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Correlation functions in statistical mechanics and astrophysics
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A general review of distribution functions reveals that the two- and three-point correlation func-
tions familiar to galaxy studies may be identified with the total correlation functions relevant to the
study of liquids. In this context a discussion is included of the Peebles-Groth three-point correla-
tion function. A recently derived two-point correlation function in polynomial form is reviewed.
Renormalization of this expression is found to bring it into very good agreement with the well-

established r ~ form {where r is intergalaxy displacement and y is a constant).

I. INTRODUCTION

The principal spatial correlation functions in the study
of liquids are the radial distribution function and the to-
tal correlation function. ' Such functions describe the
spatial correlations between sets of two or more particles
in a material. Spatial correlation functions in galaxy
correlation work are called the two-point correlation
function, three-point correlation function, etc.

In the present work these two formalisms are com-
pared and it is concluded that the s-point correlation
function of astrophysics may be identified with the s-
particle total correlation function of statistical mechan-
ics. The disparity between the Peebles-Groth three-
point correlation and the Kirkwood superposition
relevant to fluids is reviewed. An alternative form of the
three-particle radial distribution is illustrated which is
shown to imply the Peebles-Groth function. A discussion

I

is included of a recently derived two-point correlation
function which, in the present work, is brought into
agreement with empirical results through proper normal-
ization.

II. ANALYSIS

A. Correlation functions

1. Definitions

Let Ftv (1, . . . , X) represent the N-body joint probabili-
ty distribution relevant to an aggregate of X identical bo-
dies of mass m which occupy a volume V. The variable"1"represents phase coordinates x1 and v1 where x is dis-
placement and v is velocity.

Correlation functions [ Cz ( 1,2 ), C3 (1,2, 3 ), . . . I are
defined through the mapping

Fz(1,2) =Fi (1)Fi(2)+Cz(1,2),
F3(1,2, 3)=F, (1)F,(2)F, (3)+ g F, (1)Cz(2, 3)+C3(1,2, 3),

P(1,2, 3)

The sum in the second equation is over the permutations
of the phase variables 1,2,3. Note in particular that if bo-
dies are uncorrelated then F2 =F,F„etc., and all corre-
lation functions vanish.

2. Equilibrium distributions

In the absence of external potentials, the equilibrium
one-body distribution is given by the Maxwellian

r

In astrophysics this variance is called the rms proper
peculiar speed.

The distribution (2) has the normalization

f Fo(u)4t. u du=n .
0

(4)

Fz(1,2) =F (01)F (02)[1 +h(zr)],

The key spatial correlation functions of statistical
mechanics are defined as follows. The total correlation
function hz(r) is given by

Fo(u) =
(2 )3/zC3 exp

U
2

2C
(2) where r is written for interparticle displacement

where n =X/V is number density and C is thermal speed,
r—= /x, —

xz/ . (5a)

k~TC'= —,'((u —(u &)'& = (3)
Note that with (1) we may write

Cz(1,2) =Fo(1)F&(2)hz(r) .
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If particles are uncorrelated then h2(r)=0. The radial
distribution g2(r) is given by

F2(1,2) =Fo(1)FO(2)g2(r) .

configuration term

G)v =exp —Pg cp(r,, )

17J
I+J

(15)

If particles are uncorrelated, g2(r)=1. With (5) and (6)
we may write

and q)(r, )rep"resents the two-body potential. Integrating
(14) we find

3. Limiting values

In fluids, boundary values of these functions are given
by

g2(0) =0, h2(0) = —1,
g2(~)=1, h2(~)=0.

(9)

The first two equations reflect the impenetrability of con-
stituents in the fluid. The latter two equations assume
that constituent particles grow uncorrelated with separa-
tion.

4. Higher-order correlations

Three-particle correlations are defined as follows. The
three-body total correlation function is given by

F3(1,2, 3)=Fo(1)FO(2)FO(3)

h2(r)=g2(r) —1 .

For liquids, g2(r) is constructed from neutron scattering
data in conjunction with the structure factor.

F~ dv dx4dx5 ' ' dx~

3 PI ) [q 12 +q( 23)+q( 13)]I

g3( 12 23 13 (16)

h3 ( 12 23 13) 2( 12)h2( 23)h2( 13)
K

+ g h2(r, , )h2(r, t,. ) .
p(i,j,k)

(18)

In the sum over permutations, terms like ijk and I.ji are
counted once. The relation (18) is returned to below.

C. Correlation functions in astrophysics

where the second equality in (16) follows from (11). The
relation (16) strongly motivates the decomposition (13) as
well as the low-density approximation'

( )
—t3y( r)

For further reference the Kirkwood superposition is writ-
ten in terms of total correlations. With (12) and (13) we
obtain

x 1+g h2(r, )+h3(r12, r23, "31)
l7 j

I +J

(10)
Integrating (5) over velocity and recalling the normali-

zation (4) gives

fF2(1,2)dv)dv2=n [1+h2(r)] . (19)
where i and j run from 1 to 3. The three-particle radial
distribution is given by

Fo( 1 2 3)=F0( 1 )Fo(2)FO(3 )g3(r)2 r23 1 13 )

Let 6V, and 6 V2 denote volume elements so that

5V15V, fF2dv)dv2=5P (20)

It follows that represents the probability of finding galaxies in 6V, and
5V2 separated by the distance r. Relabeling

g3(r12r23r31) +X h2(rg)+h3(r12 r23 r31) ' (12)
l7 ji+j

The dependence of spatial distributions on interparticle
displacements r, , as in (5) et seq. , is r"elevant to a fluid in-
variant under translation and rotation. '

h2(r)~g(r),
(19) and (20) give

5P=n [1+/(r)]5V)5V2 .

(21)

(22)

B. Kirkwood superposition and canonical forms

g3 ( 12 23 "13 g2( 12)g2( 23)g2( 13
K (13)

This decomposition may be related to the canonical dis-
tribution,

F~~)(1, . . . , X)=A)1,e ~ G„(x,, . . . , x~), (14)

as follows. In (14), K represents kinetic energy, P—= 1/
k~ T, A~ is a normalization constant, G~ is the

In obtaining closed equations for correlation functions
for liquids assorted approximations are introduced. '
Thus, for example, in the Kirkwood superposition one
sets

This equation is found in most works on galaxy correla-
tions, and g(r) is called the two-point correlation
function. We see that it is identical to the total correla-
tion function familiar to statistical mechanics. The func-
tion g(r) is determined from measured values of the angu-
lar galaxy correlation function in conjunction with
Limber's rule"

Continuing in this manner, integrating (10) over veloci-
ties and multiplying by 5V&6V26V3 we obtain

5 V, 5 V, 5 V3 fF3d v, dv21 v3
1'

=n 1+g h2(r~) +h (3r, 2r 23r ))3. (23)
t7J

I +J

Calling the left-hand side of this equation 5P and setting
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TABLE I. List of nomenclature for correlation functions in statistical mechanics and astrophysics.

Name
Statistical
Mechanics Astrophysics Name

Radial distribution
Total correlation
Three-particle
total correlation
s-particle
total correlation

g(r) or g2(r)
h(r) or h~(r)
h 3(r12 r23 r13 )

h, (r, 7, r„, . . . )

g(r)
12 23 13 )

12 23

Two-point correlation
Three-point
correlation

s-point correlation

(24)

together with (21) gives

6P=n 1++g(r, )+g(r 12r ,2, r») '5V, 6V, 6V3 . (25)

Here 6I' represents the probability of finding galaxies in
each of the volumes 6V, , 6V2, and 6V3 with separations
r ]2 r23, and r „.The relation (25) is the form popular to
galaxy correlation functions. With (23) we see that the
three-point correlation function g of astrophysics may be
identified with the three-particle total correlation func-
tion of statistical mechanics, h3. A list of these compar-
isons is given in Table I.

D. Peebles-Groth superposition

The Pebbles-Groth approximation of the three-point
correlation function is given by

12 23 13 Q g 0 'j)P jk)
p(i,j,k )

The constant Q has the value

Q=1.3+0.2 .

(26)

(26a)

Comparing the form (26) with the Kirkwood relation (18)
reveals that the Peebles-Groth superposition ignores the
three-body product form in (18). Nonetheless it has been
noted that (26) gives good agreement with measured an-
gular galaxy correlations.

We wish to illustrate the three-particle radial distribu-
tion that implies (26). It is given by the symmetric form

g3 QIg2( 12)lg2( 23 I+g2 23 lg2 13)

(28)

With the said assumption concerning Q, (28) establishes
the equivalence of (27) to (26). It is also noted that the
two-point galaxy correlation function g is typically
greater than 1, in which case products of g may be as-
sumed to be somewhat larger than linear terms in g.

III. TWO-POINT GALAXY CORRELATIONS

A. Previous results

where m, and m 2 are galaxy masses and G is the gravita-
tional constant. A distinct diA'erence between molecular
correlation in liquids and galaxy correlation in the
universe is obtained by substituting the potential (29) into
the approximate form (17). For small r one finds that
g(r) ~ ~ in dramatic difference with the boundary value
given in (9). For large r, we see that correlations vanish
in agreement with the result for liquids. See Table II.

A number of calculations and observations have sug-
gested the following form' ' for the two-point correla-
tion function:

gp(r)=(voIr)r .

In 1974 Peebles' obtained the values

y=1.77+0.44 ra=(4. 3+0.3)h ' Mpc

(30)

For galaxy interactions, the two-body potential is given
by

Gm )m2
y(r) =—

+g2(r, 3)[g2(r, 2) —I] I + 1

or, equivalently,

(27) relevant to the domain

0. 1h ' Mpc&r &9h ' Mpc . (31)

g3 (r12, r23, r13 ) = Q g g2(r 2
)h 2(rjk )+ 1 .

P(i,j,k)

(27a) For purposes of comparison, the form (30) is labeled

gz(r). The nondimensional factor h in (31) is included

The g2(r, )factor of each product -on the right-hand side

of (27a) gives the probability of finding galaxies i and j
separated by r, , whereas the h2(r k ) fa"ctor gives the
correlation of galaxy j with galaxy k separated by r.k.

The validity that (27) implies (26) rests on the assump-
tion that Q = 1 which, with (26), is seen to be a reasonable
assumption. Let us derive this result. Comparing g3 (27)
with the generic form (12) gives (in astrophysical termi-
nology)

Medium r «a r ))a
Liquids
Galaxies

h ——1

g —ca

h-0
-0

TABLE II. Limiting values of correlation functions for
molecular and galactic media. In the present discussion, for
galaxies, r lies in the domain given by (30). The scale length
a =n ' ', where n is the molecule or galaxy number density.
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which was taken to be =13 Mpc. In the present work, a
mean-square fit of (32) to (t(r) (see the Appendix) given
by (30) reveals the value D =0.61. See Fig. l. It should
be noted that both gp(r) and goL(r) give good agreement
with measured angular galaxy correlations. The sharper
decrease of goL(r) for large r (i.e., r ~ 10 Mpc) may be a
precursor of oscillatory behavior of the total correlation
function familiar to the study of strongly coupled
auids '"

IV. CONCLUSIONS
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Correlation functions familiar to liquid and galaxy
studies were compared. It was noted that the form
relevant to galaxy work is commonly labeled the total
correlation function in the study of liquids. Asymptotic
values of these functions in liquid and galaxy theory were
compared and found to agree at large two-body separa-
tion but to be vastly diff'erent at small values of displace-
ment. A symmetric form of the three-particle radial dis-
tribution was presented which was found to return the
Peebles-Groth three-point correlation approximation.
Lastly, a new polynomial form for the two-point correla-
tion function was reviewed which, through simple renor-
malization, was brought into good agreement with the
well-established r ~ form.
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APPENDIX

Here is an outline of the mean-square fit of goL to gp.
First we divide the r 0 axis into segments of equal
length. The ith segment is labeled r;. The program then
seeks to minimize the net square diff'erence

In a more recent work stemming from the
Bogolivbov-Born-Green-Kirkwood- Yvon (BBGKY) hier-
archy, and angular correlation data, and taking into ac-
count strong coupling between galaxies, the following
two-point correlation function was obtained:

R —= g [gp(r, ) joL(r; )]—
Setting

(or, L) =DfoL(r, )

(Al)

(A2)

goL(r)=D(0. 09r +0.42r ' —0.31r),
where D is a constant = 1 and

(32) and differentiating (A 1) with respect to D gives

R'= —2+(gp DfGL)fGL . — (A3)

r —= r/RTHs (32a) Setting R ' =0 we obtain

The parameter R THs (radius of the "thermal Hubble
sphere") is given by

Xkp GL

fGL

RTHS =~0 (32b) This expression was used to obtain the cited value of D.
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