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and the collapse transition
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We study by the scanning simulation method trails on a square lattice at finite temperatures. This
method constitutes a very efficient tool since it enables one to obtain results at many temperatures
from a single sample generated at any given temperature. The tricritical temperature at which the
collapse transition occurs is —c/k~ T, =1.086+0.002. The tricritical exponents of the trail shape
and its free energy are, respectively, v, =0.569+0.008 and y, =1.133+0.024 (95% confidence lim-

its). They are equal within the error bars to the exact values of self-attracting self-avoiding walks
(SAW's). However, the crossover exponent P, =0.807+0.005 is significantly larger than the exact
value 0.423 of SAW's. We also carry out a detailed scaling analysis near T, and demonstrate that
the various properties scale as predicted by theory. At sufficiently low temperatures (T~ T, ) the
persistence length appears to be —1.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as paper
I), we have described the scanning simulation method
as applied to trails and have studied trails on a square lat-
tice at temperature T = ~ (i.e., trails without self-
attractions). We have found that the shape exponent v
and the free energy exponent y are equal, within relative-
ly small statistical errors, to the corresponding exact
values of self-avoiding walks (SAW's), which suggests
that the two models belong to the same universality class.
In the present paper (paper II), we apply the same
method to trails on a square lattice at finite temperatures,
where the attraction E (s= —

~E ) associated with each
chain self-intersection, becomes effective. At high tem-
peratures, one would expect the trail shape to be swollen,
i.e., v=0. 75 like at T= ~. However, below a certain
temperature T = T„ the chain is expected to collapse,
which means that v decreases sharply to v=1/D where
D =2 is the dimensionality. A similar picture is also ex-
pected in 3D and thus self-attracting trails, like self-
attracting SAW's, may serve as a model for a dilute poly-
mer system under various solvent conditions. The high-
temperature regime mimics a polymer in a good solvent,
whereas the transition region corresponds to the Flory 0
region ' at which a polymer in a poor solvent exhibits a
Gaussian behavior. For self-attracting SAW's T, has
been identified by de Gennes as a tricritical point'
for which the upper critical dimension is 3 and therefore
in 2D, a non-Gaussian behavior is expected with nonclas-
sical values of the various exponents. The collapsed tran-
sition has been studied extensively in 2D and 3D by vari-
ous techniques recently, Duplantier and Saleur
have obtained the tricritical exponents analytically for
the hexagonal lattice by a derivation which is conjectured
to be exact (however, see also Refs. 26—30). The model of
self-attracting trails was first introduced by Massih and
Moore ' who solved it analytically on a special Bethe lat-

tice and studied the properties of the collapse transition.
Shapir and Oono have later analyzed this transition by
renormalization group techniques and have suggested to
identify it as a tricritical point; however, they could not
determine the universality class of trails at tricriticality.
In order to elucidate this situation, Shapir and co-
workers have recently carried out an extensive study of
trails at tricriticality in 2D and 3D by exact enumeration;
unfortunately, their chains of N ~ 21 steps appear to be
too short to provide unequivocal conclusions.
Hence we have decided to investigate much longer trails
(N =300) on a square lattice using the scanning method.
We demonstrate that the method enables one to search
very eSciently a large range of temperatures and, in par-
ticular, to locate T, and to estimate the various exponents
with high accuracy. We carry out a detailed scaling
analysis of various properties close to T, and, as in paper
I, also study the persistence length. We rely heavily on
the theory of the scanning method developed in paper I.

II. RESULTS AND DISCUSSION

A. Efticiency of the scanning method

We generate on the square lattice trails of N=300
steps employing a scanning parameter b =4; as in paper
I, results are also calculated for the 30 partial chains of
lengths N =10, 20, . . . , and 300. At finite temperatures,
we use the general scanning procedure which takes into
account the interaction energy c associated with each
chain intersection (see Secs. II—V of paper I). In order to
investigate the behavior of trails over a large range of
temperatures and, in particular, to locate the tricritical
temperature T„many simulations are required, which
would make the study very time consuming. Fortunate-
ly, with the scanning method, such a search becomes a
relatively simple task since one can obtain results at
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many different temperatures from a single sample simu-
lated at any given temperature. This can be seen, for ex-
ample, from the importance sampling equation of the free
energy F,s [Eq. (26) of paper I, abbreviated as (I.26), e.g.],
which will be written again in a more general form,

F,s(T)= k~—T ln Wo
' g exp

The right-hand side of this equation leads to the correct
free energy at temperature T from a sample generated
with an arbitrary probability distribution P;, which is not
necessarily defined by the scanning method. Obviously, if
P, =P;(b, T, ), where P;(b, T, ) is obtained by a scanning
construction at T„which differs significantly from T,
P, (b, T& ) might be strongly biased (with respect to the ex-
act Boltzmann probability at T, P; [Eq. (I.3)]}and the
efficiency of the importance sampling procedure will be-
come low or, equivalently, the acceptance rate [see Eq.
(I.30)] will be small. Therefore one should study temper-
atures T, which are close enough to T„ the temperature
at which the sample is produced. In this work, we have
generated several samples at different temperatures T,
and have studied in most cases from each such sample
n T

= 10 different temperatures in the vicinity of T, . For
example, in the hot region, for K, = —c/k~ T, =0.25, the
temperatures studied are K =K;„=0,0.05,0. 1, . . . ,
and IC,„=0.5. For K, =1.080 (close to the reciprocal

tricritical temperature), we have studied the temperatures
E =I(;„=1.070, 1.072, . . . , and K,„=1.088 and, in
the cold region, for X, = 1.3, K;„=1.175, and
K,„=1.4. However, the results for the acceptance rate
RI [Eq. (I.30)] for K;„and K,„(see Table I) are very
close to those obtained for K, which means that a much
larger range of temperatures can be studied from each
single sample. In fact, only three samples are required to
cover the range of temperatures of interest. Since most of
the computer time is spent on calculating the transition
probabilities at each step of the scanning construction,
we do not see any limitation in increasing nT to 50 or
even more. The only problem which might arise in some
cases is the large disk space required for the 30 X n T
different sets of results for the nT temperatures and the
30 partial trails. Therefore, as far as the search over the
temperatures is concerned, the scanning procedure might
be -50 times more efficient than any simulation tech-
nique which does not provide the probability of construc-
tion (such as the Metropolis Monte Carlo method'
and for which therefore a different simulation has to be
carried out at each temperature of interest. [It should be
pointed out that Eisenrigler, Kremer, and Binder were
the first to study many temperatures from a single sample
by employing a biased technique which is different from
the scanning method (see also Ref. 4)]. Table I reveals
that, as expected, for each temperature K& the accep-
tance rate RI [(Eq. (I.30)], decreases with increasing N;
also, for N = 180, RI increases (even though only slightly)

TABLE I. Results at various reciprocal temperatures K = —c/k~ T and chain length N for the ac-
ceptance rate R~ [Eq. (I.30)], the approximate free energy F(b) [Eq. (I.22)], the free energy estimated by
importance sampling F,s [Eq. (I.26)], the approximate radius of gyration G '(b) [Eqs. (I.9), (I.10), and
(I.21)], and that estimated by importance sampling G,s [Eq. (I.25)]. K, is the temperature at which the
simulation has been carried out; from this sample, results have been obtained for ten dift'erent ternpera-
tures in the range [K;„,K,„].The statistical error of RI is not larger than +0.01, that of F(b) and

F&s is smaller than +0.00008 and for G (b) and G,s, the error is not larger than +0.005 (all errors one
standard deviation).

Rq(K, ) ~I(Kmin )
—F(b)/Nkq T —F,s/Nkq T G '(b)/N G )$/N

Kl =0.03, K;„=0, K,„=0.05

90
180

0.35
0.12

0.35
0.11

0.36
0.12

1.008 18
0.989 99

1.021 69
1.013 13

0.566
0.627

0.825
1.14

K 1 0 25& Kmln 0 05& Kmax 0 50

90
180

0.35
0.11

0.27
0.07

0.40
0.17

1.017 55
0.999 92

1.030 79
1.022 23

0.525
0.577

0.769
1.05

Kmin =0 95~ Kmax = 1'04

90
180

0.35
0.15

0.30
0.11

0.38
0.19

1.082 52
1.074 59

1.092 77
1.086 55

0.327
0.334

0.432
0.518

K1=1.080, K;„=1.070, K,„=1.088

90
180

0.34
0.17

0.33
0.16

0.35
0.17

1.094 70
1.089 23

1.104 78
1.10000

0.303
0.308

0.379
0.421

K[=1.3, K;„=1.175, K „=1.4
90

180
0.27
0.09

0.21
0.07

0.21
0.05

1 ~ 13425
1.13643

1.147 24
1.151 71

0.248
0.248

0.243
0.189



4188 H. MEIROVITCH AND H. A. LIM 39

60
120
180
240
300

0.45
0.27
0.17
0.11
0.07

1924
743
468
303
193

from 0.11 to 0.17 in going from K, =0.03 to 1.080. This
is probably because close to E„ the attractive and the
repulsive interactions cancel each other to a large extent
and the model can be handled more efficiently by the
scanning method. It is also worth pointing out that in
the hot region (i.e., at K ~ 1.080), Rl(K,„))RI(Ki))Rz(K;„). This stems from the fact that the scanning
construction at E, gives too high probability to the com-
pact configurations, which, however, constitute the typi-
cal equilibrium ones at lower temperatures (K )K, );
therefore P;(K, , b) is a better approximation for the
Boltzmann probability P; (K,„) than for P, (K, ) [see
Eq. (I.3)]. Indeed, the approximate results of the radius
of gyration G (b) [Eq. (I.24)] in the hot region (K (K, )

in Table I are always smaller than the importance sam-
pling values G is [Eq. (I.25)], which are considered to be
exact. Also, the ratio G,s/G (b) decreases in going
from K =0.03 to 1.080 from 1.45 to 1.25 and from 1.82
to 1.37 for N =90 and 180, respectively. A similar be-

TABLE II. Results for the acceptance rate R, and the
effective sample size n„„~„for various chain lengths N, at the
tricritical temperature (E,= 1.086).

n „„p,//'1000

havior is found for the ratio of the free energies
Fis/F(b). These last results demonstrate again that close
to T„ the scanning method leads to less biased probabili-
ties than at high temperatures. At low temperatures
(K )K, ), the scanning procedure gives too large (small)
preference to the open (compact) configurations, which
again is demonstrated in Table I by the inequality
G (b)) G,s.

In this work, we are especially interested in locating
the tricritical temperature and in calculating the tricriti-
cal exponents; therefore a relatively large sample has
been generated at E =1.080 and results have been ob-
tained for the 13 values of K (1.070, 1.072, . . . , and
1.094). We have generated a sample of 8'o =4275 000 at-
tempted trails [see Eq. (I.16)], which required altogether
66 h of the CYBER205 and ETA' supercomputers. For
this problem, the ETA' has been found to be more
efficient than the CYBER205 by —18% (we used the sca-
lar optimizers in both machines). This code runs 2.5
times slower on the VAX 8700 computer. At low tem-
peratures, where the compact configurations become the
typical equilibrium ones, the probability that a trail will
come to a dead end during construction (i.e., it will visit
the origin three times) increases and therefore the attri-
tion factor A (i.e., the fraction of trails succeeded [Eq.
(I.16)]) decreases as compared to T = oc. However, even
for N=300 at E =1.086, 3 is relatively large, 3 &0.96.
In Table II we provide the acceptance rates and the sam-
ple sizes for several chain lengths X at K, =1.086 (which
is found to be the reciprocal tricritical temperature, see

TABLE III. Results for the autocorrelation functions p [Eq. (I.33)] of the approximate probability
InP;(b =4) [Eq. (I.15)], the energy E; [Eq. (I.1)], the square end-to-end distance R;2, and the square ra-
dius of gyration G; at different temperatures. K and RI are defined in the captions of Tables I and II.
The statistical error is smaller than +0.01 (one standard deviation).

p] I (~)(t~ P 2(&)

0.42
0.17
0.07
0.03

E =0.05, N =120, RI =O. 17
0.19 0.05
0.09 0.01
0.04
0.02

0.11
0.05
0.02

0.25
0.11
0.05
0.01

E =0.95, N =120, R1=0.21
0.17 0.04
0.08 0.01
0.04
0.01

0.07
0.03
0.02

0.11
0.05
0.02

E =1.086,
0.06
0.03
0.01

0.01 0.01

0.02
K =1.3, N =120, Ri =0.19
0.01 0.0 0.0

0.08
0.04
0.02

E =1.55,
0.17
0.08
0.04

N =100, RI =0.14
0.07
0.03
0.02

0.12
0.06
0.03
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Sec. II B). It should be noticed that because of the larger
acceptance rate at this temperature than at T = ~, the
sizes of the accepted samples n„„, are significantly
larger here than in Table II of paper I, even though the
number of attempted trails 8'o is larger in paper I than
here. Using the results for RI in Table II we have ob-
tained by a least-squares procedure the values of the ac-
ceptance constant k and the prefactor D [see Eq. (I.30)] at
K, =1.086,

A, -0.0077, D -0.696 .

Since A &0.96, the amount of computation required for
generating an ¹tep trail grows approximately linearly
with N (see also discussion in Sec. VI A of paper I). How-
ever, the number of accepted trails decreases exponential-
ly with increasing N with the above acceptance constant.
It should be noticed that A.(K, ) (A,(K =0)-0.013 and

D(K, )(D(K =0)-1.08. This means that the simula-

tion is more e%cient at the tricritical point than at T = ~
(K =0). Similar calculations based on the values of Rl
for different temperatures K

&
in Table I show that A, de-

creases gradually as K, increases from K[=0 to K, .
However, as K, is further increased to K, = 1.3 (cold re-

gion), A. increases again to 0.012, which means that the
simulation becomes less efBcient.

The autocorrelation functions p [Eq. (I.33)] of lnP;(b),
the energy E;, the square end-to-end distance R;, and the
square radius of gyration 6; for several temperatures are
shown in Table III. The table reveals that R, is always
uncorrelated, 6, is slightly correlated at high and low
temperatures [p 2( t = 1)-0.1] and becomes uncorrelat-6
ed in the tricritical region. One would expect the func-
tion F, /k~ T =E, /k. ~ T+lnP, (b), and each of its in-

gredients, E; and lnP;(b), to be correlated, since they
define the transition probabilities A, - of the Schmidt pro-
cedure [Eq. (I.29)]. Indeed, the table shows that at high
temperature, they all are correlated where for t =1 p~ p[t, ]

is significantly larger than pz due to the fact that 1nP;(b)
is much larger than E,. /k&T. In the tricritical region
F;/k~T is still correlated (i.e., F is close to or smaller
than F, for a trail j which is accepted after trail i); how-

ever, E, /k. ~T and lnP, become comparable and therefore
the values of E; and E might differ significantly from
each other due to a compensation of the corresponding
values of inP, (b) and lnP (b); hence the autocorrelations
of both E; and lnP, (b) vanish. At very low temperatures,
E; dominates InP, (b) and its autocorrelations become
significant and larger than those of lnP; (in contrast to
the picture found at high temperatures). This means that
for a wide range of temperatures around T„n„„,can be
considered as the effective sample size for all the quanti-
ties of interest (see discussion in Sec. VI A of paper I).

B. Tricritical temperature

The tricritical temperature T, can conveniently be lo-
cated from the results of the radius of gyration 6 or the
end-to-end distance R close to T, . One may adopt for
trails the generalized scaling behavior assumed for
SAW's at tricriticality

G~=(G )' =N 'f+(N 'r), (2)

p=p+=(v —v, )/P„T ) T,

f+(x)-x" @=0, T = T,

p, =p =(—,
' — v)/P„T (T,

(3)

which means that long enough trails at T & T, will al-

ways be swollen, i.e., the shape will be characterized by
v=0. 75 while at T & T, they will collapse, i.e., v= —,'.
However, short trails at T & T, wiH expand with v & 0.75
which is expected to increase monotonically and ap-
proach 0.75 for very large X. An opposite trend is ex-
pected at T & T„where the shape of the shorter chains
grows with v& —,', which decreases asymptotically to —,'.
Thus at T = T„v,(N) is expected to become fiat, i.e. , in-

dependent of N. It should be noted that Eqs. (2) and (3)
also hold for the end-to-end distance Rz where R and R&
replace G and Gz, respectively; we will denote (as in pa-

where P, is a crossover exponent and r=~T —T, ~/T, .
For small r and large x (i.e., large N), f+ must have the
form

TABLE IV. Results for the exponents vG (radius of gyration), vz (end-to-end distance), and y (specific heat) obtained by a least-

squares procedure based on the importance sampling results of G,'s, FY &s, and C,s [Eq. (1.2S)], respectively, and on Eqs. (2) and (3) for
several subchains at various temperatures K around the tricritical point. AG is the sum of the deviations (squared) per step of the
"experimental" results for lnGz [Eq. (2)] from those defined by the best-fitted straight line for lnGz vs lnN; b, R is calculated for the
end-to-end distance. The smallest values of 5 are indicated with an asterisk.

bchain (N) 30-110 110-220
10
30-220 30-110 110-220

10 bq
30-220

y
50-260

1.078
1.080
1.082
1.084
1.086
1.088
1.090
1.092

0.566
0.565
0.564
0.563
0.562
0.560
0.559
0.558

0.570
0.568
0.566
0.564
0.562
0.560
0.556
0.554

0.649
0.559
0.479
0.418
0.386
0.390
0.598
0.679

0.576
0.575
0.574
0.573
0.572
0.570
0.569
0.568

0.583
0.581
0.578
0.576
0.574
0.571
0.568
0.565

6.31
5.73
5.20
4.75
4.41
4.21*
5.38
5.53

0.600
0.604
0.608
0.610
0.614
0.618
0.624
0.626
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per I) the results for v obtained from the radius of gyra-
tion and the end-to-end distance by vG and vz, respec-
tively. Thus calculating the v values of several subchains
at different temperatures (assuming G~-N ) enables one
to locate T, on the basis of the above fatness criterion.
Such results are presented in Table IV. They have been
obtained from a large single sample generated at
K = —e/ks T =1.080 as has been discussed in Sec. II A.
The table reveals that for each K & 1.084, the value of v
of the second subchain [v(2)] is larger than that obtained
for the first time [v(1)] and that v(1)~v(2) as K ap-
proaches 1.084; these temperatures, therefore, belong to
the hot region. An opposite trend [i.e., v(1))v(2)] is ob-
served for K ) 1.088 and hence these temperatures per-
tain to the cold region. For 1.084&K ~ 1.088, v(1) and
v(2) become equal which suggests that
K, =1.086+0.002. This value of K, is also obtained by
another criterion: it corresponds to the minimal value of
b, where b, is the sum of the deviations (squared) per
step of the "experimental" values of lnG& (30 +N +220)
from those defined by the best-fitted straight line for
lnG& vs lnN. A similar analysis of the results for the
end-to-end distance Rz leads to K, = 1.088. At this
point, the following remarks should be made. (1) In the
above analysis, only results for N ~ 220 are taken into ac-
count since those for the longer trails appear to be less
accurate due to insufficient statistics (see Figs. 1 and 2).
(2) The shortest trails considered are of N =30 since for
N & 30, the shape of the trails is found to be affected by
the chain stiffness (see discussion in Ref. 16). (3) The re-
sults in Table IV for the different values of K change
within their statistical error ranges in a correlated way
due to the fact that they are obtained from the same sin-
gle sample. (4) In order to determine K„we rely on the
results for G, which are more accurate than those of R.
Our analysis is based on calculation of many tables simi-
lar to Table IV for different subchains and also for partial
samples, even smaller than those defined in Sec. VIB in
paper I. In all of these calculations, K, has always been
found to fall in the range 1.084~K, ~ 1.088, which sug-
gests that the following error bars are of 95% confidence

0.50

—0.40—
lcC ~

C3

F 0.30—

~ 0

~s

~0
~ 0

~ 0

0.20
1.0 1.5

log, o N

2.0 2.5

FIG. 2. Log-log plot similar to that of Fig. 1, but for R &s, the
square end-to-end distance.

limits,

K, = —e/ks T = 1.086+0.002,

v, (G) =0.563+0.003, v, (R) =0.574+0.005 .

The error bars for v, (95% confidence limits) take into
account the uncertainty in the value of K, . This estimate
of K, differs significantly from the value K, =1.55 ob-
tained by exact enumeration of relatively short trails,
N ~21. Again, like for trails at T= ~ (see paper I)
v, (R)) v, (G). Obviously, one would expect that asymp-
totically v, (G)=v, (R). However, the average of these
values of v„0.569, is equal (within the statistical errors)
to the analytical value v, = 4 =0.571. . . obtained by Du-
plantier and Saleur for self-attracting SAW's and which
is conjectured to be exact.

In order to calculate the crossover exponent P„we an-
alyze the results of the specific heat per step C(T, N)
which are calculated from the fluctuation of the energy

2

C(T,N)/ks = ((m ) —(m ) ), (4)

-0.35

IG Z
C)

O
-0.45

I

i

I I I

C(T,N)=N 'g(N 'r), (5)

where yI =aIQI and a, is the tricritical exponent of the
specific heat. For large x (small r),

I'

A x ', T)T,

where the energy F., =Em; [see Eq. (I.l)]. Close to T, ,

C ( T, N) is expected to scale like

g(x)- const, T=T, (6)

.0 1.5 2.0
L

2.5
log „N

FIG. 1. Log-log plot of the importance sampling results (at
the tricritical temperature —c/k&T, =1.086) of the square ra-
dius of gyration G» vs chain length X.

x ', T&T,

where A+ and 2 are prefactors. Thus one can calcu-
late the exponent y, from the results of C at T, by a
least-squares procedure. In Table IV, the results for y are
shown for different values of K. They are based on the
range 50 N ~ 260 in which the results for C appear to be
statistically most reliable (see Fig. 3). We obtain
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~0
~0

~0

TABLE V. Importance sampling results for C,. „(N), the
maximal value of the specific heat of an ¹tep trail and for
K, (N) = —elk~ T, (N), the temperature at which the maximum
occurs. The statistical error (one standard deviation) is not
larger than+0. 02 for K, (N) and+0. 006 for C „(N).

1.0
log«N

2.0 2.5

FIG. 3. Log-log plot similar to that of Fig. 1, but for C», the
specific heat per step.

60
70
80
90

100
110
120
130
140
150
160
170
180

C,„(N)

0.489
0.520
0.536
0.558
0.580
0.604
0.622
0.640
0.664
0.685
0.710
0.724
0.750

K, (N)

1.550
1.460
1.450
1.375
1.350
1.318
1.312
1.310
1.275
1.270
1.259
1.250
1.230

y, =0.614+0.008 .

One can use the relation '

a, =2—1/P, ,

which leads to

4~ =(I+Xi }/2 .

Thus we find (95% confidence limits},

(7)

(8)

These estimates agree with those calculated previously.
However, the statistical errors here are larger because of
the difficulty in locating the maxima of C(T, N) and
therefore the values of K, (N). These errors define the
ranges in which the parameters K, and P, change for par-
tial sets of results of sizes 9 to 13 (see Table V).

C. Partition function

$, =0.807+0.005, a, =0.761+0.007 .

Our value for P, differs considerably from the theoretical
value for self-at tract ing SAW's (Ref 25) ( /., = —,

'
=0.423. . . ) and it is slightly larger than a recent exact
enumeration estimate P, =0.68+0.08, obtained for
trails on a triangular lattice. It should be pointed out
that the theoretical value of o., for SAW's is negative
(a, = —

—, ) which indicates the possibility of the existence
of a cusp in the graph of C( T, N ~ ~ ) versus T. Howev-
er, such a cusp has not been observed in Baumgartner's
Monte-Carlo results of self-attracting SA%'s of N ~ 160
on a square lattice' and obviously it does not appear in
the present simulation of trails of X ~ 300.

The tricritical temperature and P, can also be obtained
from the behavior of T, (N), where T, (N) is the tempera-
ture at which the specific heat C(T,N) of an N-step trail
becomes maximal [obviously T, = T, (N = ~ )]. Thus one
can assume the following behavior

k~
[T, ( ~ ) —T, (N)) =N

from which both P, and T, can be estimated by a least-
squares best fit. Results for C,„(N), the maximal values
of C&(T,N), appear in Table V. They are located in the
cold region and approach K, as N increases. In Table V,
we also present the reciprocal temperatures
K, (N)= —e/k&T, (N) at which these maxima occur.
Best fitting these results to Eq. (9) leads to

K, = —E/k~T, =1.07+0.04, Q, =0.75+0. 14 .

The partition function Z ( T) can be obtained by impor-
tance sampling as has been discussed in paper I [Eq.
(I.36)]. For T ) T„one expects Z(T) to behave as
N~ 'p (T) [see Eq. (I.36)] where the growth parameter
p(T) is a function of the temperature while y is equal to
y( T = oo ). However, at T = T„p(T) as well as y, are ex-
pected to attain their tricritical values y, (&y) and p„
respectively. In order to estimate y, and p„we take into
account analytical correction to scaling, i.e.,

Z(T, ) =BN '
p, , (1+c/N) . (10)

As in paper I (see Sec. VI C), we best fit our results for the
free energy F,s(N) [Eq. (I.26)] at K, =1.086 to Eq. (10)
and employ the Aatness criterion of Berretti and Sokal
to obtain the optimized values of y, and p, . Results for
y(N;„) and p(N;„) are presented in Table VI for
20& N;„~60 and N, „=240, where the flattest graph is
obtained for c*=—0.6. Thus y(1.086)=1.125+0.011
+0.001 (95%%uo confidence limits} where the first and the
second errors are the statistical and the systematic errors,
respectively (see discussion in Secs. VI B and VI C of pa-
per I). We have also calculated such tables for
180~N,„~300 and have found that the values of c*
(and of the corresponding values of y and p —denoted by
y" and p*) are stable for 180~N, „~240, i.e., they fiuc-
tuate without any trend around their average value.
(This stability has been found to hold also for larger
values N;„, 20 ~ N;„~ 80). In Table VII, the results for
c, y, and p are presented for 180 ~ N,„~240
(20 ~ N;„~60). Our best estimates of y, and p, are ob-
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TABLE VI. Sets of results for y and p as functions of N;„ for diff'erent values of the parameter c [see Eq. (10)] calculated at
K, = 1.086 for N, „=240. These results have been obtained by a least-squares procedure based on the importance sampling results of
the free energy F» and Eq. (10); 6 is the standard deviation of the results of each line. The flattest graphs (indicated by asterisks) are
obtained for c*=—0.6. (For details, see Secs. VI 8 and VI C of paper I.)

Nmin 20 30 40 50 60 Average

—0.9
—0.8

—0.5
—0.4
—0.3
—0.2

1.1158
1.1191
1.1223
1.1256*
1.1287
1.1319
1.1350
1.1382

1.1178
1.1203
1.1229
1.1254*
1.1280
1.1305
1.1330
1.1355

1.1192
1.1214
1.1235
1 ~ 1257*
1.1278
1.1300
1.1321
1.1343

1.1192
1.1211
1.1231
1.1250*
1.1269
1.1287
1.1306
1.1326

1.1199
1.1217
1.1234
1 ~ 1251*
1.1269
1.1286
1.1303
1, 1320

0.001 45
0.000 94
0.000 41
0.000 26
0.000 68
0.001 24
0.001 7'1

0.002 24

1.1184
1.1207
1.1230
1.1254*
1.1277
1.1299
1.1322
1.1345

min 20 30 40
p

50 60 Average

—0.9
—0.8

—0.5
—0.4
—0.3
—0.2

2.990 44
2.990 39
2.990 33
2.990 28*
2.990 23
2.990 17
2.990 12
2.99007

2.990 39
2.990 36
2.990 32
2.990 28*
2.990 24
2.990 21
2.990 17
2.990 13

2.990 36
2.990 33
2.990 30
2.990 27*
2.990 25
2.990 22
2.990 19
2.990 16

2.990 36
2.990 34
2.990 31
2.990 29*
2.990 27
2.990 24
2.990 22
2.990 20

2,990 35
2.990 33
2.990 31
2.99029*
2.990 27
2.990 25
2.990 23
2.990 21

0.000 033
0.000 216
0.000 009
0.000 005 6*
0.000 015
0.000 028
0.000 038
0.000 050

2.990 38
2.990 35
2.990 31
2.990 28*
2.990 25
2.990 22
2.990 19
2.990 15

tained by averaging these values. The errors are deter-
mined as in paper I in two ways: (a) we calculate tables
similar to Table VI for K, =1.088 and 1.084 and obtain
as above the values of y(1.088) and ) (1.084) with the
corresponding errors; (b) we calculate at these two tem-
peratures tables like Table VII for the entire sample and
for partial samples and calculate the standard deviation
for p and y from their average values in Table VII. This
leads to (95%%uo confidence limits)

y, =1.133+0.024, p, =2.9901+0.0020 .

D. Scaling analysis

In Figs. 4, 5, and 6 we examine the validity of the scal-
ing functions G)v/N ' of the radius of gyration,

R~/N ' of the end-to-end distance [Eqs. (2) and (3)] and

C/N ' of the specific heat [Eqs. (5) and (6)] by log-log
plotting the importance sampling results of these func-
tions versus the scaling variable N '~. These plots are
based on our best estimates, K, = 1.086 and P, =0.807.

This result for y, is equal (within the error bars) to the
theoretical value —,

' =1.1428. . . obtained by Duplantier
and Saleur for self-attracting SAW's. Our results di8'er
considerably from estimates of y and p obtained by exact
enumeration of short trails on a square lattice.

TABLE VII. Results for the optimal values c*,y*, and p* at
K, = 1.086 obtained by the flatness criterion at various values of
N, x (see Secs. VI 8 and VI C of paper I). The average values of
y* and p* are also presented.
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0, = 0.807

v, = 0.56'

Nmax

180
190
200
210
220
230
240

Average

c

—0.5
—0.3
—0.2
—0.5
—0.3
—0.4
—0.6

1.129
1.137
1.140
1.130
1.136
1.133
1.125

1.133

2.9902
2.9900
2.9900
2.9902
2.9901
2.9901
2.9903

2.9901

-0.70 I I I I

-1.0 -0.5 0.0

log «(N t&)
FIG. 4. Log-log plot of the importance sampling results of

2v
the scaling function of the square radius of gyration G&/N ' vs

the scaling variable N 'r close to the tricritical temperature [see
Eqs. (2) and (3)]. The chain length values are N =60, 80, . . . ,

and 200.
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FIG. 5. Log-log plot similar to that of Fig. 4, but for the
2vt

square end-to-end distance R~ /N

I
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FIG. 6. Log-log plot similar to that of Fig. 4, but for the scal-

ing function C /N ' of the specific heat per step [see Eqs. (5) and
(6)]. In order to demonstrate the scaling behavior at small ~ the
two branches have been separated.

The range of K studied is 1.076~K ~ 1.094 for X =60,
80, . . . , and 200. The figures show a very good scaling
behavior. It should be pointed out, however, that this be-
havior depends strongly on the values of the exponents y,
and v, while it is less sensitive to the values of T, and P, .
In the figures, we have therefore employed the values
v, (G)=0.561 and v, (R)=0.572 which have been found
to lead to the best scaling behavior; they are located
within the error bars of our best estimates obtained from
Table IV. It should be noted that the asymptotic regime
of the scaling functions has not yet been attained in these
graphs since the values of X studied are too small.

TABLE VIII. Importance sampling results for the per-
sistence length X» as a function of the trail length N at various
temperatures, K = —c/kz T. The results denoted by an asterisk
are the exact values obtained by exact enumeration (Ref. 43).
For N = 100 at I(:=0.95 and 1.40 and for N = 160 at K = 1.086
the statistical error is +0.08 (one standard deviation); this error
decreases for the shorter trails due to larger samples of accepted
trails.

0.950
x,s

1.086 1.40

10

20

30
40
50
60
70
80
90

100
110
120
130
140
150
160

1.265
1.263*
1.224
1.220*
1.205
1.206
1.187
1.207
1.238
1.282
1.301
1.345

1.212
1.206*
1.162
1.153*
1.135
1.111
1.094
1.087
1.073
1.064
1.051
1.033
1,037
1.029
1.033
1.038
1.055
1.061

1.080
1.070
1.030
1.005*
0.997
0.999
1.013
1.001
1.010
1.040
1.049
1.040

E. Persistence length

In Table VIII, the importance sampling results of the
persistence length (X ) [Eq. (I.1 I)] are presented for
E =0.95, K, =1.086, and K =1.4. The statistical errors
have been obtained from the values of ( Y ) (not shown in
the table) and results for (X ) which are based on partial
samples (one standard deviation). It should be noticed
that the exact enumeration results" for % =10 and 20
are very close to the computer simulation estimates. The
persistence length of an ¹tep trail is expected to de-
crease as the temperature is lowered since the typical
equilibrium configurations become more compact; this
indeed is demonstrated by the results in Table VIII. The
table also reveals that at the coldest temperature
(K =1.4), Xls decreases from 1.080 to 0.997 as N goes
from 10 to 30, and then it stabilizes around the value 1.0,
which is the persistence length of a pure random walk.
This decrease of X/s is probably a result of the chain
stiffness (caused by the restriction that an immediate
chain reversal is forbidden) which has stronger effect on
the shorter trails. At the tricritical temperature
(K, =1.086), a similar behavior is observed, where Xi+
decreases monotonically from 1.212 to 1.033 in going
from % =10 to 100, and then increases up to 1.061 for
N = 160. The results for N & 160 (not shown in the table)
are unreliable since they are subject to a relatively large
statistical error of up to +0.2; however, they strongly
Iluctuate (+0.07) without any trend around their average
value, 1.085. %'e therefore conclude that the persistence
length of long trails is close to 1. Thus trails at K, appear
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to behave differently than at T = ~ (see paper I), where
(X) was found to increase with increasing N. At a
hotter temperature (IC =0.95), a decrease of Xts for the
shorter trails 10&N~50 is again observed while for
60 ~ X ~ 100, (X ) increases. However, the data are not
accurate enough to determine whether (X) converges to
some value as X increases.

the statistical errors to the exact values derived by Du-
plantier and Saleur for self-attracting SAW's. However,
our value of P, is significantly larger than that obtained
for SAW's. This suggests that the two models do not be-
long to the same universality class. We also find that for
T ~ T, the persistence length is close to l.

III. SUMMARY

We have studied by the scanning method trails on a
square lattice at finite temperatures, in particular at the
tricritical region. We have demonstrated that the
method is very eScient for investigating a large range of
temperatures. Our results for v, and y, are equal within
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