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Quantum statistics of nonclassical radiation in dissipative forward four-wave mixing.
I. Method of generalized superposition of coherent and chaotic fields
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The Fokker-Planck equation approach to forward four-wave mixing developing from the initial
coherent states is adopted to obtain a set of recursive relations for the expectation values of the nor-
mally ordered field operators. This set of equations is closed, in accordance with the model of the
generalized superposition of coherent and chaotic fields, to provide difFerential equations for un-
known quantities in this model. A numerical solution of these equations enables one to determine
the photon number distribution, its factorial moments, squeezing variances, and entropy of radia-
tion under discussion. Fully quantum-mechanical features of radiation such as its sub-Poisson be-
havior and squeezing of vacuum fluctuations are preserved in this approach. The validity of this ap-
proximation is discussed and numerical results are provided.

I. INTRODUCTION

In recent years great progress in generating light exhib-
iting nonclassical behavior such as photon antibunching,
sub-Poisson photon statistics, and squeezing of vacuum
fluctuations has been achieved. Experiments have been
realized based on resonance-fluorescence light from single
atoms' and from cooperative atoms, Franck-Hertz
light, second-harmonic generation, ' four-wave mix-
ing, ' parametric processes, ' ' semiconductor
lasers, ' ' and light-emitting diodes. ' Some of these ex-
periments exhibit small sub-Poisson effects '; substantial
sub-Poisson behavior has been observed in Refs. 17, 18,
and 19 and the squeezing of vacuum fluctuations achiev-
ing tens of percent has been generated.

As to the theory of nonclassical light much informa-
tion has been obtained, although, due to the quan-
tum properties, various approximations and restrictions
must usually be adopted. A unified approach to the pho-
ton statistics of light in nonlinear optical processes has
been suggested in Ref. 24, which is based on the use of
the generalized superposition of coherent and chaotic
fields. ' ' Such a superposition describes nonclassical
state by means of negative "mean numbers of chaotic
photons" and the appropriate photon statistics are ex-
pressed in terms of the Laguerre polynomials. This ap-
proach has been extended to the three-field optical-
parametric process and it will be applied in this paper
to the process of four-wave mixing.

The statistical properties of radiation in four-wave
mixing have been studied using the short-length, the
short-time, or the parametric approximation. Gen-
eration of squeezed-state light by four-wave mixing has
been investigated in a number of papers from vari-
ous points of view.

II. DYNAMICAL PROPERTIES

We consider four-wave mixing described by the
effective Hamiltonian

2

H =A' g (co,a &, +co +2b, b )+(ga, & 2b, b2+H. c. )
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where &„&2 are the annihilation operators of signal
waves and b, , b2 are those of pump waves, co, , cu2 are the
frequencies of the signal beams and co3, co4 are the fre-
quencies of the pump beams, g (a complex number) is the
coupling constant, c I ', d

&

' are the reservoir annihilation
operators, and g& ', q'I ' are the reservoir coupling con-
stants.

The general treatment of four-wave mixing requires the
Hamiltonian to be of the form

II, =&+&,+H2,
where

H, =A'(g3 a2)b, b ~+g& ) 8 2b, b2 +H. c. ),
02 =R[ tc(a

~ &) +& 2&2 )(b )b) + b ~b~ )

+@b t2b +b tb, b tb +b t b )]

and the Hamiltonian H is given in (l); g, g, tc, t7 are the
coupling constants (the constants g are complex numbers,
the constants tc are real numbers). This Hamiltonian in-
volves all interactions of photons of single modes. It con-
sists of the terms where two photons of two certain
modes are transformed into photons of the two other
modes and vice versa (terms of photon pair exchange), of
the free field including the photon number conserving in-
teractions, i.e., the energy renormalization terms, and of
the terms introducing dissipation or including the reser-
voir variables. This general case falls beyond the scope of
our paper. As a "facet" approach we shall study the non-
linear oscillations in the second part of this paper.

The frequency resonance for the effective process re-
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quires co
&
+co2 =co3+ co4. Two other conditions are

~1+~3 ~2+ &4 and &]+&4 Q)2+ c03. They are
equivalent to co] —F2=+(A@3—

A@4), i.e, co] —co2=co3 —
A@4

=0, the conditions of degeneracy.
We assume that the reservoir spectrum is Hat, so that

the mean numbers of the reservoir oscillators (phonons)
in the mode l are (nd ) =(c Ij' (0)c ',"(0)),j =1,2, and

( nd ) = ( d 'l
' (0)d l '(0) ),j =3,4 independently of I and

j
that the reservoir oscillators form a chaotic system.

Using the general procedure proposed in Ref. 44, we
arrive at the generalized Fokker-Planck equation for the
quasidistribution p~ ——pQ []xjj,t) related to the normal
ordering of field operators

a, a, a, , a „, a' a2= ig aZ a3]X4+ a] a3a4—,Ct] ]X&]X4
— „]X]]X& &3

~
tX3]X4+ ]X] ]X2Be pe* Qe Be,Be Be3 Be4

y a B2+c.c.+ g +ice +c.c. +yj(nd ) (4)
2 ]3

The quasidistribution ]t]~ exists, in general, as a generalized function only. By calculating the expectation values of the
normally ordered field operators the irregular behavior of ]t]~ is smoothed out. From (4) we arrive at the following mo-
ment equation:

d
(m]m2m3m4»]»2»3»4)

dt

= —ig[ n] (m, (m2+1)m3m4(n] —1)n2(n3+1)(n4+1) ) +n2((m, + l)m2m3m4n, (n2 —l)(n3+1)(n4+1) )

—m3((m]+ l)(m2+ 1)(m3 —l)m4n, n2n3(n4+1)) —m4((m, +1)(m2+1)m3(m4 —1)n, n2(n3+1)n4)

+nl»2&m]m2m3m4(»] 1)(»2 1)(»3+1)(n4+1))
—m3m4((m, + l)(m2+1)(m3 —1)(m4 —1)n]n2n3n4) ]

+ig*[m] ((m, —1)m2(m3+1)(m4+1)n, (n2+1)n3n4) +m2(m, (m2 —1)(m3+1)(m4+1)(n, +1)n2n3n4)
—n3(m, m2m3(m4+1)(n]+1)(n2+1)(n3 —1)n4) —n4(m, m2(m3+1)m4(n, +1)(n2+1)n3(n4 —1))

+m]m2((m] —1)(m2 —1)(m3+1)(m4+1)n]n2n3n4)

»3»4 ( m, m, m3m4(n, + 1 )(n2 + 1 )(n3 —1 )(n4 —1 ) ) ]

(m +n )+iso (m —n ) (m]m2m, m4n]n2n3n4)2

+y, (nd )m, n, ((m, —1)m2m3m4(n, —1)n2n3n4) +y2(n„)m2n2(m, (m2 —1)m, m4n, (n2 —1)n3l]4)

+y3(nd, &m3n3(m]m2(m3 —l)m4»]»2(»3 —l)n4)+y4(nd )m, »4(m, m, m, (m4 —1)n]»2»3(»4
(&)

where we have denoted

em[ em2 em3 Am4 Tl I n2 n3 114(m m]2m3 m4]»»23»4»):((x] ]x2 cx3 (x4 o.] ct2 ]x3 cx4 /~
4 4=f f f f n-™-'"~(I-,], ) rId'-.

k=i
After the substitution

A =a.exp(iso. t), j =1,2, 3,4

refiecting the use of the interaction representation, the generalized Fokker-Planck equation (4), and the moment equa-
tions (5) do not contain the m terms In part. icular, for (a) m]=0, n]=5 l, j, l =1,234, (b) m] =5 l, nl=5kl, j,k, l
=1,2,3,4; (c) ml =O, nl =5 ]+5k]j,k, l=1,2,3,4, the moment equations (5) take on the form

~J
dt

& ~j & ]g(5j]&~2~3~4& +5j2& ~1 ~3~4& ) lg (5j3& 4 1~2 & +5j4& ~3~1~2 & & ~jJ

d (]X*ak ) = ig (5«(]X—
Z a,*a3a4) +5k2( a]a,"a3]X4)—5,3(]X]a2ak]X4) —5,4(]X]uZ ak a3 ) )dt

+ g*(5,]& 3 4~k~2&+5, 2& 3 4~k I & 5k3(~4~j~]~2& —5k4&~3~,*~]~2

,'(y, +yk—)—&~,*~k &+y, &nd &5jk j k =1 2 .3 4
J

(8a)

(8bj
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d
j k) g 5jl 2~k 3 4 +5kl(~2 j 3~4&+5j2( 1~k~3 4&+5k2( 1 j~3 4&+ 5,15k2+5kl5j2)( 3 4&dt

—ig*( 5)3(a4akala2) +5k3(a4aja, a2) +5)4(a3akala2) +5k4(a3 a)a, a2)

+(5)35k4+5 k35j4)(a, a 2) )
—

—,'(), +1 k )(aiak ), j,k = 1,2, 3,4 (8c)

respectively. The system (8) treated as coupled differential equations for the unknown moments of the first and second
orders depends on the unknown moments of the third and fourth orders and as such it is not uniquely solvable. To ex-
clude the third- and fourth-order moments and render the system uniquely solvable, we express these moments in terms
of the first- and second-order moments using the relations valid for the generalized superposition of coherent fields and
quantum noise. The relations chosen may be in fact satisfied only "on average" and they do not imply that the quan-
tum optical system is described by this assumption exactly.

Let us focus on the derivation of the relations mentioned above. The normal quantum characteristic function
C~( I/3 I, t), which is the Fourier transform of the quasidistribution PQ I a I, t), appropriate to the generalized superpo-
sition of coherent fields and quantum noise can be written in the form

C~(Ip I, t)=exp( —
—,'p Ap pg)—
4

=exp g I B(t)lp)l —+ —,'[C*(t)p +c.c. ]I

where

3 4 4

+ g g ( B)k(t)p—*pk+C,.k(t)p pk+c. c. )+ g (p g*(t)—c.c. )

j=1 k =j+1
(9)

P=(P1, Pl, P2 P—2,P3, —P3,P4, —P4}-
4=(kl V 4 4 4 4 4 4)'

where T is the transposition,

B, C1 B12
C*, B, C'2
B12 C12 B
C12 B12 C2

B14 C14 B24
C14 B14 C24

C12
B 12 C13
C2 B23
B2 C23
C23 B3
823 C
C24 B34

B24 C34

B13
C2
B23
C3
B3

B34

B14 C14
C14 B 14

B24 C24

C24 B24

B34 C34
C34 B34

C4
C4 B4

(10)

and B (t), C (t), B k(t), C k(t), and g (t} are unknown
functions of time satisfying the initial condition

B,(0)=0, C, (0)=0, j =1,2, 3, 4

a

ap,*
a

ap",

x
ap,

a

ap,*
n3 a

Bp4

m4

B „(0)=0, C„(0.)=0, j,k =1,2, 3,4, j (k;
g, (0),j = 1,2, (j =3,4) are the eigenvalues of 8 (0)(b (0})
in the coherent state

l Ig, (0)I ) and p are complex pa-
rameters of the characteristic function.

The moments in (8) can be expressed in terms of the
coef5cients of the normal quantum characteristic func-
tion (9). As a consequence of the relation

1
m 2m 3m4n

lent

2n 3n4 )

a ' "' a
ap, BP2

we get the first- and second-order moments in the form

& l~, I'& =B,(t)+ lg, (t}l',
(a ) =C (t)+g (t), j=1,2, 3,4

(ajak* ) =Bjk(t)+g)(t)Pq(t)
( ) k ) =Cjk(t)+()(t)gk(t)

(13)

dt kl tg(42 k3k4 24P3 23k4 34r2 ) 412

(14a)

The third- and fourth-order moments on the right-hand
sides in (8) can be rewritten similarly as the moments in
(13). In this way we obtain the following system of
differential equations for the unknown functions fully
determining the statistical properties of the process under
study by means of the quantum characteristic function
(9):

aX
Bp4

n4

(12)
y3

dt g3
= —lg

*
( g', f2 f4 +B24 $, +B,4 /2 +C, 2 g4 }— g32

(14b)
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d
dt

8
1
= —ig ( 8 138 z4+ 8 148 z3 1 z 34 )

+c.c. —y,B, +y, (n„), (14c)

8, = ig ( B»B z4+ 8z38;4+ C34 C
1 z ) +c.c.

y38—3+y3(nd ), (14d)

—t'g(Bz38 z4+Bz48 z3+Cz C34)

—
—,'(y, +y )8,

d 8» 'g[ {81 83)8 z4+8»8 14

(14g)

+C,4C *, z
—Cz3C34] —

—,'(y, +y, )8,3, (14h)

d
dt Ciz = —1'g [ {81+Bz+1)C34+ Cz38 z4+ Cz48 z3

38 *,4+C148 *, 3]——,'(y, +yz)C„,

d
dt

C, = 2tg(B—»C34+C»B z4+C, 48 z3)
—y, C, , (14e)

d
dt 3C3 = —2ig *(834C,z+ C,38z4+ Cz, 8,4) —y3C3

{14f)

d
dt 12 g 13 14 14 13 1 34

equations for (d/dt)834, (d/dt)C34, respectively. Also
this symmetry reflects the special form of the Hami1toni-
an (1).

The interchanges of indices 1,2, and indices 3,4 in the
equations for (d Idt)813, (d /dt)C13 provide the equations
for (dldt)Bz4, (dldt)Cz4, respectively. When inter-
changing the indices, v e take account of the properties of
the entries of the matrix (10), i.e., the fact that
Bk~ =Bqk, Cgj =C~k. The complex conjugate equations
also belong to the system (14).

In general, the system of ordinary differential equations
(14) is nonlinear and di%cult to solve in a closed analytic
way. Hence, a numerical solution of this system has been
adopted.

In Ref. 45 is has been proved that when using the
method of linear quantum correction to classical solu-
tions (applied in Ref. 46) to nonlinear processes described
by Hamiltonians of higher than the second order in field
operators, the statistics of light arising from this approxi-
mation are determined by the generalized superposition
of coherent and chaotic fields. Therefore the accuracy of
the present approximative method may be compared with
that of the method of linear quantum correction, con-
cluding that the generalized superposition of coherent
and chaotic fields represents a good approximation pro-
vided that

max I Ig, (0)l } Iglt =O{1) .

d
dt C13 lg( C348 z3 +8 z3C34 +C38 z4 )

(14i)

III. STATISTICAL PROPERTIES

where

—ig *(C,z8,4+8,4C, z +C, Bz4 )

—
—,'{yi+y»C1» (14j)

B&t,.
=8,„+g, g„*, Cjk =

C&k +gj

j =1,2, k=3 4 (15)

the explicit dependence on t being omitted. The system is
complete up to the equations yielded by interchanges of
indices and the coupling constants g, g*. The equations
for (d ldt)gz, (dldt)Bz, (dldt)Cz, (dldt)Bz3, and
(d ldt)C, 3 arise from the equations for (d/dt)g, ,

(dldt)81, (d/dt)C1, (d/dt)813, and (dldt)C13 with the
interchange of indices 1 and 2, respectively. This symme-
try follows from the particular form of the Hamiltonian
(1), where the signal modes appear in the symmetrical
fashion.

The equations for (d /dt)$4, (d Idt)84, (d Idt)C4,
(d ldt)8, 4, and (d ldt)C14 result from the equations for
(dldt)$3, (dldt)83, (dldt)C3, (dldt)813, and (dldt)C, 3

with the aid of the interchange of indices 3 and 4, respec-
tively. This symmetry can be seen from the form of the
generalized Fokker-Planck equation (4), where pump
modes 3,4 occur symmetrically. Performing the inter-
changes of indices 1,3, indices 2,4, and constants g, g* in
the equations for (dldt)B, z, (dldt)C, z, we obtain the

The numerical solution of system (14), whose continu-
ous dependence on initial values (11) and thus the unicity
of the solution in the framework of the validity of used
model is supposed, provides fully the photon statistics,
squeezing, and entropy related to the normal characteris-
tic function (9). The photon statistics have been calculat-
ed for single- and two-mode fields described by the gen-
eralized superposition of coherent and chaotic fields in
Refs. 23, 47, and 48 and we present necessary formulas
only.

A. One-mode cases

Taking account of single modes separately, the normal
characteristic function (9) simplifies to the form

C~(/3, t) =exp[ 8(t) ~/l ~
+ —,

' [C.*—(t)/3z+c. c. ]

+[/3, $,*(t) c c. ]}, j =1,2, 3,4 . —.

(17)

Supposing

K, (t) =8,'(t) —
1C, {t)~z)0,

we can determine the corresponding quasidistribution
PQa, t) in the form
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PQa, t) = 1
exp

tt[K, (t)]'" B,(t)

K, t
a, —(, (t)~ +

2K, (t) [C,*(t)[a, g—, (t)]'+c c .I. (19)

in this case a nonclassical behavior of considered fields is excluded.

For the determination of the photon statistics of single modes we can use the standard formulas for the photon num-
ber distribution p (n, t) and its factorial moments & W )~ from Ref. 23 (Sec. 8.5)

n

p(n, t)= (EF) '
1 —— exp

1

F

1+—1

11+—
F

k

Ai

E(E —1)
A2

F(F—1)
(20)

k

& W )~=k!(F—1)"g, L( (z2

0 I ( i + —,
'

) I (k —l + —,
'

) F —1

—i/2
E —1 F —1

Lk (21)

where Lk(x) are the Laguerre polynomials, I (x) is the y
function, the "mean numbers of coherent photons" are
given by

A, 2= —
~g (t)~ + [C*(t)g'(t)+c.c. ]2 ' 2C t)

A, ~ = A, ~(~), (22)

and the "mean numbers of chaotic photons" representing
quantum noise are

it holds that

& [b.W(t)]') „=B,'(t)+ ~C, (t) ~'+2B (t) ~( (t)
~

+ 2 Re[ C,*(t)g(t) ] . (28)

For &[b, W(t)] ) v&0 the antibunching of photons
occurs. In this case the photon number distribution
p(n, t) is narrower than the Poisson distribution corre-
sponding to the coherent state and we have the sub-
Poisson radiation. Testing the second reduced factorial
moment

E =B (t) iC (t)i+1,
F =B,(t)+~C, (t)~+1, (23) (29)

E—:.F,F=F
For E =1, F = 1, and 3, = A

&
=

~g (t)
~

l2 we obtain
from (20) and (21)

p(n, t)=, ~g~(t)~ "exp[ —~gi(t)~ ],1

& W") =~(,(t)~ "

(24)

(25)

i.e., the Poisson distribution and its factorial moments.
The deviation from the Poisson statistics depends on the
sign of the quantity E —1 (F —1 is always positive). If it
is positive, the uncertainty (bunching effects of photons)
is higher than that for the Poisson photon statistics. If it
is negative, this uncertainty is reduced below that for the
coherent state and the antibunching of photons and the
sub-Poisson statistics may occur as ~ist-.ussed in Ref. 23.

For the mean number of photons we obtain from (21)

its negative value represents a sufficient condition for ob-
serving the sub-Poisson behavior of radiation.

The squeezing properties of one-mode fields can be de-
duced from the simple expressions

&(bp') ) =1+2[B (t)+ReC (t)], j =1,2, 3,4 (30)

p =min[&(bQ ) ), &(bP ) ) ) &1 . (32)

where the operators Q and P are defined in terms of the
photon annihilation and creation operators A
=& exp(icy t), A =a exp( —ice t) as follows:

Q =A +A, P)= i(A) —A—, ), [Q,P, ]=2i6

(31)

According to the standard definition of squeezing, this
phenomenon can be observed in the jth mode if

& W(t) )~= ig, (t) ~'+B,(t)

and for the variance of the integrated intensity

(26)
The definition of principal squeezing requires the
fulfilling of the condition

&(~ W)') =
& W') —

& W)' (27) A., =min[ &(u(bQ~+u26P, ) );u, +u2=1I & 1 . (33)
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As X- p, the definition of principal squeezing would be
more tolerant and squeezing would occur more frequent-
ly. Assuming

by the transforrnations (7).
On the basis of results given in Ref. 50 we can establish

the entropy of considered fields in the form

(bg, bP ) = —i((b, A ) —(b A ))=21mC (t)=0,
(34)

both the definitions are equivalent. A, can be calculated
in the form

H (t)=H=h (x), h (x)= —1n (1+x)'+
where

x =[K,(t)+B,(t)+ —,']'"—
—,
' .

(37)

(38)

A,, =1+2[B,(t) —IC, (t)l] (35) B. Two-mode eases

and squeezing can be observed under the condition

B,(t)& I c, (t)l .

We mention that the principal squeezing is not a6'ected

In order to describe the statistical properties of two-
mode fields formed by signal modes 1 and 2 or pump
modes 3 and 4, we consider the special case of the normal
quantum characteristic function (9) (Ref. 48)

Denoting

+ g [gc(t)p& c c ]
k =j,j+1

C;(p, , p, +,, t) =exp — g B„(t)I p„ I'+ C1,*(t)p„. B, j +, (t)p—,*p, +, + C,*, +, /3, p, +, +c.c.
k =j,j+1

j=1,3. (39)

+2Bj+,( C, C, j+,B,"j+,+c.c. )
—(C,C, +,C,', +, +C, C,*+,B,",'+, +c.c. )+. (IC, , I' —IB,I')

and assuming

&j+ ( & O, Bj+ )+ReC +, & 0,

~, ~0», +Recj+ I
—B,+1I,, +, +c, , +, I'+Re[c,*+,(B,*,+, +c,*,+, )']I &0,1

j+2
we determine the associated quasidistribution P ~ in the form

(40)

(41)

yyaj, aj+1, t)=

where

1

2(L )
1/2

J

Xexp[ —Ia, —
g, (t)l E, —a, +, —gj+, (t)l E2

+(—,
'

I [a,*. —g*(t)] E3+[a,'+, —g*+,(t)] E4)+[a* g;(t)][a "+,——g;+,(t)]E5+[a —g (t)]
X [a,*+,—g,*+,(t))E6+c.c. )], j =1,3 (42)

1
I Bj&,+1

—[B,+1( IB, , +1I'+ I C, , +1I') (C, +1Cj,, + 1B,,, +1+c c ) ] I
J

1
E3 (Cj+j +1 j+1 j j +1Bjj+1+Cj +1Cjj +1+ j+1Bj2j+1)

J

E4=

E5=

1

J

J

[,*,, +1(B,B,+1 —IB, , +11'+ IC, , +, I') —B,C, +1C, j+1—B,+1C,'Cj*,+1+C,*C,+,B,j+, ] .
J

(43)
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For the sake of simplicity, the explicit dependence of the coefficients B,C,B .+„C +& on t and that of the
coefficients E on j are omitted. The explicit expression (42) for p~ is conditioned by the nonappearance of a nonclassi-
cal behavior of the radiation of the appropriate two-mode fields.

To establish the photon statistics, we have used two-mode formulas:

d "C~(A, t },

p(n, t)=
n! d ( —J()"

d C~(A, , t)
( yak)

d ( —J(, )" g=p

where [see Ref. 23, Sec. (8.5)]

(45)

C~(a, t)=
z f f exp ——(Ip, l!'+ Ip, +~I') CJv(pJ, p, +„t)d'p, d'p, +,

(m.A, )

1
exp(R2 /R, ); (46)

wherethe coefficients aI and b& of the polynomials
R, =gt Ob&A, ', R~=gl Oa&A, 'are expressed in terms
of BJ ,BJ +„CJ,.CJ+. , ,BJJ+„CJJ.+, , gJ. , gJ+„g =1,3 in a
complicated form and we refer the reader to Ref. 48. The
derivatives (44) and (45) were performed explicitly. Con-
cerning a numerical calculation of these derivatives, they
were sufficient only up to about n =4. Of course, formu-
la (46) can be written in a form of the fourfold convolu-
tion of the Laguerre polynomials which provide a more
complicated way to obtain p(n, t) and ( W'")Jv because
the roots of the polynomial R, must be calculated.

In spite of the complicated form of the formula for
( 8'")~, we can easily establish the normal moments of
the first and second orders according to definition (45)

gJ, +, =AJ+A. +,+A, +A J+, ,

PJ +, = . i(A +A +, A A J+, ) (50)

[gJ J+1& J J +1] ~JJ

According to the standard definition, squeezing can be
observed if

minI ((bg +) ), ((AP +) ) j &2 . (51)

As to the definition of principal squeezing, ' this occurs
under the condition

+, =minI ((u, b, g J+, +u~hPJ J+, ) );
u)+up —lj &2 (52)

( ~(t)) = g [B,(t)+ lg, (t)l'],

( W (t))Jv= g [ —,'(E —1) + ,'(FJ —1) —+2A,)(E —1).
+2A„(F,—1)+[B,(t)+ ~g, (t)~']'j .

(47)

For the variance of the integrated intensity it holds that

([am(t)]')~= y I B,'(t)+ ~C, (t) ~'+2B, (t) ~g, (t) ~'

+, can be expressed explicitly as follows

+, =2[ 1+B,(t)+B +,(t)+2ReB +,(t). .

—
~!C (t}+C.+,(t)+2C +,(t}~] . (53)

The principal squeezing coincides with the standard one
supposing

+2 Re[C,'(t)g(t)] j . (48) (EQJ J+,bPJ +, ) =2Im[ C.(t)+CJ+,(t)

In (47) and (48) the summation over j includes two cases,
either j = 1,2 or j =3,4 denoting, respectively, either sig-
nal fields or pump fields.

In order to investigate squeezing properties, we have
found

t, (Ape'J+') ) =2[ I+BJ+8,+, +2 ReB
j,J +1

+Re(C +C +, +2C )+, )]

j =1,3

+2CJ J+,(t)]=0 . (54)

Condition (52), necessary and sufficient for the occurring
squeezing effect, can be rewritten in the form

B (t)+B +&(t)+4ReB +&(t.) &
~

C.(t)+C +&(t)

+2C, +,(t)i . (55)

The entropy of fields under consideration can be treat-
ed analogously as in the one-mode case in a closed
form. Introducing the notation
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(56)

the entropy of two-mode fields formed by signal modes 1

and 2 and pump modes 3 and 4, respectively, develops ac-
cording to the formula

H, +,(t)=H=H, +H +, ,

where

(57)

Hk =h (Ak ), Ak =Ak ——', k =jj +1
' 2 1/2 1/2

M
AJ J + 1 + M

2

IV. NUMERICAL RESULTS

To demonstrate the complex formulas introduced
above, we use the results of the short-length and short-
time ' ' analyses in order to choose parameters giving
rise to nonclassical behavior of the studied radiation. We
assume four-wave mixing described by Hamiltonian (1)
under the conditions

gi(0) = 1, gz(0) = exp i , gi(0) —=2,

g'~(0) =2, g =1

71 3 2 73 V4

(59)

the function h (x) is given in (37).
We restricted ourselves to two-mode signal and two-

mode pump fields because the measurements of nonclassi-
cal effects in two-mode signal-pump fields are difficult to
perform due to substantially different levels of intensities
of signal and pump modes, respectively.

&nd &=&nd &=&n„&=&nd &=0. (60)

In Fig. l we present the second reduced factorial moment
(29) for r =gt for single-signal modes 1,2 (curve a ),
single-pump modes 3,4 (curve b), two-mode signal field
[12] (curve c), and two-mode pump field [34] (curve d).
For this purpose formulas (26), (28), (47), and (48) have
been used. Curve a indicates the super-Poisson behavior
of single-signal modes. The tendency of single-pump
modes to conserve coherence at the beginning of the pro-
cess is obvious from the shape of curve b. The negative
values of the second reduced factorial moment for two-
mode fields I 12I and [34) predict the nonclassical sub-
Poisson effect. This effect is demonstrated for two-mode
signal field in Fig. 2 visualizing the sub-Poisson distribu-
tion. It is a consequence of the coupling of modes. The
time development of this photon number distribution ac-
cording to formula (20) is obvious from Fig. 3(a). We can
observe the initial tendency of two-mode signal field to
the sub-Poisson behavior which changes later to the
super-Poisson oscillating behavior rejecting the presence
of competing states. The evolution of the photon number
distribution of two-mode pump field under the same con-
ditions can be seen from Fig. 3(b). As to Fig. 4, no
squeezing has been found in single signal or pump modes
(curves o and b) in agreement with the short-time
analysis. Squeezing occurs in the two-mode pump field in
the P quantity [curves d, Figs. 4(b) and 4(c)]. With
respect to the principal squeezing definition, the condi-
tions for observing this effect are also fulfilled for the
two-mode signal field [curve c in Fig. 4(c)]. In Fig. 5 we
can trace the time evolution of the entropy. The down-

p(n, g)

(W ),
(w 8„

FIG. 1. Time development of the second reduced factorial
moment for single-signal modes (curve a), single-pump modes
(curve b}, two-mode signal field (curve c), and two-mode pump
field (curve d).

FIG. 2. Comparison of the photon number distribution of
two-mode signal field (curve b) with the corresponding Poisson
distribution (curve a ) for the maximum quantum e5'ect

[&1b W) ) g/( W ) ~= —0. 18, & W).v= 1.33, ~=0.06].
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ward tendency of curve c may reAect the sub-Poisson be-
havior, although there need not generally be a direct con-
nection between the sub-Poisson behavior and the de-
creasing entropy. Such a global characteristics as entro-
py cannot give so much information as detailed charac-
teristics given by the photon number distributions. In
agreement with results in Ref. 50, the squeezing process
does not change the value of the von Neumann entropy.

We also investigated the role of the damping in the
studied process. The nonclassical behavior is smoothed
out with increasing damping as demonstrated on the
squeezing efFect in the P quantity in Fig. 6. Here we used
the abbreviated notation Iy I =a, I ( n& ) I =b which
means that each quantity y, i.e., y, j=1,2,3,4 equals a
and analogously each (nz ), i.e., (nz ), j=1,2,3,4 takes

J
on the same value b, The noise in the signal modes in-
creases more rapidly than the noise in the pump modes.
The pump modes retain coherence until a certain time.

Similar behavior has been found if single-signal modes
or single-pump modes or two-mode signal field start from
vacuum fluctuations (spontaneous process).

Poissonian. For the two-mode signal field and the two-
mode pump field, respectively, the sub-Poisson behavior
occurs under certain conditions on phases of the initial
complex field amplitudes.

In accordance with the short-time analysis there are no
conditions for observing squeezing in single-signal modes.
It is a consequence of the predominance of pumping

&(aQ) &

50

V. CONCLUSION

2
1

0

The statistical properties of radiation in four-wave
mixing evolving from the coherent states have been inves-
tigated in the framework of the model of the generalized
superposition of coherent and chaotic fields. Special at-
tention has been devoted to single-mode fields and two-
mode signal and two-mode pump fields.

One-mode signal fields exhibit the super-Poisson be-
havior, whereas one-mode pump fields can be sub-

0.1

(c)

P{n,T )
(b)

0 1

FlCx. 3. (a) Time development of the photon number distribu-
tions of two-mode signal field and (b) of two-mode pump field.

FICx. 4. (a) Time behavior of ((AQ) ), (b) ((hP) ), and (c) A,

for single-signal modes (curves a), for single-pump modes
(curves b), two-mode signal field (curves c), and for two-mode
pump field (curves d).
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((DP ) &

0 0.1 0.5

FIG. 5. Evolution of the entropy of single-signal modes
(curves a), single-pump modes (curves b), and two-mode signal
field (curve c).

modes over signal ones in the intensity of light. In
single-pump modes squeezing is very probable, but this
phenomenon is dificult to observe experimentally. This
is caused by the fact that it is not admissible to approxi-
mate the pump modes by the pure coherent states but
rather by the states of the signal plus noise. Squeezing
occurs in two-mode signal and two-mode pump fields un-
der certain phase conditions as a result of coupling of
modes. Taking account of the lossy mechanism, we can
see that the nonclassical effects are quickly smoothed out
with increasing valves of the damping constants and the
mean numbers of the reservoir oscillators.

The closed-form formulas for the entropy of the ap-

FIG. 6. Time development of the variance ((AP&4)')
(,=1, /&=exp[i(m/2)], $3=$4=2, and [y] =0, [(nz) ]
(curve a), [y] =1, [(nd ) ] =0 (curve b), fy] =1, [(nd ) ]
(curve c), [y] =5, [ (nz) ] =1 (curve d), [y] =5, [ (nd ) ]
(curve e).

for
=0
=1
=5

propriate optical fields allow us to trace the time evolu-
tion of this measure of noise and order in quantum optics.
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