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A model is presented for the radial distribution of ion and electron densities and electric field

strength in the positive column of a dc discharge for a plasma consisting of a singly charged
positive-ion species, electrons, and neutral species. The set of equations involved consists of the
particle- and momentum-conservation equations for the ions and electrons and Poisson's equation.
Utilizing this single set of equations and appropriate assumptions, the model has been solved,
through suitable numerical techniques, for various gas pressures po and tube radii R. These calcula-
tions show the development of both the electric field in the "bulk" of the positive column and the
sheath field "near" the discharge wall. The results also demonstrate the existence of a nonzero
difference between the ion and electron densities at the discharge axis, with an increase in this
difference for decreasing poR. The importance of including the various terms in the rnomenturn-

conservation equations of both the ions and electrons when solving the model has been investigated.
The model can be used to calculate the radial properties of positive-column discharges for condi-
tions ranging from the ambipolar diffusion limit to the free-diffusion limit.

I. INTRODUCTION

Several authors have reported theories concerning the
radial distributions of charged-particle densities and the
electric field strength in the cylindrical positive column of
a direct-current discharge. These theories were a11

confined to plasmas containing a singly charged positive-
ion species and electrons, with the authors making vari-
ous assumptions in order to arrive at an analytic or, more
recently, a numerical solution. The set of equations used
in these theories consists of the continuity and conserva-
tion of momentum equations of the charged particles. To
obtain a self-consistent solution, the electric field strength
needed in the conservation of momentum equations must
be calculated using Poisson's equation. The various ap-
proximations reported in the literature involve the as-
sumption of quasineutrality of the plasma, i.e., the elec-
tron density n, (r) is equal to the ion density n, (r), and
the neglect of certain terms in the conservation of
momentum equations.

Schottky' developed an ambipolar diffusion theory in
1924 in which he assumed quasineutrality of the plasma
and neglected the effect of charged-particle inertia on the
radial structure of the positive column. Subsequent au-
thors have also assumed quasineutrality of the plasma,
but included the charged-particle inertia term in the con-
servation of momentum equations. ' Several other au-
thors included Poisson's equation for calculating the radi-
al electric field strength inside the plasma. However,
in order to arrive at a tractable solution, they either omit-
ted the charged-particle inertia term or the effect of
ion density diffusion on the ion current density towards
the discharge walls. ' All the authors have assumed a
Maxwellian distribution of the random energy of the ions
and electrons with constant ion and electron tempera-
tures.

This paper deals with calculations of the radial
charged-particle density distributions, the radial
charged-particle current densities, and the radial electric
field strength in the cylindrical positive column of a dc
discharge. The set of equations involved consists of the
particle-conservation equations, the momentum-
conservation equations including the diffusion, the elec-
tric field force, and the inertia terms, and Poisson's equa-
tion. The common assumption that the energy distribu-
tion of the random energies of the electrons and ions is
Maxwellian with temperatures independent of radial po-
sition will be made. In the next section the assumptions
used in deriving the model and the resulting set of equa-
tions will be given, along with the method of solution
used in the numerical calculations. The results obtained
for realistic discharge parameters and for various values
of the discharge gas pressure po and tube radius R will be
presented and discussed in Sec. III. The validity of the
assumptions used will be compared with the calculated
results in order to determine the self-consistency of the
theory presented. Finally, the relative importance of the
various terms in the conservation of momentum equa-
tions of the ions and electrons on the total radial
charged-particle How density will be discussed in Sec. IV.

II. THEORETICAL MODEL

In the first part of this section, the assumptions used in
deriving the model will be discussed. The resulting equa-
tions used for the calculations of the radial distributions
of the charged-particle densities and the electric field
strength will then be presented. Finally, the boundary
conditions for the model and the method of solution of
the set of equations will be given in the last two parts of
this section.
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A. Assumptions

The model and calculations presented in this paper
refer to a positive column of a dc gaseous discharge with
cylindrical symmetry. The plasma is assumed to consist
of a singly charged positive-ion species, electrons, and
neutral species. The following assumptions will be made
for the present model.

(1) The energy distribution of the random energy of the
ions and electrons is Maxwellian with temperatures T,-

and T„respectively. This is an assumption made by all
previous authors.

(2) All quantities are independent of the axial coordi-
nate z and the azimuthal angle P.

(3) The ion and electron temperatures T; and T, are in-
dependent of the radial coordinate r. This assumption
was also made by all previous authors.

(4) The ionization frequency v, of the electrons is very
small with respect to the collision frequencies for momen-
tum transfer v, and v, of the ions and electrons, re-
spectively. Therefore the effect of ionizing collisions on
the momentum loss (gain) of the charged particles can be
neglected.

(5) The ion and electron production is a linear function
of the electron density, while the only charged-particle
loss from the plasma is by diffusion towards the discharge
tube wall. The calculations can be extended to nonlinear
production (loss) processes. However, the main features
of the results presented would not change significantly.

(6) The friction force between the ions and electrons
can be neglected with respect to the friction force be-
tween the charged particles and the neutral particles.
This is a valid assumption for low degrees of ionization.

(7) The positive column is in steady state with no net
current Aowing to the discharge tube wall, so that the ra-
dial ion and electron particle Bow densities are equal.

Equation (1) is the continuity equation of the charged
particles, while Eqs. (2) and (3) are the conservation of
momentum equations (volume force equations) for the
ions and electrons, respectively. Equation (4) is Poisson s
equation and is needed for a self-consistent calculation of
the radial electric field strength. The assumption that the
ion and electron temperatures are independent of coordi-
nates eliminates the need to use the conservation of ener-
gy equations for the ions and the electrons.

The term on the right-hand side of Eqs. (2) and (3) is
the friction volume force. Since the radial drift velocity
of the neutral particles is very small with respect to the
radial drift velocities of the ions and electrons, it is
neglected in this term. The terms on the left-hand side of
Eqs. (2) and (3) are the inertia volume force, the diffusion
volume force, and the electric field volume force, respec-
tively. Previous theories of the radial properties of the
positive column which incorporated Poisson s equation
have used various approximations concerning the effect
of the different volume force terms on the radial particle
density distributions, etc. Several authors have neglected
one or both inertia volume force terms, while two au-
thors neglected the diffusion volume force for the ions. '

The motivation for these approximations results from the
fact that when all three volume force terms on the left-
hand side of Eq. (2) are included in the theoretical model,
an instability occurs in the numerical calculations (for
certain numerical techniques) when the radial ion drift
energy is equal to one half the kinetic ion pressure, i.e.,
the radial ion drift velocity v&, is equal to the isothermal
ion sound speed U„=(kT; Im; )' . This instability prob-
lem in the numerical techniques has been discussed in the
literature. ' The method described below for solving
the set of Eqs. (1)—(4) circumvents this difficulty.

C. Boundary conditions

B. Equations

m, d rl „(r)
r dr n (r)

+kT, n, (r) —en, (r)E„(r)d
cjr

= —m, l „(r)v, ,

m, d rl „(r)
+kT, n, (r)+en, (r)E„(r)

r dr n (r lr
= —m, I „(r)v

1 [rE„(r)]=—[n, (r) —n, (r)) .
e

r fir E'o

(3)

(4)

Here, 1 „(r) is the radial particle flow density of the ions
and electrons; n, (r) and n, (r) are the ion and electron
particle densities; m, and m„are the ion and electron
masses; e„ is the permittivity of free space; and E„(r) is
the radial component of the electric field strength.

The assumptions given above result in the following set
of equations:

1 d [rl „(r)]=v;n,(r),
r 2r

The four functions to be determined from Eqs. (1)—(4)
are n, (r), n, (r), 1 „(r), and E,(r). Appropriate boundary
conditions are thus required for these functions. Because
of symmetry, both 1,(r) and E„(r) must be zero at the
axis of the positive column, i.e., 1 „(r =0)=0 and
E„(r=0)=0. The two other required boundary condi-
tions are the values of n, (r =0) and n, (r =0). For the
model presented here, these values will be different, i.e.,
n, (r)&n, (r), since it will not be assumed that the
discharge plasma is quasineutral. It should be noted that
the values of n;(r =0) and n, (r =0) then determine the
spatial derivative of E,(r) at r =0. Moreover, the cylin-
drical symmetry of the positive column requires that the
radial derivatives of n, (r) and n, (r) are equal to zero at
r =0.

The boundary condition for the electron density at the
wall of the discharge tube has been discussed by several
authors. A summary of this discussion is given in In-
gold. If it is assumed that the velocity distribution of the
electrons at the wall, which is assumed to be a perfect
sink for the electrons, is Maxwellian in the forward direc-
tion and zero in the backward direction, then the follow-
ing boundary condition must hold at the wall:
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n, (R)=I „(R)
2kT

arm,

This condition is also the boundary condition resulting
from collisionless space-charge theory and is equal or
very close to the boundary condition of other theories.

D. Method of solution

III. NUMERICAL CALCULATIONS
AND DISCUSSION

Numerical calculations were performed for the model
presented in Sec. II, utilizing the method of solution out-

The method of solution used in this paper consists of
expanding the functions n, (r), n, (r), I „(r), and F.„(r) in
power series of the radial coordinate r, around r =0. The
calculation of the coe%cients of the four power series is
performed in the following steps.

(1) The boundary conditions I „(r =0)=0 and
E„(r=0)=0 as well as the symmetry conditions (i.e., the
radial derivatives of the charged-particle densities equal
zero at r =0) are used. The values of n, (r =0), n, (r =0),
and the constants v;, v, , v „T,, and T, are chosen and
substituted into Eqs. (1)—(3). These values will depend on
the parameters of the experimental situation being
modeled, such as the electric current density inside the
positive column, the type of gas, the gas pressure, the
tube radius, etc., and can be appropriately chosen. For
example, the collision frequencies and charged-particle
temperatures may be available from experimental data
presented in the literature or can be theoretically calcu-
lated.

(2) The coefficients of the power series are determined,
either by a standard computer technique or, if possible,
by deriving a recurrence relation between the coefficients.
During the calculations, nonphysical solutions for the un-
known functions may occur. As a result, one of the pa-
rameters, e.g. , v;, is changed until a physical solution
having suScient accuracy is obtained. The accuracy can
be determined by extending the power series to higher
powers of r and comparing the results.

(3) The radius of the discharge tube wall is determined
from Eq. (5). If the calculated tube radius is different
from the desired tube radius, the calculations are repeat-
ed using a different value for the net charged-particle
density at the axis bn(r =0)=n;(r =0)—n, (r =0). The
calculations are repeated until the proper consistency is
reached between the tube radius for the experimental
conditions being modeled and the theoretical results.

It should be noted that the set of Eqs. (1)—(4) can easily
be transformed into a set of dimensionless equations, with
the same method of solution being used to obtain the
dependence of positive-column properties on discharge
parameters. Most previous authors have used the dimen-
sionless approach when developing theories concerning
the positive column. However, since the present paper
attempts to model the properties of positive-column
discharges for which experimental information is avail-
able, the dimensionless approach has been avoided.

lined. These calculations were for a discharge in helium
with the following assumed parameters: m, =4 amu (for
He+), v, /po=3. 0X10 s 'Torr ' (for He+), v, /po
=2.3X10 s 'Torr ', T, =300 K, and n, (r =0)
=1.0X10' m, where the values for v, and v,„, are
from Ref. 11. Results are presented below for different
values of po and R. For each selection of po and R, the
appropriate value for T, was chosen from the experimen-
tal work of Leiby and Rogers' and the values of v; and
n, (r =0) were adjusted, as indicated in Sec. II, to give a
physical solution consistent with the chosen values of po
and R.

Figures 1 —3 show the results of calculations for a
discharge gas pressure po = 5 Torr and a tube radius
R =1.0 cm, leading to the product poR =5.0 Torrcm.
From the results of Leiby and Rogers, these conditions
imply an electron temperature T, =26000 K. The re-
quired net charged-particle density on the axis is then
b, n(r =0)=6.8X10' m, with an ionization collision
frequency v; =1.95 X 10" s '. Figure 1 gives the plots of
the ion density n, (r), the electron density n, (r), and the
net charged-particle density b, n (r). The curves for n, (r)
and n, (r) are close to the shape of the zero-order Bessel
function Jo( 2. 4r /R ) resulting from the ambipolar
diffusion theory for the positive column. ' However,
there is a deviation from this shape, especially for n, (r),
near the tube wall. This deviation is indicative of the de-
velopment of a thin sheath region near the wall, which is
not modeled by the ambipolar theory. The development
of this sheath region is also indicated in the curve of
hn (r), which increases rapidly near the wall. From these
results it can be seen that, while this model predicts the
development of a sheath region, there is no clear distinc-
tion between the sheath region and the bulk plasma, as
can be expected. Therefore, the assignment of different
regions of the discharge to these two categories is some-
what arbitrary, as discussed previously by Self and
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FICs. 1. Numerical calculations of the radial distributions for
the ion density n;(rj, the electron density n, (r}, and the net
charged-particle density An (r) in a helium discharge with
po=5. 0 Torr and R =1.0 cm (poR =5.0 Torrcm), implying
T,, =26000 K, and yielding v; =1.95X10 s
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FIG. 2. Numerical calculations of the radial distributions for
the electric field strength E,(r) and the resulting electric poten-
tial V(r) for the parameters given in Fig. 1 (i.e., ppR =5.0
Torr cm). The ambipolar radial electric field E, (r) is also
shown for comparison.

FIG, 4. Numerical calculations of the radial distributions for
the ion density n;(r), the electron density n, (r), and the net
charged-particle density hn (r) in a helium discharge with
pp=1. 0 Torr and R =0.5 cm (ppR =0.5 Torrcm), implying
T, =45000 K, and yielding v;=6.67X10 s

Ewald. Finally, the instability point discussed in Sec. II
at which the radial ion drift velocity vd; is equal to the
isotherma1 ion sound speed v„ is also shown in Fig. 1.
This point is very near the wall under these discharge
conditions.

The radial electric field E„(r) and the resulting electric
potential V(r) are shown in Fig. 2. For comparison, the
ambipolar radial electric field E, (r) calculated from the
ambipolar difFusion theory is also plotted in this figure.
The value of E„(r) is relatively small near the axis, but in-
creases to larger values near the wall. This is again indi-
cative of the development of the plasma sheath near the
wall. A comparison between E„(r) and E, ( r) indicates
that the two values are equal near the axis, but deviate
from each other near the wall. This deviation is due to

the fact that the ambipolar theory does not model the
sheath region, with E,(r)~+ oo for r ~R. The curve of
V(r) also shows the smooth transition from the bulk plas-
ma region near the axis to the sheath region near the
wall. The resulting value of the potential at the wall rela-
tive to the axis is V(r =R)= —6. 6 V. This value can be
compared with the value V, given by Eq. (22a) in Ref. 14
for the quasineutral inertia limited theory of the positive
column. For the discharge parameters discussed here,
V, = —9.5 V. The discrepancy between these two values
is a result of the assumptions of quasineutrality and iner-
tia limited How used in deriving the expression for V, .

Figure 3 is a plot of the magnitude of the radial
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FIG. 3. Numerical calculations of the radial distribution for
the magnitude of the charged-particle current density

~ J,(r)
~

for
the parameters given in Fig. 1 (i.e., ppR =5.0 Torr cm).

FIG. 5. Numerical calculations of the radial distributions for
the electric field strength E,(r) and the resulting electric poten-
tial V(r) for the parameters given in Fig. 4 (i.e., ppR =0.5
Torr cm). The ambipolar radial electric field E, ( r ) is also
shown for comparison.
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charged-particle current density
~ J„(r) ~

=e I „(r ) .The
maximum in this curve is a consequence of the cylindrical
geometry and the fact that the particle production rate
v, n, (r) decreases with increasing r H. owever, the total
radial charged-particle current per unit length at radius r,
2nr~ J„(r)~, is a monotonically increasing function of r, as
required.

For comparison, the results of calculations for po= 1.0
Torr and R =0.5 cm are given in Figs. 4—6. This leads
to a value poR =0.5 Torr cm, which is 10 times smaller
than the value of poR for the previous case. For these
conditions, the measurements of Leiby and Rogers imply
T, =45000 K, leading to a required net charged-particle
density on the axis of An(r =0) 4.9X10' m . The
resulting ionization frequency is v; =6.67 X 10 s '. Fig-
ure 4 shows the plots of n, (r), n, (r), and hn (r) for this
situation. As in the previous case, the curves for n, ( r)
and n, (r) are close to the shape of the zero-order Bessel
function Jo(2 4rIR. ) for the bulk of the plasma, with a
significant deviation occurring, especially for n;(r), only
near the tube wall. This deviation is again indicative of
the development of a sheath region, as is also shown by
the curve for hn (r). A comparison between Figs. 1 and 4
shows that the resulting sheath region is larger for small-
er values of poR. In addition, this comparison also shows
that the values for hn (r) increase with decreasing poR,
with nearly an order of magnitude difference in hn (r)
occurring between these two cases.

Figure 5 presents the results for E„(r) and V(r) for this
second case, along with the curve for E, (r) from the am-

bipolar diffusion theory. Again, the curve for V(r)
demonstrates the smooth transition from the bulk plasma
region near the axis to the sheath region near the wall.
For this situation, the resulting wall potential is
V(r =R)= —12. 1 V, as compared to the quasineutral in-
ertia limited value V, = —16.5 V. The magnitude of the

1.30

di SI

0.65

radial electric field shown in this figure is significantly
larger than the electric field in Fig. 2. This is a conse-
quence of the higher electron temperature for the situa-
tion depicted in Fig. 5, which leads to enhanced electron
diffusion to the wall. This results in the generation of a
larger space-charge-induced radial electric field in order
to retard the electrons and accelerate the ions toward the
wall. As a result, the point vd,

=v„ is closer to the axis in
Fig. 5 than in Fig. 2, since the ion drift velocity at a given
relative radial distance from the axis is larger for a larger
electric field.

Figure 6 shows ~J„(r)~ for the situation where
poR =0.5 Torrcm. The values of

~
J„(r)~ for this case are

more than an order of magnitude larger than those
shown in Fig. 3.

From the above results, it is possible to investigate the
applicability of the Bohm criterion, Ud,

~ (kT, /m; )', for
these discharge conditions. ' For both discharge condi-
tions discussed above, vd, (r) ((.kT, lm, )' for all values
of r. Thus the Bohm criterion is never met, even though
the results presented in Figs. 1-6 clearly show the devel-
opment of a sheath region near the discharge tube wall.
The formation of a sheath region even in the absence of
the Bohm criterion being fulfilled has been discussed pre-
viously by Ingold.

The self-consistency of the theory in terms of the as-
sumptions and boundary conditions used can be dis-
cussed in view of the calculations presented above. As-
sumption (4) in Sec. II states that v, is small with respect
to v; and v, . As can be seen by comparing the calcu-
lated values for v; with the values given for v; and v „
this assumption is indeed satisfied for the cases presented.
In addition to the boundary condition of Eq. (5) which
was used in these calculations, another commonly used
boundary condition is n, (r =R)=0. From Figs. 1 and 3
it is clear that this condition is closely approximated at
r =R ig these figures. Indeed, calculations show that the
tube radius would be increased by less than 0.2%%uo if the
boundary condition n, (r =R)=0 was used.

The two examples presented involve discharge condi-
tions for which the radial diffusion of the charged parti-
cles is in the region of the ambipolar diffusion limit.
However, the same equations can be used to calculate ra-
dial properties of the positive column when the radial
charged-particle diffusion is in the transition region be-
tween the ambipolar diffusion limit and the free-diffusion
limit.

IV. ORIGIN OF THE TOTAL RADIAL
CHARGED-PARTICLE FLOW DENSITIES

0
0 2.5

r (mm)

5.0

FIT&. 6. Numerical calculations of the radial distribution for
the magnitude of the charged-particle current density

~
J„(r)~

for
the parameters given in Fig. 4 {i.e., poR =0.5 Torr crn).

As mentioned in Sec. I, several previous authors in-
cluded Poisson's equation in the set of equations used
when calculating the radial properties of the cylindrica1
positive column of a direct current discharge. However,
they either omitted the charged-particle inertia term(s) or
the ion diffusion term. ' In comparison, the calculations
presented in this paper were performed by including all
terms of the conservation of momentum equations of the
charged particles. The resulting total radial charged-
particle current density has been discussed in the preced-
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1„(r)=—

+ n, (r)E„(r),
mi +mi

(6)

I „(r)=— rI „(r)
v, r dr n, (r)

kT,
n, (r)

I-e Vme d

me~me
n, (r)E„(r) . (7)

Equation (6) gives the total radial ion fiow density I,(r),
which is equal to the total radial electron flow density
given by Eq. (7). The first term on the right-hand side of
Eqs. (6) and (7), the inertia fiow density, does not
represent a real flow density of the ions and electrons, re-

ing section. It is also interesting to investigate the rela-
tive importance of the three terms on the left-hand side of
the conservation of momentum equations (2) and (3) on
the total radial charged-particle flow density. The inertia
terms represent the volume force needed to accelerate the
existing and produced charged particles to their steady-
state radial drift velocities. This force is supplied by the
difference between the electric field, the diffusion, and the
friction volume forces.

In order to compare the relative importance of the
various terms on the total radial charged-particle flow
density, Eqs. (2) and (3) can be rewritten as

rI „(r)
v, r dr n, (r)

spectively. However, its relative magnitude with respect
to the difference of the other two terms, i.e., the flow den-
sities due to diffusion and the macroscopic electric field,
will indicate the importance of the inclusion of the inertia
terms in the calculations. In the following discussion, the
three radial flow density terms for the ions will be
represented by I, (r) for the inertial flow density, I, (r)

I D

for the di8'usion fiow density, and I, (r) for the electric
E

field flow density. Similarly, I, (r), I, (r), and I, (r)
I D E

will represent the three radial flow density terms for the
electrons.

The total radial Row density and its three components
are given for the case poR =5.0 Torr cm in Figs. 7 and 8
for the positive ions and electrons, respectively. The data
of Fig. 7 show that the total ion radial flow density,
I „(r), is almost completely a consequence of the induced
electric field. The absolute values of 1, (r) and I, (r) are

I D
several orders of magnitude smaller than I „(r) except
very close to the tube axis, where all the flow densities ap-
proach zero. The data given in Fig. 8 show that for the
electrons the absolute values of I, (r) and I, (r) are

D E

large with respect to the total electron radial flow densi-
ty, I"„(r). Moreover, the absolute value of I,, (r) iseI

several orders of magnitude smaller than 1,(r). There-
fore, for these discharge conditions, the radial electron
density is approximately given by the Boltzmann distri-
bution n, (r) =n, (r =0)exp[eV(r) IkT, ], as easily follows
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FIG. 7. Numerical calculations of the radial distributions for
the positive ions of the total radial flow density I,(r), the inertia
flow density I, (r), the diffusion flow density I, (r), and the

I D

electric field flow density I, (r). Data are for the parameters
E

given in Fig. 1 (i.e., poR =5.0 Torrcm).

FIG. 8. Numerical calculations of the radial distributions for
the electrons of the total radial flow density I „(r), the inertia
flow density I",, (r), the diffusion flow density I,. (r), and theI D

electric field flow density 1,, (r), Data are for the parametersE
given in Fig. 1 (i.e. , poR =5.0 Torr cm).
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FIG. 9. Numerical calculations of the radial distributions for
the positive ions of &he total radial flow density I „(r), the inertia
flow density I; (r), the diffusion flow density I; (r), and the

I D

electric field flow density I, (r). Data are for the parameters
E

given in Fig. 4 (i.e., poR =0.5 Torr cm).

FIG. 10. Numerical calculations of the radial distributions
for the electrons of the total radial flow density I „(r), the iner-
tia flow density I, (r), the diffusion flow density I, (r), and the

I ~D

electric field flow density I,, (r). Data are for the parameters

given in Fig. 4 (i.e., poR =0.5 Torr cm).

from Eq. (7).
The How densities for the case poR =0.5 Torrcm are

given in Figs. 9 and 10 for the ions and electrons, respec-
tively. The data of Fig. 9 show that the absolute value of
I, (r) is larger than 5% of the total ion flow density I „(r)
over about half of the tube radius and reaches approxi-
mately 20% of the value of I „(r) close to the tube wall.
The value of I, (r) is less than 1% of I „(r) for all values

D

of the tube radius. The absolute values of I, (r) and
DI, (r) are again large with respect to the value of I „(r},

as is shown in Fig. 10. However, the value of I, (r) in-
I

creases strongly towards the tube wall and becomes more
than 20% of the value of I „(r)close to the tube wall.

In summary, the calculations show that in a positive-
column discharge produced in helium the diA'usion Aow
density of positive ions, I, (r), is the only component of

D

the total radial charged-particle flow density, I „(r ),
which is smaller than 1% for poR values varying from 0.5
to 5.0 Torr cm. For small poR values the inclusion of the
inertia terms for both the positive ions, I, (r), and elec-

I
trons, I, (r), has a non-negligible effect on the total radi-

I
al charged-particle fiow density. This implies, for this
case, that the inertia forces should be included in the cal-
culations and that the second and third terms on the
right-hand side of Eqs. (6} and (7) cannot be interpreted

simply as the Bow densities due to diffusion and induced
electric field, respectively.

V. CONCLUSIONS

A model has been presented for the radial distribution
of the ion and electron densities and electric field strength
in the cylindrical positive column of a dc discharge for a
plasma consisting of a singly charged positive-ion species,
electrons, and neutral species. Under appropriate as-
sumptions, the resulting set of equations involved consists
of the particle-conservation equation, the momentum-
conservation equations, and Poisson's equation. A
method of solution for this set of equations using a
power-series expansion has been outlined, which avoids
the instability problem encountered by previous authors.
This allows for the inclusion of all the volume force terms
in the conservation of momentum equations for the ions
and electrons.

The results of calculations based on this model show
the development of the bulk plasma region near the
discharge tube axis and the sheath region near the tube
wall ~ There is no clear distinction between these two re-
gions, with a smooth transition occurring from the bulk
plasma region to the sheath region, as can be expected.
While the results near the tube axis are consistent with
the ambipolar model, they deviate considerably from this
model in the sheath region near the wall. However, even
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at the axis, there is a net space-charge density which in-
creases for decreasing values of poR. The electric poten-
tial at the wall relative to the axis is on the order of the
value predicted by the quasineutral inertia limited theory,
with the wall potential increasing for decreasing values of
poR. The results show that the development of a sheath
region can occur even for situations in which the Bohm
criterion is never met. The importance of the boundary
condition chosen for the electron density at the discharge
tube wall was investigated. It was found that the choice
of either Eq. (5) or n, (r =R)=0 as the boundary condi-
tion has little effect on the solution for the cases studied.

Finally, the relative importance of the three terms on
the left-hand side of the conservation of momentum equa-

tions (2) and (3) on the total radial charged-particle Aow

density has been discussed. It was found that for poR
values varying from 0.5 to 5.0 Torr cm the ion flow densi-
ty due to diffusion is less than 1% of the total ion radial
flow density. However, the effect of the inertia terms for
the ions and electrons on the total ion and electron radial
flow densities is non-negligible for small values of poR.
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