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The thermodynamics of the relativistic shock wave in which electron-positron pairs are produced
in the post-shock matter is studied in the temperature range 5X10 K & T(10' K, where the
baryons are nonrelativistic and electron-positron pairs are the only leptons created. The post-shock
matter with pairs in thermodynamic equilibrium are classified according to whether or not the ener-

gy density of the radiation (the pairs and the photons) exceeds that of the baryons. The post-shock
matter without pairs in thermal equilibrium is also considered in the case where it is composed of a
relativistic two-temperature electron-ion plasma. The relevant time scales for such processes as
temperature relaxation, pair production, and cooling are examined in order to establish the temper-
ature region where such a plasma can exist. Analytic relations between the pre-shock and post-
shock quantities are obtained in certain limits of these three cases. The shocks with and without
pairs in the post-shock matter are then compared.

I. INTRODUCTION

Relativity comes into play in hydrodynamic shock phe-
nomena either when the bulk velocity of the matter be-
comes on the same order of the velocity of light (c) or
when the temperature (especially, that of the post-shock
matter) becomes comparable to or exceeds the rest-mass
energy of the lightest particle species. ' In the latter
case, which does not necessarily exclude the former case,
particle-pair creation may result. The bulk motion of the
hydrogen plasma with a velocity,

I /2
2m, cv) =0.033c,

m

where m, and m are the electron and proton masses, re-
spectively, for example, can be a potential source of
electron-positron pair creation, since such a bulk kinetic
energy, after the plasma is thermalized, could give rise to
a temperature exceeding the electron-rest-mass energy.
Velocities of this order may be found in a wide variety of
astrophysical phenomena, such as galactic jets. In partic-
ular, the typical escape velocity from a compact star and
the velocities associated with the apparent superluminal
motion are generally on the same order of the velocity of
light. In addition, there are a number of phenomena in
which pair creation by shock waves may play an impor-
tant role: heavy ion collisions, accretion disks, early
universe, cosmic strings, to list a few.

The production of electron-positron pairs has impor-
tant implications from the observational point of view.
Due to a larger electric-charge —to —rest-mass ratio, elec-
trons and positrons couple to photons more strongly than
protons, so that a number of radiative processes, such as
bremsstrahlung, Compton processes, and synchrotron ra-,
diation, are expected. Furthermore, certain atomic pro-
cesses involving the positronium and the y-ray line from
the pair annihilation are also possible observational

consequences. In addition, the electron-positron pair
plasma could dynamically behave differently around the
massive object, where gravity plays an important role,
since the pair plasma is less gravitationally bound to the
system than the baryonic matter.

Although the relativistic shock has been studied in a
number of papers, the effects of particle-pair produc-
tion has not been considered seriously so far. The pur-
pose of the present paper is to study the properties of rel-
ativistic shocks when particle pairs are created in the
post-shock matter. Since we are mainly concerned with
the qualitative consequences of such a pair production,
we consider the simplest possible cases in which the
essential physics is transparent. Therefore, we shall make
a number of simplifying assumptions. We first consider
the case where the pre-shock matter and the post-shock
matter are in thermodynamic equilibrium. The pre-
shock matter is assumed to be a nonrelativistic-
nondegenerate hydrogen plasma. Then, a few equations
of state for the post-shock matter are selected. When the
number of pairs far exceeds that of the ions, the pairs and
the photons are treated as a blackbody. In comparison to
the cases where electron-positron pairs are present, we
shall also consider the post-shock matter without pairs.

The outline of the present paper is as follows. In Sec.
II, we begin by listing simplifying assumptions and then
classify the post-shock matter according to its equation of
state. In Sec. III, we treat the post-shock matter in
which pairs are present. By using the Rankine-Hugoniot
relation and conservation laws, we express the post-shock
quantities in terms of the pre-shock quantities. We also
derive the self-consistency conditions for the pre-shock
quantities so that the temperature of the post-shock
matter remains in a range such that electron-positron
pairs are the only pairs produced. In Sec. IV, we consid-
er the post-shock matter in which pairs are absent. We
take the relativistic two-temperature Maxwellian plasma
for the equation of state and do an analysis similar to that
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in Sec. III. In addition, various relevant time scales are
compared and the condition under which such a plasma
can exist is discussed. In Sec. V, we summarize and dis-
cuss our results. Some of the thermodynamic quantities
for a relativistic Maxwellian gas are listed in Appendix
A, while calculational details pertaining to Sec. III are
given in Appendix B.

II. CLASSIFICATION OF THE POST-SHOCK
MATTER

Consider a shock wave in which the pre-shock matter
with a baryon number density n» and an electron num-
ber density n,

&
comes in at a velocity v

&
relative to the

shock boundary and the post-shock matter with a baryon
number density nb2 moves at a velocity v2, also relative to
the shock -boundary. The suffixes 1 and 2 are used to
denote the pre-shock and post-shock quantities, respec-
tively. We treat the simple cases by assuming the follow-
ing.

(i) First, we assume that the pre-shock matter and the
post-shock matter are in thermodynamic equilibrium
with temperatures T

&
and T2, respectively. Later, we

also consider the post-shock matter which is in thermal
equilibrium but not in chemical equilibrium.

(ii) We take a nonrelativistic-nondegenerate hydrogen
plasma as a pre-shock matter, which we shall also refer to
as an electron-ion plasma. It is assumed that the elec-
trons and ions are Maxwellian.

(iii) We consider the temperature range,

m, c ~ k&T2 (m„c (2.1)

Under these conditions, the ions and the electrons con-
tribute to the energy density of the pre-shock rnatter as

so that electron-positron pairs are the only pairs which
need to be considered. Here, m„ is the mass of the muon.
In certain cases, we relax this constraint (2.1) when pair
creation is unimportant.

(iv) The dynamics of pair production is by itself a very
important problem. However, it is outside the scope of
the present paper. We simply consider the cases where
pairs are present or absent in the post-shock matter, and
qualitatively discuss the coriditions under which such
cases are realized.

(v) We assume that the pairs and the photons are
confined to the system. Therefore, we are assuming that
the mean free path of the electrons, positrons, and pho-
tons are much shorter than the characteristic length scale
of the system.

(vi) When neutrinos are produced, they may freely es-
cape from the system and act as an energy sink. We shall
neglect such an effect. If neutrinos are produced and
their mean free path is much smaller than the charac-
teristic length scale of the system, they are trapped. In
such a case, the neutrinos may be treated as another
blackbody and the generalization is straightforward.

+
2 ne]kg T] (2.3)

Thus the total energy density of the pre-shock matter is
dominated by the ion rest-mass energy density,

2
Ei E'&+6 i nbim c (2.4)

Then, the ion, electron, and total pressures are given, re-
spectively, by

p, &

= nb&k& T&,

pei ne)k~ T, ,

p& =p;&+p, &=2nb, k~T

(2.5)

(2.6)

(2.7)

k,~=(3' n, ~)' (2.8)

so that in terms of the electron Fermi temperature,

A k,F
TeF =—,k2me

(2.9)

the degeneracy boundary T2 = T,I; may be expressed as

2/3
7 2 ( 3~2)2/3

m c
(2.10)

where no—= (m, c/A') =1.74X10 ' cm . Similarly, for
the nonrelativistic ions with a number density nb2, the
Fermi wave number is

k,~=(37r nl, ~)'

and the Fermi temperature is

(2.11)

Let us now turn to the post-shock rnatter. When the
pre-shock matter, which is composed of nonrelativistic
electrons and ions, is heated by the shock, the resultant
post-shock rnatter may also contain thermally produced
electron-positron pairs and photons, in addition to the
original electrons and ions. Let us recall that the state of
a homogeneous one-component system in thermodynam-
ic equilibrium may be characterized by two thermo-
dynamic variables. In spite of its multicomponent nature
of the post-shock matter, it may also be characterized by
two thermodynamic variables. The baryon number den-
sity nb2 and the temperature T2 are sufficient to specify
the state of the system uniquely. The number density of
the (blackbody) photons is a function of the temperature
and the number densities of the electrons and positrons
are functions of the temperature and the baryon number
density.

Throughout this paper, we are interested in the case
where the electrons and ions in the post-shock rnatter are
either nondegenerate (with a Maxwellian distribution) or
partially degenerate (with a Fermi distribution with zero
chemical potential). Therefore, let us first establish the
degeneracy boundaries in the n, z-Tz (nb&-Tz) plane. For
the nonrelativistic electrons with a number density n, 2,
the Fermi wave number is given by

2 3nb]mpc+znb]k~T (2.2)

R k,-F
(2.12)
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Thus the degeneracy boundary T2 = T;F may be written
as

kiiTi (3' ) m, n

2 m no

2/3

(2.13)

T,F —Ack, F /k~

T&'F —Ack&F /kg

(2.14)

(2.15)

so that the boundaries T2 = T,F and T2 = T,F may be ex-
pressed as

k~T2, n, 2=(3ir )
mec no

k~T2, nb2

m, c 2
=(3m. )

no

' 1/3

1/3

(2.16)

(2.17)

respectively. In Eqs. (2.16) and (2.17), the electron mass
m, enters as a dummy variable. These boundaries [Eqs.
(2.10), (2.13), (2.16), and (2.17)] are shown in Fig. 1.
When the temperature is higher (or the number density is
lower) than those given in Eqs. (2.16) and (2.17), the ex-
tremely relativistic electrons and ions are nondegenerate,
respectively. These constraints may also be derived as
the condition for the Maxwell-Boltzmann statistics from
the expression for the chemical potential of an extremely
relativistic Maxwellian gas. [See Eq. (A53) in Appendix
A.] One may derive some of the conditions on degenera-
cy by using an alternative argument. Let us remark that,
in addition to the baryon number density nb2, there is
another number density which is characteristic to the rel-
ativistic electrons. When the electrons are relativistic
such that the temperature exceeds the electron-rest-mass
energy, kz T2 &)m, c, there is only one energy scale kz T,
which in turn gives a length scale Pic/kiiTz (i.e. , the
thermal de Broglie wavelength). Therefore, the quantity
(kii T2 itic ) gives another characteristic number density
of the system in addition to the baryon number density
nb2. Thus it is natural to classify the post-shock rnatter
into two types, depending upon whether

nb2 (
'3

k~ T2

Ac
(2.18)

or

k~ T2
nb2 &

Ac
(2. 19)

For the electron-ion plasma (n, i =n„i), the condition that
the electrons to be nondegenerate [the higher tempera-
ture and lower electron number density side of (2.16)] is
essentially the same as (2.18) in the temperature range

The condition for nondegeneracy (T2 ))T,F and

T2 &&T,F) may be derived from the condition for the
Maxwell-Boltzmann statistics in terms of the chemical
potential of a nonrelativistic Maxwellian gas. [See Eq.
(A38) in Appendix A.]

For the extremely relativistic electrons and ions with
number densities n, 2 and nb2, the Fermi temperatures are

(2.1). For ions, (2.18) is essentially the same as the condi-
tion that they are nondegenerate [the higher temperature
and lower baryon number density side of (2.17)] in the
temperature range (k&T2 ))m c ). Thus we shall omit
the case in which (2.19) holds from our consideration,
and only treat the case in which (2.18) holds. In particu-
lar, we shall consider only the limiting case when the in-
equality holds strongly, i.e. , when

nb2 (&
3

k~ T2

Ac
(2.20)

(2.21)
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FIG. 1. Classification of the post-shock matter in the n»-T,
(and n„-T, ) plane. The n, 2 axis is superposed on the n» axis.
The horizontal solid lines correspond to k&T2 =m, c', m„c',
and rn~c from the bottom, respectively. The dashed curves ex-
press the degeneracy boundaries for the electrons and the ions.
They merge into one line at high temperatures and densities.
The dotted vertical lines divide the density region above which
the degenerate electrons (the one on the left) and the degenerate
ions (the one on the right) become relativistic. The wavy line
defines the two regions where the radiation is dominant {on the
higher-T2 and lower-n» side) or the baryons are dominant (on
the lower-T2 and higher-n» side) in the energy density of the
pair plasma. Regions I and II are bounded by these curves and
lines. Region III is defined to be the combined area of region I
and region II (the small triangular-shaped area) below the hor-
izontal line k& T2/m, c'=100. The crosses in the figure refer to
the sets of values for the baryon number density and the temper-
ature (n», T;2), while the circles refer to the sets of values for
the electron number density and the temperature (n„, T,~).
These crosses and circles a-g are used as the examples of
classification. (See Table II.)

Here, let us examine the condition for thermodynamic
equilibrium. First, the post-shock matter must be in
thermal equilibrium. This means that the time scale of
interest [the characteristic (hydrodynamic) time scale of
the system] r is much larger than the thermal relaxation
time scale ~T. Second, the post-shock matter must be in
chemical equilibrium. In the present case, the composi-
tion changes by pair creation, so that the time scale for
pair creation ~ „,must be much shorter than r. There-
fore, thermodynamic equilibrium is reached when
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A. The pair plasma

When (2.18) holds and the thermodynamic equilibrium
is reached, the electrons and positrons have a Fermi dis-
tribution with zero chemical potential and photons have
a Planck distribution. Then, their number densities are
given by '

One thus sees that the state of the electrons in the n, 2-T2
plane lies close to the degeneracy boundary (2.16) for a
given temperature. This is because the electrons have a
Fermi distribution with zero chemical potential. Since
the ions are nonrelativistic their energy density is given
by

ne ne+

3

3g(3) ka T
2~'

(2.22) 2 nb2mp c +
2 nb2k~ T2 (2.26)

TeF—
1/3

T=1.76T .
2

(2.25)

3

2g(3) ka T
(2.23)

2

where g(3) is Riemann's g function. These number densi-
ties are much larger than that of ions:

n
y ++nb2 (2.24)

We thus simply call this state a pair plasma. The use of
Eq. (2.22) (with n, z replaced by n, ) in Eqs. (2.8) and

(2.14) yields

while the combined energy density of the electrons, posi-
trons, and photons (which we shall refer to as the radia-
tion for simplicity) is

e„,= (aT24

4

no ?eC
60 m, c

(2.27a)

(2.27b)

where a =m. k~/15k c, and we only consider electron-
positron pairs and photons as a radiation, in which case

In general,

g= 1+—', X(number of spin- —,
' charged lepton species)+ —,', X(number of neutrino species) . (2.28)

The total energy density is

~2= ~i2+ ~r2 ~ (2.29)
kg T2 60 m

&(

1]~

1/4
"b2

no
(2.36a)

Similarly, the ion, radiation, and total pressures are
given, respectively, as =5.64

1/4

(2.36b)

p;2 = nb2kg T2

p„= ,
' gaT—

4
k~ T2

nom c
180 m, c

I 2 J i2+Pr2

(2.30)

(2.31a)

(2.31b)

(2.32)

Ji2~J r2
(

holds when

(2.33)

With these equations of state, one may compare some of
the thermodynamic quantities of the nonrelativistic ions
and those of the radiation for a given temperature and a
baryon number density. First, from Eqs. (2.30) and
(2.31), the inequality

no

c.;2 && c,„2, i.e. ,
k~ T2

meC

60 m

11+2 m,

' 1/4
"b2

no

1/4

(case I ), (2.37)

where only the rest-mass energy density is retained in Eq.
(2.26). With the condition (2.20), one sees from Eqs.
(2.33)—(2.34) that the pressure of the radiation always
dominates over that of the ions (p;z ((p„2). On the other
hand, for a given temperature range (2.1) and with the
condition (2.20), one finds that the ratio of the energy
densities can be either greater or less than unity. There-
fore, one can further classify the pair plasma into two
(limiting) categories, depending upon whether the radia-
tion or the ions dominate in the energy density

1/3
ka T2 180 "b2

mec 11m

1/3

=1.18
no

1/3

(2.34a) or

(2.34b)
z,2))c,2, i.e. ,

k~ T2

meC

60 mp

11~2 m,

1/4
nb2

no

1/4

Second, from Eqs. (2.26) and (2.27), the inequality

Ei 2~ Er2

holds when

(2.35)

(case II), (2.38)

respectively. We have thus defined two cases for the pair
plasma.

Let us now compare the heat capacity. From Eq.
(2.27) the heat capacity of the radiation is
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aE„a~„,
C„v=— = V =4/aT2V .

BT BT

Thus

C„,, /V=4/aT2
3

kBT2
no kB

m, c

(2.39)

(2.40a)

(2.40b)

T,2))T„. (2.45)

In view of the conditions (2.43) and (2.44), it seems ap-
propriate to consider a two-temperature electron-ion
plasma as the post-shock mat ter. In fact, a two-
temperature plasma may be produced quite naturally.
Seen in the frame in which the post-shock matter is at
rest, the most kinetic energy of the pre-shock matter is
carried by the ions. Thus, when the ions and electrons
are separately thermalized, one can naturally expect that

where E„=c„2V. On the other hand, for the nonrelativis-
tic ions,

C-v/~ —2&b2&B . (2.41)

Therefore, from Eqs. (2.40) and (2.41) the ratio of the
heat capacities is

C,v

45

22m no

kB T2

m„c
(2.42)

Equation (2.42) shows that the pair plasma acts as a huge
heat bath at temperatures above the pair-creation thresh-
old )m, c /kB. In order to produce the post-shock
matter with an energy density —nom, c —10 m c, a
large bulk kinetic energy is necessary for the pre-shock
matter.

B. The electron-ion plasma

Let us now consider the case in which the post-shock
rnatter does not contain positrons. Such a case is of in-
terest, since it provides a contrasting case for the pair
plasma, which we have just discussed in Sec. II A. It
should be noted that such a plasma without positrons can
exist only temporarily when certain conditions on the
time scales are satisfied. This is because when sufhcient
time has elapsed, pair creation will necessarily occur at
temperatures kB T /m, c 1.

Let us begin with considering some of the relevant time
scales. The relaxation time scales of a relativistic
Maxwellian plasma due to electron-electron, proton-
proton, and electron-proton collision in the temperature
range kB T/m, c ~ 1 have been calculated and compared
with various cooling time scales. " The cooling of pro-
tons occurs mainly due to pion production. At tempera-
tures kBT, /m, c ~ 100, the cooling time scale due to
pion production (rc;) becomes shorter than the proton-
proton relaxation time scale (r, , ). '' Therefore, the pro-
tons can maintain a Maxwell distribution in the tempera-
ture range

We thus specifically consider a two-temperature
Maxwellian electron-ion plasma as post-shock matter.
The temperature of the ions is assumed to be higher than
that of the electrons [(2.45)] and it is assumed to be in the
range (2.43) and (2.44), respectively. When these condi-
tions are satisfied, the plasma can maintain Maxwell dis-
tributions for the ions and electrons without being
affected by the cooling processes that include pair pro-
duction. Again, it is to be remarked that such a plasma
exists for a certain period in the downstream of the post-
shock matter. After a certain time, the electron-ion re-
laxation processes, pair-creation processes, and cooling
processes start to modify the temperatures, distribution,
and the composition of the plasma. One can estimate the
characteristic time scale within which such a plasma can
exist. Using the values for the upper bounds on the tem-
peratures of the ions and electrons, one finds" the cool-
ing time scales for both ions and electrons to be on the
order of

c =10 zTh
2 (2.46)

&c

and, for the electrons,

(2.47)

'Tt g ((7 ((XCc & +p&II- (2.48)

Let us now specify the energy density and the pressure
of the plasma under consideration. We shall still assume
that the inequality (2.20) holds. However, the electron
number density is not given by Eq. (2.22) in the present
case. The electrons and ions are taken to be a relativistic
and nonrelativistic Maxwellian gases with temperatures
T,2 and T, 2, respectively. Then, the energy density may
be expressed as

where ~Th=— ~ Tc and o T is the Thomson cross sec-
tion.

To summarize, the relations among the different time
scales are for the ions,

1(kBT, /m, c (100 . (2.43) ~2 ~i2+ ~e2 (2.49)

1 ~kBT, /, c (10 . (2.44)

On the other hand, bremsstrahlung is the major rnecha-
nism of cooling the electrons. At temperatures
kBT,, /m, c ) 10, the cooling time scale due to brerns-
strahlung (rc, ) becomes shorter than the electron-
electron relaxation time scale (r„, ). '' Therefore, in order
for the electrons to maintain a Maxwell distribution the
temperature of the electrons must be

where

2
C;2 = 71b2mp C

'2
m, c 2

1+—
6 kBT2

+ ~ ~ ~

3 B i2 15 8 i2k T k T
2 m c 8

P

(2.50)

(2.51)
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TABLE I. Classification of three distinct cases (I, II, and III) of the post-shock matter for given baryon number density (n») and
temperature (T2), where no =(m, c/k)', t =k~ T, /m, c, ~~,, ;, is the characteristic time scale for pair creation; ~ is the hydrodynamic
time scale; c;2, c,2, and c.,2 are the energy densities of the ions, the radiation (the electron-positron pairs and the photons), and the
electrons, respectively; and p;&, p„&, and pe2 are the respective pressures.

Classification

case I
case II
case III

nb2

n, t-'

«1
«1
«1

nba

no{m, /m~ )t

«1
»1

arbitrary

pair

«1
«1
»1

Composition of
the post-shock
matter

e e+ plasma
e e+ plasma
e-i plasma'"

Energy density

C, 2 «C„Z
g,2))P„2

&iZ»~e2

Pressure

p'2 «p. 2

pi 2 pr2
pi2»pe2

'Time scale too short to create pairs.
The electrons and ions are separately thermal equilibrium at temperatures T,2 and T;&(» T„,), respectively.

[See Eqs. (A29) and (A44) in Appendix A.] Since (2.45)
holds, one can neglect the contribution of the electrons to
the energy density, so that the major contribution comes
from the ions. Thus

2
C.2

—C.; 2
—nb2mp C

3 B i2k T

m c
(2.52)

Similarly, the pressure is

P2 J I'2+1 e2 —Pi 2 nb2kB ~i2

where

(2.53)

P,2= nb2kB T,2,

Pe2 nb2kB Te2

(2.54)

(2.55)

Since the temperature is in the range (2.43), (2.44), and
(2.45), it follows from Eqs. (2.50) and (2.51) that

and

Z, 2 &)P, 2 (2.56)

(2.57)

Thus the ions dominate in the energy density and pres-
sure. We shall refer to this post-shock matter as the case
III.

C. The classi6cation

We can now summarize the three cases defined so far
in terms of the different time scales and the conditions on
the baryon number density for a given temperature. In

all these three cases, for the electrons to be nondegen-
erate, the set of parameters (n, z, Tz) must lie on the
higher-temperature and lower-density side of Eqs. (2.10)
and (2.16), while for the ions to be nondegenerate,
(n&z, Tz) must lie on the higher-temperature and lower-
density side of Eqs. (2.13) and (2.17). The conditions on
the temperature range and the time scales are (2.20) and
(2.21) for cases I and II, and (2.20), (2.43)—(2.45), (2.47),
and (2.48) for case III, respectively. In addition, the con-
ditions for the energy density are (2.37) for case I and
(2.38) for case II. As we shall see in Sec. III, when one of
the above conditions is strongly satisfied, the results are
greatly simplified and one can obtain analytic expressions
that relate the pre-shock and pre-shock quantities in a
transparent form. Thus the above classification enables
us to understand each physically representative case.
Table I summarizes the characteristic features of the
post-shock matter in the above classification scheme.
Figure 1 shows the above three cases in the ni, z-Tz (n, z-

Tz) plane. To illustrate the classification, several sets of
parameters (n„z, Tz and n, z, T, ) are shown as circles and
crosses a —g in Fig. 1, and their characteristic features are
listed in Table II.

III. THERMODYNAMIC QUANTITIES OF THE
POST-SHOCK MATTER: THE PAIR PLASMA

In this section we express the physical quantities of the
post-shock matter in terms of the pre-shock quantities.
We treat two of the three qualitatively distinct cases (case
I and case II), which are classified in Sec. II, separately.

TABLE II. Examples of the classification. The sets of parameters n», T;2 and n, 2, T„, which are
shown as circles and crosses a —g in Fig. 1, are used to illustrate the classification scheme of Table I.
The first and second columns list the baryon number density (n») and the electron number density
(n, 2), respectively, to which the circles and the crosses a —g in Fig. 1 correspond. The third column
shows the composition which is either the electron-ion plasma (e —i ) or the pair plasma (e e ). The
fourth and fifth columns show the distribution function [either the Maxwellian (M) or the Fermi distri-
bution with zero chemical potential (H] of the ions and the electrons, respectively. The last column in-
dicates the classification.

nba

C

d

ne2

b

e
e

Composition

e e+
e e+
e e

e-i
e-i

F
F
F
M
M

Classification

I
I
II
III
III
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There are one kinematical (velocity U) and two thermo-
dynamic quantities (e.g. , the baryon number density nI,
and temperature T) which specify the pre-shock matter
and the post-shock matter, respectively. Therefore, there
are six physical quantities altogether which characterize
the shock. On the other hand, there are three conserva-
tion laws. Thus, only three of the six physical quantities
are independent. In certain special cases, which we can-
sider later in this section, the temperature T, may be
neglected in the energy density c1 of the pre-shock matter
[as in Eq. (2.4)] as far as m c &)ks T&. Then, the pre-
shock matter is characterized by only one thermodynam-
ic variable n». In such a case, there remain only two in-
dependent physical quantities after these conservation
laws are used. This means that two independent vari-
ables, such as n» and U„are sufBcient to determine all
others (such as n~~, T~, and vz).

The baryon number, energy, and momentum fiuxes are
conserved across the shock. These three conservation
laws lead to the following boundary conditions in the
frame in which the shock is at rest:

b11 1 1 b2r2 2

2
W1'V1U1 =W2$2U2

Wl 1 1pl+p 1 W2$2p2+p2

(3.1)

(3.2)

(3.3)

where p=v/c, y= 1/(1 —p )', and w =e+p is the
enthalpy density. The thermodynamic quantities express
the values in the frame in which the fiuid element is at
rest. Within the energy scale under consideration, the

l

lepton number is also conserved. However, from charge
neutrality, this conservation law does not give another in-
dependent boundary condition across the shock.

Eliminating the velocities v, and U2 from Eqs.
(3.1)—(3.3), one obtains the Rankine-Hugoniot rela-
tion, '

w 1

2"b1

2
W2 W1 W2

+(p~ —p ) +
~

=0.
nb2 nb1 nb2

(3.4)

V1
1/2

(p~ —p»(e~+pi )

(e&—E&)(e&+p&)

1/2
(p, —p, )(,+p, )

(E,—s, )(E,+p, )

(3.5)

(3.6)

(p» —pi)(E~ —s&)
p, ~=

c (e&+pz)(Ex+pi )
(3.7)

where U, 2 is the relative velocity of the pre-shock matter
and the post-shock matter. Here one may use the explicit
forms for the thermodynamic quantities c, , [Eqs.
(2.2) —(2 4)], ez [Eqs. (2.26)—(2.29)], p& [Eq. (2.7)], and p&
[Eqs. (2.30)—(2.32)] to write Eq. (3.5) as

1/2

The Rankine-Hugoniot relation expresses one of the
three conservation laws in terms of the four independent
thermodynamic variables, where two kinematical vari-
ables have been eliminated by the other two conservation
laws. The velocities may also be expressed in terms of the
thermodynamic variables

U1

c

1 "b2 1 1
( I+y —z) 1+— x+ —y+ —z

nb1

1 "b2 1 11+— —1 x+ —y ——z (1+x+y+ —', z)
3 11b1 2 2

(3.5')

where x —=n»m~c'/p, z, y—:p, z/p„z, z=p, /p„~, and we
have neglected the terms proportional to m, /m .

1/4
45 Pr2

nOmec
2

' 1/4
P1

nb1m C
2

(3.10)

A. Case I—radiation dominant case

Pi 2 ~i2 &Pr2 —~r2 (3.8)

Neglecting the small terms on the orders of
m, /m~, p, /n» m~ c =p, /c. , and p, 2/n» m~ c, one solves2 2

Eq. (3.4) to obtain

When the energy density and the pressure of the post-
shock matter are radiation dominated, c,2 «c.„2-c.2 and

p;2 «pr2-p2. Since we consider nonrelativistic ions,

p;2«c,-2. It thus follows that

V1 F1=1——
C C2

(3.11)

One finds that for p„2~ ~ the ratio of the post-shock to
pre-shock baryon number densities goes as n~z/n»
o:p„'2, while the temperature ratio becomes
T2/T, ~ p„'2 . This behavior is qualitatively different
from the nonrelativistic ideal gas case, in which
n~/n, ~(I +1)/(I"—1), and Tz/T, cap~ for a strong
shock (pz »p, ), where I is the adiabatic index. Similar-
ly, from Eqs. (3.5)—(3.7), the velocities are given by

"b1
=2&3 Pr2

2
nb1m c

1/2
7+—.
2

(3.9) 2E11+
3

(3.12)

In the following we shall retain only the leading terms in

p„~/n»m c ()&1).
The temperature ratio is given by

V12

C

2E,
1

E2
(3.13)
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which allow one to express c2, v2, and v12 in terms of c,
and v, :

1

P 2 =
~ ~2 &&P1 ~1

Eq. (3.6}becomes

(3.20)

2
E.2 2P 161

1 11+
3 y

(3.14)

(3.15)

1/2
4» —p i )(si+p2 }

(s2 —si)(s2+pi )

(3.16) ~2~2

1

3
(3.21)

~b2
=2&2@, ,

&b]

and from Eq. (3.10},

(3.17)

where y&=(1 —U&/c )
'~ . Noting that p2- —,'cz,

p z
—p„z, and e, = n &, m~ c, one obtains from Eqs. (3.9)

and (3.14)

Similarly, Eq. (3.17) comes essentially from baryon
number flux conservation. Here again, one can show that
this is a general feature which is characteristic of the
strong shock with extremely relativistic matter. In fact,
from baryon number fiux conservation (3.1) one can write
the density ratio as

(3.22)

k~ T2

p1e c
30 mp ~b1

~2/ m, no

1/4

=6.71(n~, /no)'~ y',

1/2
71 (3.18a)

For the strong shock with extremely relativistic post-
shock matter, one may use (3.21) [yz—= 1/(1 —Pz)'
=3/2&2] together with P, = 1 in Eq. (3.22) to obtain

(3.18b)

where in Eq. (3.18b) g= —", was used. Equations (3.15),
(3.17), and (3.18) specify the post-shock quantities in
terms of the pre-shock quantities. One again sees that
there are no upper limits on the degree of compression
[Eq. (3.17)] and to the temperature reached by the post-
shock matter [Eq. (3.18)],' in contrast to the nonrela-
tivistic ideal gas case. Since the ion rest mass dominates
in the energy density of the pre-shock matter, the temper-
ature T& does not appear in Eqs. (3.15)—(3.18).

It is easy to show that Eq. (3.14) is a direct conse-
quence of energy flux conservation. In order to illustrate
the behavior of the post-shock energy density c2 as a
function of the Lorentz factor of the pre-shock matter
[Eq. (3.14)], let us calculate the bulk ion kinetic energy
density of the pre-shock matter seen in the frame in
which the past-shock matter is at rest (c.'&). From Eq.
(3.16) one finds

I 2
C1

= fl b1/12fPlp $12C

2 1 2—7 12~1 —
p 7 1~1 (3.19)

Roughly speaking, this gives the dependence of c2 on y, .
The difT'erence between the numerical factors in Eqs.
(3.14) and (3.19) comes from the fact that the energy fiux
density rather than the energy density is continuous
across the shock together with the fact that the work
done by the pressure also contributes.

In the extremely relativistic limit (y1»1), Eq. (3.15)
becomes P2 = —,'. Physically, this is a general feature
which is characteristic of the strong shock with extreme-
ly relativistic matter and is independent of the specific
form of the equation of state. ' In fact, when the post-
shock matter is extremely relativistic and when the pres-
sure and the energy density of the pre-shock matter are
negligible compared to those of the post-shock matter
(strong shock), such that

flb2

fl b 1

(3.23)

It is also straightforward to understand the dependence
of the temperature of the post-shock matter on the
baryon number density and the velocity of the pre-shock
matter in Eq. (3.18a), ks T2 ~ n&( y&~ . The use of the
equations of state (2.4) and (2.27) in Eq. (3.14) immediate-
ly leads to Eq. (3.18a). Thus Eq. (3.18a) expresses energy
flux conservation in terms of the physical quantities asso-
ciated with the specific equations of state (2.4) and (2.27).

It is to be noted that the pre-shock matter is nonrela-
tivistic and thus the rest-mass energy density of the ions
dominates the energy density, so that its state is specified
by one thermodynamic variable, the baryon number den-
sity n», and one kinematical variable, the velocity v, . In
the present case, one finds that above two pre-shock
quantities, nb1 and v1, are sufficient to determine one
thermodynamic variable T2 and one kinematical variable
v2 of the post-shock matter. This is because blackbody
radiation (electron-positron pairs and photons) dominates
the post-shock matter, so that only one parameter, the
temperature T2, specifies the thermodynamic state. Oth-
er qualities simply derive from T2; e.g. , the number densi-
ty is proportional to T2 and the energy density is propor-
tional to T2, etc.

It is also to be noted that the major part of the energy
density of the pre-shock matter consists in the bulk kinet-
ic energy of the ions, which is then converted into the
electron-positron pairs and the photons. The number
densities of the pairs and the photons are determined in
such a way that the baryon number, energy, and momen-
tum flux densities are conserved across the shock.

The above results have been obtained under certain
simplifying assumptions. Specifically, the conditions (2.1)
and (2.37) have been used. It is obvious from Eq. (3.18)
that these two conditions constrain the values of the
baryon number density and the velocity of the pre-shock
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matter. Namely, the values of nb] and v& must be such
that the post-shock matter is heated up sufficiently but
not too much [(2.1)] for the equations of state (2.26) and
(2.27) to be valid, while radiation is dominant [(2.37)].
We now derive this self-consistency condition.

The use of Eq. (3.18) in the first condition (2.1),
1 & kz T2/m, c & m„/m, =207, leads to the constraint

4.93&10 y, &n»/no &9.01)&10 y, (3.24)

where g= —", has been used. Since E, = n„,m c,
c, ,2=nb2m c, and c.,2

—c2, the second condition c,2 „2
may be written as e, 2/E„z-(nb2/nb&)(s&/s, ) «1. The
use of Eqs. (3.14) and (3.17) thus leads to

7') ))+2 . (3.25)

1O20

The region in the N» y, plan-e which satisfies (3.24) and
(3.25) is shown in Fig. 2.

From Fig. 2, the nature of the pre-shock matter in the
present case may be summarized as follows.

(i) The relevant region in the nb~ y, param-eter space
has a simple shape, which is a consequence of the various
simplifying assumptions including the classification
scheme for the post-shock matter.

(ii) The velocity of the pre-shock matter relative to the
shock boundary (U, ) must be extremely relativistic
[(3.25)]. This requirement comes from the condition for
the radiation dominance in the energy density of the
post-shock matter [(2.37)].

(iii) When the velocity of the pre-shock matter is not so
high, the baryon number density of the pre-shock matter
must be on the order of no—:(m, c/fi) =1.74X 10 ' cm',
which is rather high (e.g. , 10 & nb, Ino & 10 for
y, =10).

(iv) At lower baryon number densities of the pre-shock
matter, the required velocities of the pre-shock matter

are relatively high (e.g. , 10 & y, & 10 for n»/no =10
and 10 ~ y ]

& 10' for nb &
/n o —10,etc.).

B. Case II—baryon dominant case

When the energy density of the post-shock matter is
baryon dominated and the pressure is radiation dominat-
ed, c„2« c;2 and p, 2 «p„2. Since p„2 ——,

' c.„2, the condition
that the ions be nonrelativistic, p;2«c, 2, is satisfied in
this case. It thus follows that

Pi 2 Pr2 —~r2 Ei2 (3.26)

Keeping only the terms to the first order in

p, 2/nb]m~c and neglecting other small terms in Eq.
(3.4), one obtains

nb]
(3.27)

The corrections to Eq. (3.27) are on the orders of p;2/p„2,
p, /p„2, and p,2/nb, m~c Usin. g the equations of state
(2.7), (2.30), and (2.31) in Eq. (3.27), one obtains the tem-
perature ratio

T2 2P
T) 7 p)

(3.28)

It is to be noted that these results could be obtained from
the nonrelativistic Rankine-Hugoniot relation with the
use of appropriate (relativistic) equations of state (cf. Ap-
pendix B). It is easy to see from the derivation in Appen-
dix B that the relation (3.27) simply follows if the major
contribution to the pressure of the post-shock matter
comes from extremely relativistic matter (Ez-3pz) and if
the pressure of the post-shock matter is much larger than
that of the pre-shock matter (p, «p~ ).

The velocity of the pre-shock matter may be expressed
in terms of the thermodynamic quantities as Eq. (3.5').
Noting that x ))1,y «1, and z «1 in the present case
one immediately obtains

1/2
1015

1
Ol0

10

U(

nb]1—

[/2

nb]1+3'
nb2

nb]+3
"b2

(x +1)1

X

(3.29a)

10-30 10-" 100 tl bl

fl 0

10(0

FIG. 2, Parameter region in the n&, -y, plane that satisfies the
conditions m, c & kz T2 & m„c and E;2 «c„2. The baryon num-
ber density (n&1) and the Lorentz factor (y &

—= 1 /
[1—(U, /c) ]' ) of the pre-shock matter must lie between the
solid lines indicated by k~T2=m, c and k&T2=m„c for the
temperature of the post-shock matter to be in the range
m, c'&k~T2 &m„c . Furthermore, the velocity of the pre-
shock matter must be such that y 1

&)&2 in order for the energy
density of the radiation to exceed that of the baryons in the
post-shock matter. The wavy line expresses the condition
~a=~r2 ~

7
6x

Pr27
26 n»mpc

(3.29b)

where Eq. (3.27) was used to obtain (3.29b). One notices
that U, /c «1 since x ))1. Similarly, one finds that

Pr2

42nb] mac
2

1 /2

«1. (3.30)

Therefore, the velocities of the pre-shock and post-shock
matter are nonrelativistic in the present case. This is the
reason why the results (3.27) and (3.28) could have been
obtained from the nonrelativistic Rankine-Hugoniot rela-
tion together with appropriate equations of state.
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U2 7U1
1 (3.31}

One finds that the velocity of the post-shock matter is
solely determined by the velocity of the pre-shock matter
and no thermodynamic quantities enter. Equation (3.31)
may be obtained more straightforwardly. Noting that the
rest-mass energy density of the ions dominate in both the
pre-shock and post-shock matter, one obtains from Eqs.
(3.5) and (3.6)

~z si+p2
s2+p &

(3.32a)

tlb1

nb2
(3.32b)

The combination of (3.27) and (3.32b) gives (3.31).
It is also easy to see that the velocities of the pre-shock

and post-shock matter are nonrelativistic. In fact, using
Eq. (3.32b) in the expression for the ratio of the baryon
number densities (3.22), which comes from baryon num-
ber flux conservation, one obtains

'V]/72=1 . (3.33)

Equations (3.31) and (3.33) are compatible only when

Equation (3.27) relates the post-shock baryon number
density to the pre-shock baryon number density. One
finds that no kinematical parameter enters in this rela-
tion. Let us express other post-shock quantities in terms
of the pre-shock quantities. From Eqs. (3.29b) and (3.30)
one obtains the velocity of the post-shock matter in terms
of the pre-shock velocity:

u, /c «1 . (3.38)

In fact, with the use of Eqs. (2.26), (2.27), (2.31), (3.27),
and (3.29b), one finds that this condition is satisfied as far
as u, /c « 1. The region in the nb i-pi plane which
satisfies (3.36) and (3.37) is shown in Fig. 3.

Let us discuss the difference between the radiation
dominant pair plasma (case I) and the baryon dominant
pair plasma (case II) as the post-shock matter. First,
whether the radiation or the baryons dominate in the en-
ergy density determines the velocity of the pre-shock
matter to be either extremely relativistic [case I (3.25)] or
nonrelativistic [case II (3.38)], respectively. This, then,
brings about the entirely different dependence of the
post-shock quantities on the pre-shock quantities: cf.
(3.17) and and (3.27) for the ratios of the baryon number
densities, (3.18) and (3.35) for the temperatures of the
post-shock matter, and (3.15) and (3.31) for the velocities
of the post-shock matter. Comparing Figs. 2 and 3, one
finds the following additional features for the pre-shock
matter.

(i) Compared to case I, the region in the (n», P, ) plane
that fulfills the condition for case II is rather narrow.
Numerically, the smallness of this region may be seen
from the condition on the velocity of the pre-shock
matter, 0.1 & /3, « 1.

(ii) In addition, the baryon number density must be
10 & n»/n0 & 10, which is rather high.

(iii} The triangular-shaped region in Fig. 3 corresponds
to a portion of the region which is below the wavy line
and above the line y, = 1 in Fig. 2. Therefore, the

P„g,«1 . (3.34)

k~ T2

meC

]080 m nb1

e 0

1/4
U1

1/2

(3.35a)

With the use of Eq. (3.30) in Eq. (2.27) one obtains the
temperature of the post-shock matter in terms of the ve-
locity of the pre-shock matter:

)Q
I

= 7. 15(nb]/no)'/'(v
1
/c )'/ (3.35b) ~Q 2

iO 10
(

QIO

3.83X10 (v, /c) &n»/no

& 7.00X 10 (ui /c ) (3.36)

The condition that the pressure of the radiation dom-
inates that of the ions, p„2 &&p;2, gives

n»/no «9.79X10 (u, /c) (3.37}

where Eqs. (2.30), (2.31}, (3.27), and (3.35) have been
used. Another condition that the energy density of the
ions dominates that of the radiation in the post-shock
matter turns out to be

Let us now consider the self-consistency condition.
The temperature of the post-shock matter is given by Eq.
(3.35). The condition (2.1) for the temperature of the
post-shock matter thus constrains the baryon number
density and the velocity of the pre-shock matter as

no

FIG. 3. Parameter region in the nb, -f3, plane that satisfies the
conditions m, c'&k~T2 &m„c', s;z&&E„„and p;, &&p„z [the
triangular-shaped region bounded by a wavy line (c;2=v.„,), a
dashed line (p;z=p„z}, and a solid line (kaT, =m, c')]. The
baryon number density (n„,) and the velocity (u, =cP, } of the
pre-shock matter must lie between the solid lines indicated by
k& T, = m, c' and k& T, = m„c' in order for the temperature of
the post-shock matter to be in the range m, c & k&T2 & m„c .
In addition, the velocity of the pre-shock matter must be such
that /3, «1 in order for the energy density of the baryons to
exceed that of the radiation in the post-shock matter. (The
wavy line expresses the condition c;~=a„2.) Furthermore, the
pre-shock parameters (nb„p~} must Iie on the higher-velocity
and lower-baryon number-density side of and away from the
dashed line, which indicates the condition p;2=p„2, in order to
satisfy the condition p;& «p, &.
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relevant regions for cases I and II in Figs. 2 and 3 are
complimentary. The division is made by the wavy lines
in Figs. 2 and 3, which express the condition c,2=v, 2.

(iv) The condition k&Tz &m„c is satisfied as far as

(v) The boundaries kii T2 =m, c and kz T2 =m „c con-
tinue from Fig. 2 to Fig. 3.

Finally, let us remark that the relation between the
pre-shock quantities and the post-shock quantities may
be viewed as a mapping from the parameter space
(ni, „y', ) to another parameter space (ni, 2, T, ) or (n, 2, T2 ).
In this sense, the triangular-shaped region in Fig. 3 corre-
sponds to another triangular-shaped region in Fig. 1.

IV. THERMODYNAMIC QUANTITIES OF THE
POST-SHOCK MATTER: THE RELATIVISTIC

TWO- TEMPERATURE PLASMA

In this section, we treat the post-shock matter as a rel-
ativistic Maxwellian plasma and obtain the relations be-
twee~ the pre-shock and post-shock quantities, as has
been done in Sec. III. We specifically consider a relativis-
tic two-temperature electron-ion plasma in the tempera-
ture range (2.43), (2.44), and (2.45), which was classified
as case III in Sec. II. In this case, the time scale for pair
creation is so large that no appreciable number of posi-
trons is present in thermal equilibrium. '

From Eqs. (2.2) —(2.7), the enthalpy density of the pre-
shock matter is

2W]:C1+P1 =nb1m C (4.1)

where small terms of orders kz T, /m~ c and m, /mz
have been neglected. (Note that the pre-shock matter is
assumed to be nonrelativistic, such that kii Ti «m, c .)

On the other hand, the enthalpy density of the post-shock
matter is given from Eqs. (2.49)—(2.55) as

5 k~T(2
W2E'2+p2 /1b2mpc 1 +

m c
(4.2)

Using Eqs. (4. 1) and (4.2) together with Eqs. (2.5)—(2.7)
and (2.53)—(2.55) in the Rankine-Hugoniot relation (3.4),
one obtains the density ratio as

=4.
nb1

(4.3)

4 k~T2
&3 m c'

P

1/2

1/2

(4.4)

(4.5)

12—

' 1/2
3k~ T,2

2mac
(4.6)

Next, let us obtain the relations between the velocities
and the temperature of the post-shock matter. Using the
equations of state (2.2)—(2.7) and (2.49) —(2.55) in the ex-
pressions for the velocities (3.5) —(3.7), one immediately
obtains

One may invert (4.4) to write

k~ T, 2

16~i
m c

(4.7)

It is to be noted that Eq. (4.7) is closely related to energy
Aux conservation. When the pre-shock matter has a non-
relativistic velocity (Pi « 1, y, = 1), the bulk kinetic ener-

gy of the pre-shock matter seen in the rest frame of the
post-shock matter is cx P, . On the other hand, the energy
density of the post-shock matter is linearly proportional
to T2 at temperatures kii T~ && m c [cf. Eqs.
(2.49)—(2.51)]. Thus Eq. (4.7) results.

Finally, let us derive the self-consistency condition
such that the temperature of the post-shock matter
remains in the range (2.43). Using Eq. (4.7) into (2.43),
one obtains

0.05&P, &0.54 . (4.8)

One sees that the self-consistency condition is given in
terms of only one parameter, the velocity of the pre-
shock matter U, . This contrasts to cases I and II in Sec.
III, where the self-consistency conditions are in terms of
two parameters, the baryon number density nb, and the
velocity of the pre-shock matter U, [cf. (3.24), (3.25),
(3.36), and (3.37)].

Let us first compare cases I and III by examining how
the temperature of the post-shock matter (Tz) depends on
the velocity of the pre-shock matter (U, ). In case III, the
velocity Pi )0.05 is enough to heat the ions to a tempera-
ture k&T;2) m, c, while the velocity 131 &0.5 is enough
to heat up the post-shock matter to a temperature
k~ T, 2

( 100m, c . Therefore the required value for the
velocity of the pre-shock matter is much smaller than
that in case I [cf. (3.25)]. This is because all the bulk ki-
netic energy of the pre-shock matter is used to heat up
the matter. Thus the temperature of the post-shock
matter rises more steeply as a function of U, in contrast
to the pair plasma case (case I), where the bulk kinetic
energy of the pre-shock matter is used up in producing
pairs.

Note, however, that the self-consistency condition for
cases I and III are mutually exclusive [cf. (3.25) and
(4.8)]. Thus only one (or none of) these cases is realized
for a given set of pre-shock quantities.

Next, let us compare cases II and III. In these cases,
there is an overlapping region for the pre-shock quanti-
ties [cf. (3.36), (3.37), and (4.8)]. For example, pre-shock
matter with nbi/no =1 and f3, =0.3 satisfies (3.36), (3.37),
and (4.8) simultaneously. (See Fig. 3.) Such pre-shock
matter can result in the post-shock matter of either
classification. In case III, the use of the above values in
Eq. (4.7) leads to the temperature of the post-shock
matter to be k&T, 2/m, c =31. In case II, on the other
hand, the above values in Eq. (3.35) give kz T2/m, c =-4.
One thus sees the diff'erence in the temperature of the
post-shock matter. As expected, when pairs are created
(case II), the temperature of the post-shock matter does
not rise as high as the case without pair creation (case
III). This example demonstrates the diff'erences in the
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post-shock matter between the cases with and without
pair creation. One factor that determines which of these
two cases is realized is the relation among the different
time scales [cf. (2.21) for case II, and (2.47) and (2.48) for
case III]. Note that only the conservation laws and ther-
modynamics cannot uniquely determine the state of the
post-shock matter from a given pre-shock condition.
This is because the final state depends critically on the
various factors, such as the kinetic processes within the
shock layer, the size of the shock, the relaxation time
scales, the optical thickness, etc.

V. SUMMARY AND DISCUSSION

Let us summarize and discuss the results obtained in
the present study. We have assumed the pre-shock
matter to be a nonrelativistic electron-ion plasma and
considered three types of plasma as the post-shock
matter. They are the pair plasmas in thermodynamic
equilibrium in which either the radiation or the baryons
dominate in the energy density (cases I and II) and a rela-
tivistic two-temperature electron-ion plasma. In all three
cases, analytic relations were obtained which express the
post-shock quantities in terms of the pre-shock quanti-
ties.

Particle-pair creation adds another degree of freedom
to how the bulk kinetic energy of the pre-shock matter is
converted. If the dynamical time scales are such that
particle pair creation is allowed [(2.21)], the resultant pair
plasma contains the maximum number of electron-
positron pairs, which leads to the minimum temperature
rise for a given energy input from the pre-shock matter.
In the case of radiation-dominated pair plasma (case I), in
particular, the bulk kinetic energy of the pre-shock
matter, which is proportional to y, in the rest frame of
the post-shock matter, is spent in producing pairs, whose
energy density is proportional to T~. Thus the tempera-
ture of the post-shock matter in such a case rises as y &

Therefore, the radiation-dominated pair plasma case sets
a lower limit on the temperature that can be reached by
the post-shock matter for a given set of pre-shock param-
eters (nb, , y, ). In contrast, if the dynamical time scales
are such that no pairs are created [(2.48)], the composi-
tion will not change due to the shock (i.e., the matter
remains as an electron-ion plasma, case III), in which
case the matter is maximally compressed and heated for a
given energy input from the pre-shock matter. There-
fore, the post-shock quantities, such as the temperature
T2, depends sensitively on the composition. In particu-
lar, the pre-shock matter that satisfies (3.36), (3.37), and
(4.8) simultaneously can produce post-shock matter of ei-
ther classification II or III. It is demonstrated that the
post-shock conditions are appreciably different, depend-
ing on whether pairs are created or not. The conditions
for these cases to be realized may be expressed in terms of
the time scales as (2.21) for case II, and as (2.47) and
(2.48) for case III. (Note that these are only necessary
conditions. ) Thus, it is possible that case III is first real-
ized then followed by case II for the post-shock matter
from a certain pre-shock condition. The present analysis,
which is based on the conservation laws and thermo-
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APPENDIX A: THERMODYNAMIC PROPERTIES
OF AN IDEAL RELATIVISTIC MAXWELL-

BOLTZMANN GAS

In this appendix some of the thermodynamic proper-
ties of an ideal relativistic Maxwell-Boltzmann gas are
summarized. ' First, general expressions for the thermo-
dynamic quantities are given. Next, they are reduced in
two limiting cases —the nonrelativistic limit and the ex-
tremely relativistic limit.

Consider N particles of mass m and the internal de-
grees of freedom g in thermal equilibrium at a tempera-
ture T in a volume V. The single particle energy spec-
trum is assumed to be

c =c(m c +p )' (A1}

where p is the momentum. Then, the Gibbs sum is

d P —c(m c +p ) Ik&T

(2vrh)'
(A2a)

gV mc
2m'

3
K2(a)

(A2b)

dynamics, is insufficient for uniquely determining the
final state from a given pre-shock condition. In this
sense, cases II and III set two limits on the post-shock
condition for a given pre-shock condition.

When the post-shock matter is composed of a
radiation-dominated pair plasma (case I), the relations
among the pre-shock and post-shock quantities take espe-
cially simple forms. For example, the velocity of the
post-shock matter is =c/3 [Eq. (3.15)], and the ratio of
the baryon number densities (nb2/n») is a sole function
of the velocity of the pre-shock matter [Eq. (3.17)]. This
is because the post-shock matter is extremely relativistic
and may be described by a simple equation of state

For the radiation-dominated pair plasma (case I),
the characteristic number density of the pair is

no-(kiiT2/m, c ) . Therefore, as seen from Fig. 2, the
baryon number density of the pre-shock matter must be
on the order of no[—= (m, c/fi) =1.74X10 ' cm ] with
the pre-shock velocity y, & 1 for such post-shock matter
to be realized. Only when y, )&1 may the baryon num-
ber density of the pre-shock matter be low, n» ((no.
Therefore, one finds a rather extreme condition, either
y, &)1 or nb, -no, on the pre-shock quantities for this
case to be realized.

We have neglected a number of important problems,
such as the dynamics and the mechanism of electron-
positron pair creation, photon creation, and thermal
equilibration, and the effects of magnetic fields and the
optical thickness. These are the subjects of future study.
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where a —=mc /k&T and K,,(a) is the modified Bessel
function of the second kind (the Macdonald function) of
order v (cf. 9.6.23 of Ref. 15). The partition function of
the system is

1 mc
n

The enthalpy is

Kz(a) »1. (A12)

z= z"1
N NI 1

which gives the Helmholtz free energy as

W(S,p, N) =E+p V

aKz(a)
=Xk~ T 2—

Kz(a)

(A13a)

(Al jb)

F= —k~ T lnZN

= —Nk~ T ln
2w n

3
mc

where n:—N/V. The entropy becomes

BF

V, N

(A4a)

(A5a)

O(T, Vp)= —pV
3

g V pl&~ & mc Kz(a)
k~ Te

2~' ' a

The heat capacity at constant volume is

(A14a)

(A14b)

where the quantity a must be expressed as a =nmc /p.
The thermodynamic potential is

aKz(a)=Xk~ ~ 1— +1n
Kz(a)

The energy is

ge
277 n

mc
fi

K, (a)

(A5b)

Cv=-
T v

Kz'(a)
=Nk~ 1+a

Kz(a)
Kz(a)
Kz(a)

(A15a)

(A15b)

aK,'(a )
=Nks T 1—

Kz a)

(A6a)

(A6b)

while the heat capacity at constant pressure is

(A16a)

To rewrite (A6b) as

(A6c)

K, (z) —K +, (z) = —
( 2v/z)K, ,(z),

K, (z)+K +, (z)= —2K'(z) .

The pressure is

(A7a)

(A7b)

3K3(a)+K, (a)
E/N=mc~

4Kz(a)
one may use the recurrence formula for the modified
Bessel function (cf. 9.6.26 of Ref. 15),

Kz (a)
=Nk~ 2+a

Kz(a)
Kz(a)
Kz(a)

(A16b)

C —Cv =Xk~ .

The adiabatic index is

(A17)

3 lnp

0 inn
(A18a)

The combination of Eqs. (A15) and (A16) gives Meyer's
relation

BF =nk, T,
I T, N

which is the equation of state for an ideal gas.
The Gibbs free energy is

4(T p, N)=F+pV

(A8)

(A9a)

Kz'(a)
I+a

Kz(a)

which may also be given as

I =C /C, ,

Kz(a)
Kz(a)

(A18b)

(A19)

k, T= —Nk, rln
2~' p

Kz(a)

one obtains the chemical potential from (A9) as

Kz(a)fPl Cp= —k~ Tln
277 n

(A 1 1)

From (Al 1) the condition for the Maxwell-Boltzmann
statistics becomes

(A9b)
Since the chemical potential is related to the Gibbs free
energy as

1 1—
nk, T Kz (a)

2+a
Kz(a)

Kq(a)
Kz(a)

while the isothermal compressibility is

1K~=1/p =
nk~ T

The squared velocity of sound is given as

for an ideal gas. The adiabatic compressibility is

1
Ks pr (A20a)

(A20b)

(A21)
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2
u Bp I p

BC s W WKg

K2 (a)
1+a

Kz(a)
K2(a)
Kz(a)

Kz(a)
K2(a)

(A22a)

(A22b)

where c =E/V. The thermal expansion coeKcient is

1av
CX =

VBT T (A23)

1. Nonrelativistic limit (a = mc /kz T )) I )

In the nonrelativistic limit, one uses the asymptotic
form of the modified Bessel function (cf. 9.7.2 of Ref. 15)

2

15 ka T
@=me 1—

8 mc2
+ ~ ~ ~

' 3/2
k~T g mkqT

ln
mc2

2
5 k~T 15 k~T8'=Nmc 1+—

2
+

2 mc' 8 mc2
+ ~ ~ ~

(A31)

(A32)

K~(z)—
2z

1/2
15 105

128z

z»1 . (A24)

5 k~T
C =

—,
' Nk 1+— +

mc

3k, T
C =—,'Nk~ 1+— +

2 mc'

(A33)

(A34)

1/2

K2(z) ——
2

19 465
128z'

It follows from (A24) that (cf. 9.7.4 of Ref. 15) k~T
I = — 1 — +

mc

k, T
KS 1— + ~ ~ ~

5 nkvd T mc

(A35)

(A36)

ZK2(Z) 1 15= —z 1+ + +.
K2(z) 2z 8z2

(A25)

(A26)

'2
5 k~T
3 m

7 k~T
1 —— + ~ ~ ~

mc
(A37)

From (A31) the condition for the Maxwell-Boltzmann
statistics is

Using Eqs. (A24) —(A26) in the general expressions, one
obtains the following formulas in the nonrelativistic limit:

3/2
mk, T
2~%2

(A38)
2

15 k~ T
F=Nmc2 1—

8 mc2
+ ~ 4 ~ Extremely relativistic limit (a =mc /k& T « 1 )

3/2
k~ T ge mk~ T

ln
mc

(A27)
In the extremely relativistic limit, one can use the as-

cending series expansion of the modified Bessel function
(cf. 9.6.11 of Ref. 15)

3 15 k~T
S =Nk~ —+ +

4 mc'
3/2

ge mkz T
+ln

27rA
(A28)

2 1 z z 3
K2(z) = ——— ln —+

z2 2 8 2 32

+0 z, z ln —,z &&1

TE
8

z

(A39)

2

3 k~T 15 k~T
E =Nmc 1+—

2
+

2
+

2 mc 8 mc
(A29)

where ye=0. 5772 is Euler's constant. From (A39) it
then follows that

4 =Nmc 1—2

2
15 ka T

mc'

4 z z 1
K~(z) = — ——ln —+

z 4 2 16
XE z+O(z, z lnz),3 3

(A40)
' 3/2

k~T g mk~T
ln

mc2 n
(A30)

zK2 (z) z'= —2 1+ +O(z )
K2(z) 4

(A41)
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Using (A39) —(A41) in the general expressions, one ob-
tains the following formulas in the extremely relativistic
limit:

APPENDIX B: DERIVATION QF THE BARYON
NUlVlBER-DENSITY RATIO FROM THE

NONRKLATI VISTIC RANKINE-H UGONIOT
RELATION (CASE II)

2

12 k, T

+—ln
I
~'n

i 3
kBT

Ac

22

g =3+k T 1+— +
6 kBT

3
kBT

F= —Xk~T ln
c

2
1 mc
4 k, T

+ 1 ~ ~

(A42)

(A44)

e, —e~+ —,'( V, —V~)(p, +p~)=0, (Bl)

where e is the energy per unit mass, and V( =—I /p) is the
specific volume with p the mass density. Here, the energy
does not include the rest-mass energy. The energy densi-
ty c, which also does not include the rest-mass energy
density, is related to e by c =pe.

From (Bl), the ratio of the mass densities may be writ-
ten as

In this appendix, we derive the ratio of the baryon
number density of the post-shock matter to that of the
pre-shock matter, Eq. (3.27), for case II (the baryon dom-
inated pair plasma) from the nonrelativistic Rankine-
Hugoniot relation.

The nonrelativistic form of the Rankine-Hugoniot rela-
tion is

N= —XkBT' ln
~n

3
kBT
Ac

2
1 mc
4 kBT

+. . . p2 e2+-,'(pi+p2)

Pi E&+ —,'(p, +p, )
(82)

(A45)

In the present case, the pre-shock matter is nonrelativis-
tic, so that

p= —kBT ln
,

'

~n

3
k, T

Ac

2 2
PlC1

4 kBT

c) =E, .i+6 j =3nb)kB T

p, =p, , +p„=2n»kB T2,

(83)

(84)

(85)

(A46)
On the other hand, the post-shock matter is composed of
the nonrelativistic ions and the radiation, so that

Cv 3NkB

2
1 mc
6 k T

+

2

~=4+k T 1+— +
8 kBT

(A47)
—3

i 2 2 nb2kB T2

r2 3Pr2

pi2="b2kB T2 ~

Thus

(86)

4
3

2 2

1+' ' +
24 kB T

C, =4%k. 1--'
B-

+ ~ t 0 (A49)

(A50)

E2= ~;2+ E,2= —,p;2+ 3p, 2 .

Inserting (85), (89), and

P2 =P(2+Pr2

into (82), one obtains

(89)

(810)

2 2=3 1 1 mc
Ks 1— + ~ ~ ~

4 nkBT 24 kBT
(A51)

P2 2Pi+2P 2+ 2Pr2

2p &
+Tp~2+ 2pr2

(811)

2

u 1 1—
c 3

2
2

mC

kBT
(A52)

When the pressure of the radiation (p„z) is much larger
than those of the ions in the post-shock matter (p, z) and
the pre-shock matter (p, ),

From (A46), the condition for the Maxwell-Boltzmann
statistics is

Pi P;2«P, 2

(811)becomes

(812)

3
kBT »1.

n Ac
(A53)

P2—=7
Pi

which is the same as Eq. (3.27).

(813)
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