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Hartree solutions for the self- Yukawian boson sphere
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The ground state of an N-boson assembly interacting through two-body attractive Yukawa forces
is analyzed in the Hartree approximation. The solution, which is not universal, can be adequately
characterized by a unique parameter p, proportional to pN ', where p

' is the range of the force.
It is found that for p, larger than a critical value, there is no bound solution for the system. Our
solutions are shown to rigorously fulfill the virial theorem.

I. INTRODUCTION

An often useful approximation to a self-interacting as-
sembly of N identical particles is the shell model. There
it is assumed that the structure is dictated by the (un-
correlated) single-particle stationary states of the average
potential created by the assembly. Thus, if one is dealing
with bosons, the ground state will correspond to a con-
densate configuration in which all the particles of the as-
sembly are occupying the lowest-lying orbital of the aver-
age potential. The specific structure of this minimum en-
ergy orbital will be obtained by a Hartree-like method.
Some time ago Ruffini and Bonazzola' described the
structure of the self-gravitating boson sphere in this
fashion. In this paper we extend their analysis to the
self-Yukawian case, i.e., to a bound assembly of identical
bosons linked together by two-body Yukawa potentials.

Regarding this problem, the Hartree method can be
stated either as a one-body self-consistent Schrodinger
equation in which the potential energy is a function of
the wave-function itself (as presented in Ref. 1), or, in the
way we choose here, as a variational problem in the parti-
cle density n; obviously both methods must be completely
equivalent.

The motivation for our analysis is twofold: (i) Qn one
hand it is a purely formal one of getting a better under-
standing of the structure of this kind of bound states
(note that this is one of the few nontrivial quantum
many-body systems that admits an easy closed solution),
and (ii) although real assemblies formed by fundamental
bosons interacting through short-range forces are not
known (so far), sometimes in fermion assemblies it is
quite useful to define effective bosonic degrees of freedom;
a good example of this is perhaps the old a-particle mod-
el for nuclear structure. In this sense our analysis may be
useful from the phenomenological point of view too.

Advancing part of our results let us say that the nice
universality of the gravitational case is lost, that any
problem of this type can be adequately parametrized by a
unique parameter p proportional to pN ' where p

' is
the range of the force, and that there is a borderline case
so that beyond a limit value p, there is no bound state in

the assembly.
The paper is organized as follows: In Sec. II we

reanalyze the pure gravitational case from the variational
perspective, the general notation is introduced, and a
minor mistake in Ref. 1 is corrected; in Sec. III the Yu-
kawa case is analyzed; and in Sec. IV our main con-
clusions are summarized. For astrophysical motivation
in the self-gravitating sphere the rotational velocity curve
is obtained.

II. SELF-GRAVITATING BOSON SPHERE

g2 N

g V,', (lb)

Ã
V= —Gm (lc)

We denote by
~ g & and E the ground state of the system

and its energy, respectively,

Supposing that the particles are bosons, in the Hartree
approximation we have

I g &
= If & If & If &

n(r)=N[f *(r)f(r)],
(3a)

(3b)

where n (r) is the particle density at the point r, and f (r)
the minimum energy (n =I, /=0) single-particle wave
function. As f (r) corresponds to a bound state, it is real,
i.e., f is simply &n /N.

Instead of expressing f as the minimum energy solu-
tion of a self-consistent Schrodinger equation,

g2
V +U f=ef,

2m
(4a)

Let us assume N identical particles with mass m in-
teracting through gravitational forces; the Hamiltonian
of the system is

H=T+ V,
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U(r, ) =mP(r, ),
f'(r, )

P(r, )= —GNm f dr&,
fr, —r, /

(4b)

(4c)

we prefer to write it as a variational problem in the parti-
cle density n I.n (4c) N —1 has been taken as N, which is
valid for large N. With self-explanatory notation and as-
suming spherical symmetry, we have

~ ~ ~ ~ 4
n —2n n+

x
10n n

~ ~ ~ ~

6n 3n n

xn n
~ ~

2n 7n

n n

~ ~

n 3n
2 ~ 3n

where a dot means differentiation with respect to x. It is
convenient to define a dimensionless multiplier A, as

E=T+V,
$2

dr n 1/2(r)P 2n 1/2(r)
2m

(sa)

Then Eq. (8) adopts the form

n'

2m r

& 2 II
n n

4n 2
(5b)

with

~ ~

n n n+ — —P(x),
xn 2n 4n

(13a)

V= —drn r r
2

Gm ( d
l.d, n (r)n (r')

(5c)

so that E[n] must be minimized as a function of n (r)
with the constraint

P(x) = — f dx'1,n (x')
4m )x —x'/

(13b)

For small x, n (x)=g a„x", so that the solution of (11)
by the Runge-Kutta method requires prior knowledge of
ao, a, , a2, and ai, and the fulfillment of Eq. (6) which in
dimensionless units reads

drn r =N. (6) 1=fx n(x)dx . (14)

Thus we face a variational problem

6(E [n]+ A. fdr n )=0, (7)

k being the Lagrange multiplier. Putting (5) into (7) we
obtain

Note that the solution we seek for fulfilling (11) and
(14) is universal (it does not depend on N). Let us see
now how among the four coefficients ao, a, , a2, a3 there
are only two that are really independent. From Eq. (11),
for small x, we obtain

I 2 II

+
2m nr 4n 2n

(8) Q3=
a&

ap

5 1
Q2

6 4 ao
a& (15)

which is equivalent to the self-consistent Schrodinger
equation (A, = —E) written in Eq. (4). In order to circum-
vent the integro-diff'erential nature of Eq. (8) let us apply
the Laplacian operator V to it, to obtain the following
fourth-order differential equation:

a] =0,
Q2

X, = + f x'n(x')dx',
0ao

and analogously from Eq. (13a)

(16a)

(16b)

16am Gnn""=

2n"
n

4 „, 10n'n"——n'"+-
r nr

7n "n' ' 3n'4
2

+
n2 n

6n' 3n"'n'
+

n r n

(9)

¹

4~b
(loa)

This is reminescent, for example, of the situation one
finds when dealing with the Thomas-Fermi (TF) method
for a fermion assembly interacting through exponential
forces.

Defining dimensionless variables x and n as

so we conclude that

a3=0 . (17)

The fact that a, =0 is natural because n must have a
maximum at the origin; obviously ao) 0. Hence our
problem is reduced to finding ap and a2 such that the
n(x) obtained from (11) satisfy (14); additionally, n(x)
must not have any node (ls state).

It is interesting to emphasize that the function
n(x)=4/x satisfies (11) and does not have any node, but
it does not satisfy (14). Thus this dependence can be used
only in the asymptotic regime x ~ ~.

The numerical solution which satisfies all the above-
mentioned requirements is characterized by

r =bx,

b=
2GMm 2

where M —=Nm is the total mass, we obtain

(10b)

(10c)

Qp=6. 912X 10

a2 = —1.7595 X 10

whilst the value of the Lagrange multiplier is

(18)
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k =0.081 39 . (19)

r7(x) is plotted in Fig. 1.
Although these systems have an infinite size, it is useful

to define a radius R which covers 99'7o of the assembly.
In dimensionless units we obtain R /b = 19.8, i.e.,

0.25

0.2

g2
R =9.9

GMm
(20)

O. I

The results for the two components of the energy, and
their sum, are

T=0.027 13 =0.05426G M m 4GM
b

V= —0.05426 = —0. 10852G M m A
GM 2 3 2 —2

b

GM0 Q27 1 3 —
Q Q54 26G 2M3 2f 2

b

(2 la)

(21b)

(21c)

which proves that the virial theorem (2T = —V) is exact-
ly fulfilled. In Ref. 1 it is erroneously assumed that
E = —XA, , for the true total energy; in fact, it is three
times smaller.

It is interesting to recall the analogous expressions for
the energy terms of the self-gravitating fermion sphere.
In the leading semiclassical development, i.e., in TF we
have

0.05

lO I5 20
X

FIG. 2. Universal dirnensionless rotational velocity for the
self-gravitating boson sphere.

u (r) = v'GM /b u (x ) (24a)

with
1 /2

halos ' to explain the observational constancy of the ro-
tational velocities in spiral galaxies, far beyond the cen-
tral luminous discs. We have not found any reference de-
voted to studying this curve when the presumed dark
matter is a condensate boson sphere, for that reason we
present it here too. It is convenient to define a dimen-
sionless velocity u(x) defined as

T=0.1499G M m"

V= —0 3003G M

E = —0. 1499G M

and the TF length parameter bT„ is

bTF 0 5577 8/3 1/3Gm M

(22a)

(22b)

(22c)

u(x) = —f n(x')x dx'
x 0

(24b)

III. SELF-YUKAWIAN BOSON SPHERE

This is obtained simply by equating the gravitational
attractive force experienced by a test particle at the posi-
tion x, with the centripetal force when moving along a
circle of radius x with velocity x. The resulting v is plot-
ted in Fig. 2.

i.e., the boson sphere is more compact and more bound
than the fermion sphere, and while in the latter there is a
definite radius, the density of the bosons decays slowly up
to infinity.

In astrophysical literature it is easy to find the rota-
tional velocity curve created by different statistical distri-
butions. This is motivated by the growing concern of
that community about the likely existence of dark-matter

n(x}
xlO

Let us now analyze an assembly of identical bosons
linked by short-range Yukawa forces. In the new Hamil-
tonian (lc) must be replaced by

—@fr, —r.
/

f'= —g'
/r, —r, [

(25)

Following parallel arguments, and identical notation,
to Sec. II we find that in the Hartree approximation the
total energy can be expressed as

E =T+ V=—A2 drn'~ (r)V n' (r)
2m

g , n (r)n (r')e
dr dr'

2 /r —r'/

= fdr— n'

2m l'

I 2 lr

+
4n 2

lo l5
I I I l

20 + —f dr n (r)P(r),
2

(26)

FIG. 1. Universal dimensionless particle density for the self-
gravitating boson sphere.

where we have defined the average potential P(r). The
variational equation (7) leads, in this case, to
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fi

2m

n n n2+nr 4n 2n
(27)

and applying the Laplacian to it, we obtain the following
fourth-order differential equation:

16' mn 4 „, 10n'n" 6n' 3n"'n'
$2 r nr nr n

7n "n'' 3n'4
2

+
n

2n"
n n

t

2 I
n 2n

2n r
4m'

n (28)

If we pass now to the dimensionless variables defined as

4~b n

X (29a)
and

presence of p, implies that each X calls for a specific
solution. Furthermore, the appearance of A, forces us to
work consistently in the sense that the solution n(x) ob-
tained from a k input, must reproduce, when inserted in
(31), the same X as output. For small x, n(x)=g a„x"
and to implement the Runge-Kutta method in (30) we
need to know ao, a, , a2, and a3 so that two condition
must be fulfilled: (14) and the above-mentioned self-
consistency in A, . These two conditions, plus the appear-
ance of models (ls state), fixes the physical solution for
any p. The reason for this is that two of the a„are
dependent on the other two. This can be seen by analyz-
ing the behavior of (30) and (31) for small x; they imply

a&
'

5 1 a& 1
a = —a —— a+ ap

ao 6 4 a(} 12
(33)

r =bx, (29b) ai =0, (34a)

~ ~ ~ ~ 4 ~ ~ ~

n =2n ——n+
X

10n n 6n

xn

7—2 —
3

—4

n 2 ~ 3n

$2b=
2mg X

2
g X—

b

p=pb,
Eqs. (28) and (27) read as follows:

~ ~ ~ ~

3n n 2n

n n

(29c)

(29d)

(29e)

a2 + x'n(x')e " dx',
0ao

(34b)

so that a3 =0. Thus, again we have ao )0, by definition,
and a

&

=0 and a2 &0, because n is a maximum at the ori-
gin. In Table I, parametrized as a function of p, one can
observe the value of ao and a2, the resulting Lagrange
multiplier X, the dimensionless radius R /b where 99%%uo of
the community is covered, and the result for the total ki-
netic energy, total potential energy, and their sum
E = T+ V. To express these quantities it is convenient to
define an energy unit as follows:

—2

2n

—2

+ —P(x),
4 2n

where now p(x ) is defined as

(30)

(31)

X
b

X
b

XX g
b

(35a)

(35b)

(35c)

~( )
1 yd, n (x')e

4~ fx —x'/
(32)

Note that Eq. (30) is no longer universal: the explicit

To check the fulfillment (or not) of the virial theorem
by the Hartree solutions just obtained we have to recall
that, for bound states linked by Yukawa forces, this
theorem states the following:

TABLE I. Some properties of the self-Yukawian boson sphere for several values of the reduced mass
parameter p. ao and a2 are the two independent initial coefficient of the particle density. k is the di-
mensionless Lagrange multiplier introduced to maintain the total number of particles constant.
X =8/6 is the distance from the center that covers 99% of the assembly. Y is defined in Eq. (37), and
T, V, and E are the kinetic, potential, and total reduced energies, respectively.

0.000
0.001
0.010
0.050
0.080
0.090
0.095

10 ao

6.9120
6.9110
6.8150
5.0550
2.8780
2.0380
1.5800

10 az

—1.7595
—1.7591
—1.7198
—1.0601
—0.4251
—0.2428
—0.1606

0.08139
0.08039
0.07168
0.03850
0.01869
0.01276
0.00978

X

19.8
20.0
20.4
22.8
28.0
33.0
36.0

0.027 13
0.027 13
0.026 86
0.021 74
0.014 62
0.011 47
0.009 60

—0.054 26
—0.053 76
—0.049 27
—0.030 12
—0.016 65
—0.012 12
—0.009 69

0.000 00
0.000 49
0.004 44
0.013 35
0.012 59
0.010 83
0.009 50

—0.027 13
—0.026 63
—0.022 41
—0.008 38
—0.002 03
—0.000 64
—0.000 09
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being

(36a) IV. CONCLUSIONS

g2 e I J (36b)

Y can also be expressed in the above units
2 2Ng
b

In Table I one can see that the virial theorem is scrupu-
lously verified in all the range of existence of bound
states.

Our variational reanalysis of the self-gravitational bo-
son sphere has led again to the basic original results of
Ruffini and Bonazzola. ' Our discrepancy, however (a
factor of 3), in the total energy of the assembly arises be-
cause they compute it simply as Nc. where c. is the energy
eigenvalue of the Schrodinger problem for N particles.
Physically this is incorrect because in the process of
building up the assembly of N particles the total binding
energy stored can be expressed as the following sum:

n=1

GM„m

b„
2G m A. 2 2G m X N(N+1)(2N+1)

6
(38)

( —
A, „denotes the Schrodinger eigenvalue for a problem

with n particles), and in the limit of large N

NA,E=—
3

(39)

which is our result. This result correctly verifies the viri-
al theorem.

With respect to the velocity curve plotted in Fig. 2, we

wish to emphasize that as expected it does not fall as
steeply as in fermion case (because n decays slowly up to
infinity). In this sense it would be worth analyzing the
case of a boson halo around a central luminous mass to
study if it can be phenomenologically acceptable when

compared with astrophysical observations.
With respect to the self-Yukawian boson sphere our

main results are as follows.

(i) The universality ruling when @=0 (gravitational
case) is lost.

(ii) The diff'erent solutions are characterized by the
unique dimensionless parameter p =2 'pA m 'g N
with existing bound solutions in the narrow range of

0~p, +0.095 . (40)

(iii) Throughout this range the virial theorem is
verified.

This work was supported by the DGICYT (PS 87-
0058, PB 87-0007) and the DGA.

Finally, let us say that unlike the TF description of the
equivalent fermion case, the boson assembly extends
smoothly to infinity.
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