. &,+(T, ).)+.(., (&., &,+.,&S., &, )

—[exp(At)f(A)+exp( At )g(A—, )]/2I, (4. 1 1)

2U, s(( T. )0+ ( T, )0)+4U, (u, ( T., )0+v, (S., &0)

exp(At )[(U2AA' —Eu, )f(A)] —exp( —At )[(U2A1ri+ Eu, )g(A)]

2(u, +v2)
(4.12)

(S, ), = 2U s((T, ) +(T„) )+4v (u, (T, ) +u (S, ) )
A, iri

exp(At )[(v2iLiri —Eu, )f (A )]—exp( At )[(U2Aiii+—Eu, )g(k)]

2(u, +u2)
(4.13)

Two quite different regimes ensue according to the value
of the coupling constant. For

(u, +u2) &(E/2) (4.15a)

the time evolution of ( T, )„(Tb )„(T,b )„and (S,b ),
adopt a stationary character (oscillating functions). Of
more interest to us is the alternative case, namely,

with

f(A)=2(u, +v2)(( f', )0+ ( Tb )0)

+(V2AR+ EU1 ) ( Jab &0 (U1AA EU2 ) (Sob &0 ~

(4.14a)

g(A, ) =2(u', +U,')(& t. ),+ & T, &, )

—( v 2 Airi —su, ) ( 1',
b )0+ ( u, Airi+ s v 2 ) (S,b )0 .

(4.14b)

l

ponential functions for the evolution of the mean values
[see Eqs. (4.10)—(4.13)]. As usual (see references) we call
time-decaying solutions "dissipative ones. "The term dis-
sipation should then be regarded within the context of
works like the one of Dekker. Notice that the total en-
ergy of the system is given by (8), a constant. The sub-
systems are represented by (H, ) and (Ab), that do
evolve with time. Our work differs from previous litera-
ture in the fact that, in addition to H, and 8b, we are in-
cluding two other operators in order to close a partial Lie
algebra. We choose A', as representing that portion of
our total system in which an observer is located. The rest
is to be considered as a heath bath. The closure above re-
ferred to guarantees that our total system is, both dynam-
ically ((H ) =const) and thermodynamically (S =const),
a closed system.

For the purpose of avoiding divergences for t ~ ~ we
must impose the condition

(u 1 +u2 ) & (e/2) (4.15b) f(A, )=0 (4.16a)

for which A is real [see Eq. (4.8)] and we obtain real ex- or
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2( v i + v 2 )( ( P, )v+ ( f'b ) o) = —
( u 2 A A'+ su i ) ( f',b )v

+ ( u i iM e v 2 ) & Sab & o

(4.16b)

and this will result in condition (b) of Sec. III.
In order to explicitly obtain Eq. (4.16b) we need to

evaluate the mean values and ask for the significance of
this condition. This is done in Sec. IV A. With this, Eqs.
(4.10)—(4.13) are seen to describe a damping process. The
expectation values of f', and f'b decreases as t grows.
Thus energy is seen to be "dissipated" by an observer
"confined" to any of the corresponding systems. This
dissipative behavior would arise as a consequence of a
proper choice of c„c&,v, , and v2, on one hand, and of
the initial conditions (T, )o, (7b)0, (f',b )o, and (S,b)0
on the other one. No approximations are needed: all is
the result of a straightforward quantum-mechanical ma-
nipulation. The basic ingredients needed in order to ob-

cos(8)—:e/[2(v, +v2)' ] . (4. 17)

Therefore Eq. (4.16b) reads

tain these results are those of Eqs. (4.4), namely, the clo-
sure of a partial Lie algebra under commutation with the
total Hamiltonian and Eq. (4.16b).

Equation (2.2) tells us that a properly normalized den-
sity matrix is used in evaluating expectation values,
representing all possible states of our system. The under-
lying (partial) Lie algebra relates the different expectation
values as described by Eqs. (2.7), (2.10), (2.11), and in this
example via the Casimir operator of the group
[(T, + Tb ) —( T,b +S,b ) ]. The fact that these mean
values are not mutually independent figures becomes cru-
cial, as shown below. It is of great importance for our
present purpose to verify whether Eq. (4.16b) and Eqs.
(2.7), (2.10), (2.11), (2.16c), (4.4), and (4.15b) constitute a
compatible set. According to Eq. (4.15b) we define

(f', )o+( f'b )o=[—(uzsinO —u, cosO)(1', b )o+(v, sinO+v2cosO)(S, b )o]/(u i+v2)' ]

(4.18)

with
(v 2sinO —v, cosO)a=, :—cos8' ~ 1,

(v i +up )

(v, sinO+ v2cosO)

(V, +V2)'

a +P =1.

(4.19a)

(4.19b)

(4.19c)

A. A coherent set of initial conditions

In the following paragraphs we shall demonstrate,
based on very general properties, that Eq. (4.16b) or
(4.18) can not be fulfilled. Thus, this algebra does not
satisfy the requirement (b) of Sec. III in order to obtain
temporal dissipative evolutions. The explicit calculation
of the pertinent values is performed in the "product"
basis,

Thus an additional constraint affects the dynamical prob
lem, and this fact can not be ignored

If v2=0, we obtain a simplified two-body pairing in-
teraction. Such an interaction has been used in the BCS
theory of superconductivity and in considering pairing
correlations in complex nuclei.

This algebra also includes the Bateman Hamiltonian as
a particular case. Bateman's Hamiltonian plays the role
of a paradigm in the present literature. It was presented
in 1931,' and, in the quantal version, has been the sub-
ject of much recent and interesting work. (See, for in-
stance, Refs. 7 and 18—20). It is obtained as a special
case of our general algebra from Eq. (4.3) if

(4.23)

p, ', =(a, , b, p~a, , b ) .

Our expectation values read

(4.24)

(T, )=—,'+ g lp, ", ,
1;j=o

(4.25a)

and we write for the matrix elements of the density
operator the abbreviation

e, = —
eb (E=O), v, =O,

and we can write also the following Hamiltonian:

Q=e, (ct a b tb)+iu(8 b +—ba) .

(4.20)

(4.21)

(Tb)= —+ g jpi.
1;j=0

(4.25b)

The initial condition needed in order to avoid divergences
is

(Tb) = g 2(lj)' Re(pi' i J i),
I;I'=1

(4.25c)

(4.22)

As stated before, this initial condition imposes an addi-
tional restriction not contained explicitly in the dynamics
of the problem.

&Sob ) = g 2(lj)' Im(p(', ', ) .
1;j=1

If we introduce

(4.25d)
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«(pi' ),' )):—Ipi' ),' )Icos(Oi (4.26a)

(4.26b)

Eq. (4.16b) or (4.18) can be recast as

( f', )0+ ( Ti, )0=1+ g (1+j)p(j
I,j=0

= —cosO'( T,i, )0+sinO'(S, b )0

Xcos(O' —Oi, ', , ) . (4.27)

In order to work with a well defined probability space,
p must fulfill

p,
' 0 V j,

~elm~2~ ij im

(4.28a)

(4.28b)

and considering that we are dealing with infinite Hilbert
spaces, all temperatures are positive definite quantities
(p,' J ~p,'j). By taking cos(O' —Oi, J, ) = —1, one
easily finds

) 2 g [(1+1)(j+I )]' pi'1

l;j=0

cosH ( Tab )0+ smO ( S~b ) 0 (4.29)

This means that for the particular case of the generalized
quantal Bateman's Hamiltonian [Eq. (4.3)], even though
the Hamiltonian dynamics allows one to obtain a dissipa-
tive behavior, this can not be attained due to the fact that
initial conditions needed to cancel the divergent com-
ponent cannot be written down. This result is not re-
stricted to the Bateman s Hamiltonian, provided it is ob-
tained as a special case of Eq. (4.3). Instead Eq. (4.3) is
the more general linear, time-independent Hamiltonian
which can be constructed for bilinear products of
creation and annihilation operators. As was said in Sec.
III, dissipative evolutions can be attained only for non-
compact Lie groups. There exists only one group that
can be constructed via bilinears products of creation and
annihilation operators satisfying this property. It is the
Simplectic group Sp2, which has bosonic statistics and
changes the number of particles. This is just the group
to consider in this work and so we can assure that dissi-
pative evolutions can not be obtained with time-
independent lineal Hamiltonians generated via any com-
bination of bilinear products of creation and annihilation
operators.

V. CONCLUSIONS

Following the previously proposed informational-
theoretic approach, a straightforward quantum-
mechanical approach has been outlined that allows one to
determine whether dissipative behavior can be attained
for a given Hamiltonian. The only requirement is that
the unperturbed and interacting terms be of such a nature
that a partial Lie algebra under commutation with the to-
tal Hamiltonian is closed, a fact which allows for the con-
servation of the entropy of the total system. The second
step is to evaluate the eigenvalues of the G matrix. If 6
has real eigenvalues we can obtain a dissipative behavior,
provided that the algebra's structure allows one to write
down a proper set of initial conditions for the relevant
operators obtained from Eq. (2.5). The importance of the
restrictions imposed by the algebra on the mean values
can be clearly seen in the example discussed in Sec. IV.

Neither puzzles nor ambiguities arise in the formalism
of Sec. III, as long as a suitable Lie algebra underlies the
problem at hand, which is by no means an extraordinary
occurrence. For the special case we treat here it can
be concluded that the particular structure of the Lie alge-
bra leads to an incompatible superposition of the domains
of different operators involved in the initial conditions
and, for this reason, it is not possible to obtain the cancel-
lation of the divergent component in Eqs. (4.10)—(4.13).
It is to be emphasized that the only way to cancel this
nonderivable portion of the solution is to obtain an ade-
quate set of initial conditions. In this way the crucial role
of the initial conditions is stressed. It is important to no-
tice that difficulties in finding normalized solutions for
the dual Bateman Hamiltonian were previously report-
ed. ' In this respect, we can say that the non-
normalizability of the eigenfunctions is the manifestation
of a deeper problem, as it is the nondissipative character
of the Hamiltonian, as we demonstrate here from a very
genera1 formalism. This linear, time-independent Hamil-
tonian is the more general one which can be constructed
with bilinear products of creation and annihilation opera-
tors leading to a noncompact Lie algebra. ' If a scheme
is considered in which attention is focused upon a given
subsystem of the total system, then, for that subsystem,
dissipative behaviors are sought by recourse to Bateman's
Hamiltonian.

One may tentatively conclude that quantum dynamics
per se does not seem to preclude the possibility of describ-
ing dissipative behavior. The fact that we cannot derive
it from the equations of motion can be attributed ex-
clusively to the failure in selecting adequate initial condi-
tions. The clue can be guessed from Eq. (2.13) where, on
the one hand, the E matrix determines that the Lie group
has an associated infinite volume, while on the other
hand, the involved initial conditions [Eqs. (4.16)] must be
selected to diminish this volume in order to determine a
dissipative behavior. So, the Lie algebra associated with
the physical problem is crucial to determine the dynami-
cal evolution of the system (conservative or dissipative)
but also the addition of a metric to this algebra (i.e., a
normalized density matrix with positive eigenvalues), in
order to evaluate normalized mean values [see Eq. (2.2)],
implies the appearance of extra conditions that determine
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whether such temporal evolutions can be physically real-
ized or not. It is necessary to stress that this conclusion
is reached because we have insisted upon conserving not
only the total energy but also the total entropy, so that
the total system is both dynamically and thermodynami-
cally closed. This "double closure" distinguishes the
present work from previous ones.

ACKNOWLEDGMENTS

Two of us (J. A. and A. P.) thank the Argentine Na-
tional Research Council (CONICET) for its support.
One of us (A.N.P.) acknowledges support from the
Comision de Investigaciones Cientificas de la Provincia
de Buenos Aires (CIC).

Permanent address: Departamento de Ciencias Basicas,
Universidad Nacional de Lujan, Rutas 5 y 7, Casilla de
Correo No. 221, 6700 Lujan, Buenos Aires, Argentina.

tPermanent address: Departamento de Fisica, Comision Na-
cional de Energy Atomica, Avenida del Libertador 8250,
1429 Capital Federal, Argentina.

&Permanent address: Laboratorio de Fisica Matematica,
Direccion de Investigacion y Desarrollo, Comision Nacional
de Energia Atomica, Avenida del Libertador 8250, 1429 Cap-
ital Federal, Argentina.

&Permanent address: Departamento de Fisica, Universidad Na-
cional de La Plata, Casilla de Correo No. 67, 1900 La Plata,
Buenos Aires, Argentina.

E. T. Jaynes, Phys. Rev. 106, 620 (1957); 108, 171 (1957).
Y. Alhassid and R. D. Levine, J. Chem. Phys. 67, 4321 (1977);

Phys. Rev. A 18, 89 (1978).
D. Otero, A. Plastino, A. Proto, and G. Zannoli, Z. Phys. 316,

323 (1984); Phys. Rev. A 26, 1209 (1982).
4E. Duering, D. Otero, A. Plastino, and A. N. Proto, Phys. Rev.

A 32, 2455 (1985); 32, 3661 (1985).
5D. Otero, A. Plastino, A. N. Proto and S. Mizhari, Phys. Rev.

A 33, 3446 (1986).
J. Aliaga, D. Otero, A. Plastino, and A. N. Proto, Phys. Rev. A

35, 2304 (1987);36, 3427 (1987).
7H. Dekker, Phys. Rep. 80, 1 (1981).
G. Sussmann (unpublished).
R. W. Hasse, J. Math. Phys. 16, 2005 (1975); J. Phys, A 11,

1245 (1978).
' R. M. Lieder and H. Ryde, in Advances in Nuclear Physics,

edited by M. Baranger and E. Vogt (Plenum, New York,
1978), Vol. 10.

'D. M. Greenberger, J. Math. Phys. 20, 762 (1979).
E. Kanai, Frog. Theor. Phys. 3, 440 (1948)~

' M. D. Kostin, J. Chem. Phys. 57, 3589 (1972); J. Stat. Phys.
12, 195 (1975).

' An extensive list of references is available in Ref. 7.
' J. Immele, K. Kan, and J. J. Griffin, Nucl. Phys. A241, 97

(1975).
'6A. Katz, Principles for Statistical Mechanics (Freeman, San

Francisco, 1967); A. Hobson, Concepts in Statistical Mechan-
ics (Gordon and Breach, New York, 1971);W. T. Grandy, Jr.,
Phys. Rep. 62, 175 (1980); O. Penrose, Rep. Prog. Phys. 42,
1937 (1979).

H. Bateman, Phys. Rev. 38, 815 (1931).
H. Feshbach and Y. Tikochinsky, Trans. N. Y. Acad. Sci. 38,
44 (1977).

' G. Ghosh and R. Hasse, Phys. Rev. A 24, 1621 (1981);M. C.
Nernes and A. F. R. de Toledo Pisa, ibid. 27, 1199 (1983).
A. P. Balachandran and C. G. Trahern, Lectures on Group
Theory for Physi cists (Bibliopolis, Napoli, 1984).

2'H. Lipkin, Lie Groups for Pedestrians (North-Holland, Am-
sterdam, 1965).
K. Kan and J. J. Griffin, Phys. Lett. B 50, 241 (1979).
S. M. Peltier and A. Plastino, Nucl. Phys. A 430, 397 (1984).

24J. Nur|ez, A. Plastino, R. Rossignoli, and C. Cambiaggio,
Nucl. Phys. A ~~~, 35 (1985).

25S. M. Abecasis, A. Faessler, and A. Plastino, Z. Phys. 218, 394
(1969).


