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Oscillator instability of deep cells in directional solidification
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~ ~Coherent sidebranching of deep cells has been observed experimentally in the vicinity of the cell

to dendrite transition. We propose that this phenomenon results from an oscillatory instability of
deep cells where cell widths and tip positions oscillate coherently in phase. We perform a linear-deep cel s, w ere ce wi s an

Istability analysis of a periodic array of deep cells in the small-Peclet-number limit and derive the
stability limits of the oscillatory mode.

I. INTRODUCTION

The experimental data of Dougherty, Kaplan, and Go-1-

lub' support recent theories which have advanced that
sidebranching on the sides of an unconstrained isolated
dendrite growing in an infinite medium is the result of the
amplification of noise at the tip of the dendrite (Langer
and co-workers, Pelce and Clavin. ) In particular,
their measurements have indicated that there is no ap-
parent temporal correlations between sidebranching
events on opposite sides of the dendrite at some fixed dis-
tance behind the tip.

Sidebranching also occurs during the directiona 1

solidification of a binary liquid mixture at sufficient
growth velocity. However, in this system, the experimen-
tal photographs of Eshelman, Seetharaman, and Trivedi
suggest that, at least in some cases, sidebranching events
on neighboring cells are correlated. This behavior can be
seen most clearly in the vicinity of the cell to dendrite
transition where sidebranches first appear on the sides of
very-large-amplitude cells [in the pivalic acid —ethanol

t this transition occurs for drawing velocities
=2.98around 5 —7 pm/s for a temperature gradient G=

K/mm (Ref. 6)j. This type of "coherent sidebranching"
ex ent ds spatially over several cells and is marked on t e

f uallexperimental photographs by the appearance of equa y
spaced strips parallel to the solidification front. At this
point a more detailed quantitative experimental study of
this phenomenon is needed before reaching any firm con-
clusions. Nevertheless, it suggests the possibility that in
directional solidification a completely different dynamical
mechanism can be responsible for sidebranching in cer-
tain parameter ranges.

In this paper, we demonstrate that, in the sma-11-

Peclet-number limit, a periodic array of deep cells under-
goes anoes an oscillatory instability at sufficiently large growth
velocity. Above the threshold of this instability the
width and the vertical tip position of all cells oscillate in

p ahase coherently as depicted schematically in Fig. 1. We
proporopose that the coherent sidebranching which has been
observed experimentally results from this instability.

Our theoretical analysis is made possible by the fact
that, in the small-Peclet-number limit, the full free-
boundary problem can be considerably simplified and re-
duced essentially to a one-dimensional problem where the
slow dynamical evolution of the tip region of the cells is
represented by the motion of a point source in a semi-
infinite medium. This reduction relies solely on the as-
sumption that the tail region of deep cells adjusts to the
motion of the tip region without affecting it.

This paper is organized as follows. In Sec. II we derive
the equations of motion for the cell tips in the small-
Peclet-number limit. In Sec. III we then derive a rela-
tionship between tip undercooling and cell spacing for
the one-parameter family of steady-state solutions of the
equations of motion. In Sec. IV we perform a linear-
stability analysis of the steady-state solutions and derive
the stability limits for the oscillatory mode. Finally in
Sec. V we discuss the physical relevance of our result.

FIG. 1. Schematic diagram exhibiting coherent sidebranch-
ing of deep cells. A,A and A, are the cell spacing and the cell
width, respectively, and zo is the cell-tip position.
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II. EQUATIONS OF MOTION

A. The free-boundary problem

a To
T—To+me

QR
(2)

Here, D is the coefficient of solute diffusivity in the liquid,
m the slope of the liquidus line in the binary phase dia-
gram, To the crystallization temperature of the pure
melt, R the local radius of curvature, Q the latent heat
released per unit volume, and o. the liquid-solid surface
tension. In the slow-growth regime the latent heat
release at the interface can be neglected. Consequently,
the temperature in the sample is simply T=T +Gz,
where T = To+me /K is the temperature of the planar
interface, 6 the temperature gradient imposed on the
sample, E the partition coefficient, and c„ the bulk mix-
ture composition.

In addition, solute conservation at the interface re-
quires

c(1—K)v n= DVc n . — (3)

We want to describe the dynamics of a periodic array
of cells of primary spacing A. We therefore restrict the
sample to a region of liquid of width A, with on the sides
of this region (y =+A/2, where y is the transverse coor-
dinate) the additional boundary condition Bc/By =0.

In directional solidification of a binary liquid mixture,
the motion of the solidification front is determined by the
diffusion of solute in the melt together with a set of
boundary conditions on the interface. A more introduc-
tory and detailed exposition of the directional
solidification system can be found in Ref. 7. We only
summarize here the basic equations governing interface
motion and our notation. The solute concentration c
satisfies the usual diffusion equation,

Bc =D Ac,
at

in the liquid, and diffusion in the solid is neglected. Tern-
perature and solute concentration at the interface are re-
lated to the local interfacial curvature by the Gibbs-
Thomson relation,

The relative variation of concentration on a scale / in the
liquid is of order unity.

2. The tip region

Close to the tip of the cell, the concentration field
varies on a scale A, very small compared to the diffusive
length l. As a result, the Laplacian term dominates in
Eq. (1) and the diffusion equation reduces to b.c =0.

Local interfacial deformations on a scale of order A re-
lax on a time scale A /D which is very small compared to
the difFusive time scale D/U . Consequently, the tip re-
gion can be assumed to remain quasistationary during the
motion of cell tips with velocity U(t) on the slow
diffusive time scale.

The relative magnitude of concentration variations in
this region, 5c/c„, is of order P. The concentration fiux
which leaves the tip region, D5c/A, —equals the fiux
which enters the diffusion region, Uc . Thus, 5c/c =P
and c can be approximated by the constant

co=c„/K+zo(G/m ) (5)

in Eq. (3), where zo is the position of the cell tip. Since
the capillary length is small compared to the cell spacing,
the contribution of the surface-tension term of order P
and thus does not appear in Eq. (5).

For convenience, one defines a new field
4=c —c „/K —zG/m which still satisfies

64=0 (6)

with the corresponding boundary conditions on the inter-
face:

p= —docL /R, (7)

which can be deduced from Eq. (2) and

DV@ n = [c—o( 1 —K ) U+ G(D /m ) jcosO

from Eq. (3). Here, do =oTo/~m ~Q is .the capillary
length.

On the sides of the sample (y =+A/2) the boundary
condition B@/By =0 still holds. Far ahead of the cell, in
the region A«(z —zo) «1, the concentration flux be-
comes uniform and thus d N/dz is equal to

B. Scalings and regions in the small-Peclet-number limit

Bc Dd c
2

(4)

As shown previously by Pelce and Pumir, and Kar-
ma, this free-boundary problem can be simplified in the
small-Peclet-number (P) limit, where P=AU/D, and U

is the velocity of the interface. Three regions can be dis-

tinguished.

1. The diffusion region

In the liquid, far away from the interface, the concen-
tration field can be considered monodimensional, as in
the case of the planar interface. The concentration field
varies on a lengthscale I =2D/U and satisfies the mono-
dimensional diffusion equation, i.e.,

d4 U 6
co(1—K)—+

dz D m
(9)

The free-boundary problem defined by Eq. (6) and
boundary conditions (7) and (8) is formally identical to
the Saffman-Taylor free-boundary problem, which deter-
mines the motion of a viscous finger in a Hele-Shaw cell.
The field N is the analog of the pressure field in the
Saffman-Taylor problem and the linear temperature gra-
dient is the analog of the acceleration of gravity. The
problem was solved by McLean and Saffman' and
Vanden-Broeck. " A discrete set of solutions was found:
for each of these, the shape of the interface is a finger of
relative width A, . It was shown subsequently by Kessler
and Levine' that only the fastest finger is stable against
tip-splitting modes. Thus, from the study of the tip re-
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gion, one obtains a single stable shape with relative thick-
ness

du 1 ZQ
D— =U +k 1 —(1—K)

dz 2v lT

1

2v
(14)

A U
2, =f co(1—K)+

DdQ Um
(1o) as can be deduced from Eq. (11). Here,

Here, f is a decreasing function that has been numerical-
ly determined by McLean and Saffman, ' the properties
of which will be discussed in detail in the next section.

Finally, the concentration flux which leaves the tip re-
gion is simply

A, =f(C),
where

A U ZQC= 1 —(1 K)—
DdQ IT

1

2v

(15)

(16)

D—=A, co(1 K) U—+D D— —dc G G
dz m m

is the analog of the control parameter in viscous finger-
1ng.

3. The tail r egion

At some distance larger than A from the tip, the advec-
tive term U Bc/Bz, which was negligible in the tip region,
cannot be neglected. A new balance occurs between ad-
vection and transverse diffusion which leads to the Scheil
equation for the shape of the tail in the case of stationary
growth (see Hunt' ). For instance, when the miscibility
gap is assumed constant, the shape of the tail is an ex-
ponential profile which goes to y =+A/2 on a length
scale IT =

~
m

~
c„(1 —K ) /KG determined by the tempera-

ture gradient, on the same order of the diffusive length.
The asymptotic matching of this tail to the finger shape

of the tip was done by Dombre and Hakim' in the limit
of A. =1 and for stationary conditions. The main result is
that this matching gives no constraint to the tip-region
shape, and that, in particular, the primary spacing of the
cells A is not determined. This result was confirmed nu-
merically by Ben Amar and Moussalam' for other values
of A, . An important consequence of these results is that
the tail region can be ignored for the determination of the
tip-region shape and thus for the determination of the
concentration flux released by the cell. We assume that
the same property holds in the case of a slow instationary
process, on the diffusive time scale.

C. Equations of motion

To summarize, in the small-Peclet-number limit, and
under the assumption that the tail region does not affect
the tip region, the full free-boundary problem can be re-
duced to a set of equations of motion for the cell tips, lo-
cated at the position zo(t) and moving like point sources
in a semi-infinite monodimensiona1 medium. For con-
venience, we define the dimensionless concentration field
u =K(c —c „)/c„(1—K ) and introduce the notation
1/2v=D/UlT. For z )zQ, u satisfies

Bu ~u+U =D (12)at az az2 '

III. STEADY-STATE SOLUTIONS

u(z) =(1—zo/lT )exp[ —( U/D )(z —zo)] . (18)

Substituting Eq. (18) into the flux conservation relation
(14), we obtain

KA, + (1 —A, ) /2v
1 —(1 K)A, —

where we have defined the dimensionless tip undercool-
lng:

5=1—ZQ/IT . (20)

The steady-state solutions of our model are then com-
pletely determined by Eq. (19), together with the relation
between the finger width A, and the cell spacing A con-
tained in Eq. (15), with

K(1 —1/2v) A UC=
1 —(1—K)A, doD

(21)

obtained by combining Eqs. (16) and (19).
For a material with an isotropic surface tension the

function A, =f(C) is a decreasing function of C which ap-
proaches asymptotically the value —,

' for large values of C
and has been calculated numerically by McLean and
Saffman. ' Here we use an interpolation formula forf(C):

f(C)= (C —C)+A
2(C —C)+ A

(22)

In the preceding section we derived the equations of
motion governing the dynamics of cell tips. To obtain
the steady-state solutions of this set of equations, we first
rewrite Eq. (1) in a frame moving with the interface at ve-
locity U:

u du

dz dZ

The steady-state concentration profile which solves Eq.
(17) subject to the boundary condition at the interface
equation (13) is then simply

with the following boundary conditions at z =zQ,

u =1—zQ/lT,

as can be deduced from Eq. (5), and

(13)

with C=2.87 and 2=50.8, which reproduces within a
few percent their numerical data for values of A, ranging
between 1.0 and 0.6. The numerical value of C that we
use was determined by Dombre and Hakim, ' who ana-
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We restrict our attention to the mode with a positive
real part. Since Rek (0, the allowed solution is

(14), one obtains, respectively, the following relations be-
tween A and B:

0= —(U/2D)I1+[1+4(coD/U )]'i I, (27)

where, by convention, the square root has a positive real
part.

Then, substituting Eqs. (24) and (25) in Eqs. (13) and
I

U zp B3 —B—1—
D IT

(28)

—D Ak+B U
D

ZQ1—
IT

(XU)co+ U
dA,

dU Zp

ZQ
1 —(1—K)

IT

D dk dX
(1 —K)A. U

By eliminating A and B between these two relations,
one obtains the following eigenvalue equation for the di-
mensionless growth rate 0=co2D/U:

K0 +2——+K- +—2 ——+—=0
v 2 4v

(37)

(b, 1/2v)&1—+2Q =a Q+ b, (30) When 1/8v &K & I, 0, has a nonzero imaginary part and
a negative real part equal to

Qr

a 0 +2[ah —(6—1/2v) ]f),+b —(b, —1/2v) =0,
ReQ = —(1/2v)(1+2K —I /2v) .

When 1/v is small, the growth rate is simply

0= —(1/ )v(1+2K)+i&2K/ v.

(38)

(39)

a = 1 —(1—K) [Cf(C)] (32)

and

with the condition that the right-hand side of Eq. (30) has
a positive real part. Here, a and b are two quantities de-
pending on the steady-state shapes:

Thus, in this limit, the interface motion undergoes
damped oscillations. The physical origin of the damping
can be explained as follows. First, consider a perturba-
tion where the interface is slightly displaced towards the
high-temperature region. The effective undercooling
slightly decreases and the released concentration flux is
reduced. As a result, the interface velocity decreases and
the interface comes back to the low-temperature region.

b=h+
2v dC

[Cf«)l (33)
2. Crystal growth in a capillary tube

(34)

It is convenient to express these quantties as a function
of the relative finger width A, using the steady-state rela-
tion (19). The expressions for a a and b become

K+(1/2v)(1 K)(1—
A, ) d-a=

1 —A(1 —K) dC
(1—

A, )/v+KA(1+ 1/2v) 1 —K d
1 —A(1 K) —v dC

When there is no temperature gradient (1/v=0), the
system is equivalent to the growth of a crystal in a capil-
lary tube. The crystal is assimilated to one of the cells of
the array and the distance between the walls to the pri-
mary spacing A. In this limit, the eigenvalue equation
reduces to a form derived previously by Pelce. ' It has a
nonzero solution equal to

and

1

2v
Kig 1 —1/2v)

1 —iL(1 —K )
(36)

df (C)
dC

Cf (C)d
(40)

B. Limiting case

The physical origin of the oscillatory instability can be
understood more clearly by examining two important
limiting cases of the eigenvalue equation (31).

1. The planar interface

This limit is formally obtained when A, = 1, and
df /dC =0. The growth-rate equation can be written as

Since f (C) is a decreasing function of C, the growth
rate is real and positive and leads to an instability of the
stationary cell. To understand this effect, consider a per-
turbation which increases slightly the relative finger
width. More solute will be rejected and the effective un-
dercooling will be reduced. As a result, the crystal will
slow down and become even thicker, since a slower
motion corresponds to a larger relative width. Note that
the strength of the instability (the magnitude of 0) is pro-
portional to the quantity C df (C)/dC plotted in Fig. 4.

When both effects are considered, as is the case in the
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part equal to (2K Iv)'
When C is large, k is close to —,

' and the growth-rate
equation can be approximated by

at this point,

1+%
!mQ, =

&Kv
(45)

0 +2— +—+—+2vC + (1+K) =0 .
v 4E 4 2 dC Ev

1 K 5 3—+—+
2v 2 4 4K

(44)

The corresponding imaginary part of the growth rate is,
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(43)

At the threshold, the term proportional to 0 vanishes,
and one obtains

Let us now discuss the effect of an anisotropy in the
surface tension. This effect appears only via the function
f(C) and thus will only inAuence the strength of the in-
stability via the factor C df (C)/dC. As mentioned in the
preceding section, several observations indicate that the
anisotropy factor lowers the value of f (C) for a given
nonzero value of C. This leads to steeper variations of
f(C) and thus larger values of Cdf(C)ldC. Thus one
can expect that, for a given temperature gradient, the os-
cillatory instability should appear at a lower critical ve-
locity for a more anisotropic material.

In performing a linear-stability analysis of Eqs.
(12)—(16), we have assumed that the interfacial front is
periodic of period A. Without this constraint other
linear modes and, in particular, long-wavelength modes
could also, in principle, become unstable and supress the
oscillatory instability. The competition of nearby tips
which is known to cause an instability in the Saffman-
Taylor system undoubtedly plays an important role in
directional solidification in the small-Peclet-number limit.
This problem appears beyond the scope of the paper. For
the moment, one can expect that even if the oscillatory
instability is wiped out at small Peclet number by a spa-
tiotemporal instability, it plays an important role for Pec-
let number of order 1, for which the tip competition be-
comes less effective.

V. DISCUSSION

In this paper we have analyzed in the small-Peclet-
number limit the linear stability of deep cells against per-
turbations which displace their tip position z0, and have
found that such a perturbation will grow in an oscillatory
way when the velocity of the solidification front exceeds a
threshold value determined by v, (K). The relative cell
width k is directly related to z0 and oscillates in phase
with the tip position. For velocities increasingly larger
than the threshold velocity, an increasingly larger range
of cell spacings becomes unstable.

This new instability limits the parameter range for
which steady-state microsegregation can occur and is
therefore of considerable importance for our understand-
ing of microstructures.

The physical origin of this oscillatory instability clearly
appears to come from the interaction of the cell-tip
motion with the boundary layer of solute ahead of the in-
terface. In particular, two competing effects result from
this interaction: a stabilizing effect due to the tempera-
ture gradient and a destabilizing effect due to the varia-
bility of the relative cell width A, .

The experiments of Eshelman et al. in directional
solidification of pivalic acid show the apparition of
coherent sidebranching for a critical v=7, the corre-
sponding Peclet number being P = 1. The sidebranching
wavelength seems to scale with the tip region. Our
analysis deals with the small-Peclet-number limit and we
find that the frequency of the sidebranching 0= U/A
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scales like P. We think that we have isolated the oscilla-
tory mode which, if extrapolated to Peclet numbers of or-
der unity, is responsible for the coherent sidebranching
observed experimentally. At this point, there is a need
for numerical studies to confirm that the extension to
Peclet numbers of order unity is regular.
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