
PHYSICAL REVIEW A VOLUME 39, NUMBER 8 APRIL 15, 1989

Theory and experiments on multiwave-mixing-mediated probe-beam amplification
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In a highly nonlinear thin film, the presence of the diffracted beams from the pump-probe-beam-
induced refractive-index grating modifies considerably the energy coupling between the pump and

the probe beams. Using coupled amplitude and phase equations, the roles of various factors such as
phases an/ phase shifts, phase modulations, pump-beam intensity, intensity ratio, interaction
length, and losses in the medium in the multiwave-mixing processes are clearly identified. We also
present experimental results on the dependence of the probe gain on the pump-probe-beam ratio,
the pump intensity, and on the interaction length, using a nematic liquid-crystal film as the non-

linear medium.

INTRODUCTION

Recently, with the emergence of several highly non-
linear materials, the theory and practice of nonlinear op-
tical processes have assumed several new, interesting and
potentially useful forms. The successes by several
research groups in fabricating thin film bistable optical
elements, ' electro-optical devices, and observing new
wave-mixing eff'ects are but a few examples. In particu-
lar, theories and experiments on degenerate optical wave
mixings in highly nonlinear media such as liquid crystals
and semiconductors have demonstrated the profound
effect that the often neglected diffracted beam will have
on the usual pump-probe wave-mixing processes.

Referring to Fig. 1, which depicts schematically the in-
teraction of two coherent cw laser beams in a nonlinear
medium, the diff'racted beams (E3 and E4) are generated
by the refractive-index grating induced by the intensity
interference grating formed by the two incident lasers. In
general, the probe beam E2 is very weak compared to the
pump beam E&, giving rise to very small intensity (and
therefore index) modulation; this gives rise to a very weak
diff'racted beam E, and an even weaker beam E4. In
many studies except a few, " these diffracted beams are
usually neglected and one is concerned with only the in-
teraction between beam 1 and beam 2. In the context of
the amplification of the weak probe beam E2 by the
strong pump beam E&, , studies have shown that the probe
beam Ez will experience gain provided that (i) it is Stokes
shifted in frequency with respect to the pump beams, i.e.,
Q is negative (in general, 0 should be on the order of the
inverse of the relaxation time of the nonlinear medium
response), or (ii) if 0=0, the medium possesses a nonlocal
response, where the refractive index grating is phase
shifted relative to the intensity grating. These processes
are usually referred to as two-wave-mixing processes, and
have generally been observed in photorefractive crystals.

When 0=0, i.e., the strictly degenerate case,
amplification of the probe beam can occur via multiwave
mixing involving the diffracted beam. As schematically

depicted in Fig. 1(b), the pump beam I can interfere with
the diffracted beam 3, which then scatters the beam 1

into the probe beam 2 direction. This provides therefore
a gain mechanism to the probe. On the other hand, there
is a counterpart process in which beam 2 and beam 4 in-
terfere with one another and scatter light into the beam 1

direction. Thus amplification of the probe beam 2 will
occur if it is weaker than beam 1. Amplification of a
weak probe beam by a strong pump beam has been stud-
ied in various contexts. However, these theories and ex-
periments have been concentrated mainly on problems
where only the diffracted beam 3 is taken into
account. "' ' This corresponds to the case of very
large pump-to-probe beam ratio. If beam 2 substantially
amplified, for example, by a factor of 10 or so, this as-
sumption of a very large pump-to-probe beam ratio may
no longer hold (an experimentally proven fact), and the
role of beam 4 becomes very important.

In this paper the multiwave-mixing effects (e.g. , probe-
beam gain) reported in Ref. 4 are quantitatively described
by a coupled-phase-and-amplitude-equations approach
that accounts for all relevant interacting laser beams.
This new theoretical framework provides new valuable
insights. We will also present some new experimental re-
sults. Specifically, we will show how the complex cou-
pled equations may be reduced to a simple set of input
variables, and the amplification or depletion of beams are
governed by the pump intensity, the strong intensity-
dependent phases and phase shifts, and the role of all the
diffracted beams as well as medium losses. Experiments
with the giant orientational nonlinearity of nematic liquid
crystal films will illustrate some of the general points, and
also specific experimental details for achieving high gain
and eliminating unwanted effects.

THEORY

Consider again the interaction geometry as depicted in
Fig. 1. The Maxwell equation governing the propagation
of the electromagnetic wave in the nonlinear medium is
given by
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and the slowly varying envelope approximation
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one can combine Eqs. (1) and (2) to give the following
equations:

NONLINEAR MEDIUM dE& = —tg( IEi I'+ 2IE~ I'+ 2IE4 I')E,

(b) ig—[EzE4 exp[i ( —3P —b k 3z) ]
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—
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FIG. 1. (a) Schematic diagram of the mixing of a pump (1)
and a probe (2) beam in a nonlinear medium. Beams 3 and 4 are
diffractions of the pump and the probe beam from the index
grating created by the pump-probe interference. (b) Schematic
of the mixing of beams 1 and 3 to provide gain in the beam-2
direction.
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where the nonlinear polarization PNL, assumed of the
third-order form, is given by

ig [E,E—
2 exp[ i (P+ b,—k3z)]
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(10)

PNL 4X&jkl E E E (2)

where g, k& is the third-order nonlinear susceptibility and
the subscripts and superscripts represent the Cartesian
coordinates. For degenerate optical wave mixing (i.e. , all
frequencies are the same) and assuming for simplicity
that all fields are polarized in the same direction, we may
write y; k& as y' ', which is related to the Kerr coeKcient
n2 by

E =
—,
' [E expi ( w t —k z) + c.c. ] .

The coupling constant g is defined by

(12)

where hk3 =2k, —k2 —k3 and a is the intensity loss con-
stant.

In Eqs. (1)—(4), E 's are the complex amplitude of the
electric field E

=—&pnpn p
(3) (3)

26) npn2
g

and the Kerr coeScient is defined by the effective refrac-
tive index of the nonlinear medium n by

n =no+n2(E )

=n p+nz&I,

(4)

where no is the linear (under zero optical field) refractive
index of the medium.

Using the plane-wave approximations for the optical
electric field and the polarization, respectively,

In order to study the roles played by the intensities and
phases of the optical fields, we rewrite these complex
electric field amplitude equations into real amplitude
QI and phase (P ) equations by redefining E as

E, =(2&pie)' +I exp( P ), j =1, . . . , 4 . (13)

Using (13) in Eq. (8)—(11),and after some straightforward
but cumbersome algebra, we obtain the following equa-
tions.
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(i) Amplitude equations.

dI, =4g' sing( I—
, I2+I, I, I—

, I4)+2gI&QI, I4 sin($24+/&, —3P —Ak3 $—2z)
z

+2g'I, +IqI3[ sin((t 2(+(b3, —P)+ b k)z + sin(P~)+ $3)+3P+ b k3z)]

+2g'QI, IzI3I4[ sin(P»+$42 —2/+23 k3z)+ sin($3&+$4&+ P+2hk3z)] —aIt t

dI2
=4g'I2(I, sing+I, sin2$ I~ s—in/)+2gI, QI2I3 sin($, 2+/, 3 Ak3+P)

dz

+2g'I&QI, I4[ sin(P&2+$42+6 k, z +3/)+ sin(P»+$4&+ hk3z —P)]

+2g QI]IQI3I4[ sin((t3&+$4&+2hk3z +2/)+ sin((t&1+p42+2bk3z —
ttt )]—aI2

dIq =4g '( I, I3 si—nP I,I3 si—n2$ I4I3 s—in3$ ) +2gI, +I2I3 [ sin( P» +P & z
—P —b k 3z ) ]z

+ 2g 'QI
~ I2I3I4[ sin(P»+ gz4

—P —2b k, z) + sin(P»+ $24
—2P —2b k3z) ]—aI3

(14)

(15)

(16)

dI4
=4g'(I4I~ sin2$+I4I2 sinP+I3I4 sin3$)+2gI2+I, I4 sin($2, + $24+ / —hk3z)

dz

+2g'QI, I2I3I4[ si (np) +3/ 42+4 —2bk3z)+ sin($, 3+$24+2/ —2bk3z)] —aI4,
where a is the linear loss of the medium (due to, e.g. , absorption, scattering, etc.).

(ii) Phase equations

= —g'(I, +2Iz cosP+2I3 cos$+2I~ cos2$) gI2+I4—/I, [ cos(/~4+/A, —3P —bk3z)]

g'QI2I3 [ c—os( P2, +P» —P+ b k 3z) + cos( P2 &
+P» +3/+ b k, z) ]

+I~I,I4—g' [ cos(P»+$42 —2/+26k, z)+ cos(P»+d42+P+2hk3z)],
I)

(18)

g'(I, +2I, c—osP+2I, cos2$+2I4 cos@) gI, cos(P,—z+P»+P —bk3z)]
2

g'V I, I4[ co—s(P„+/~~+ 6k, z + 3P)+ cos($,2+$4z+ Ak3z —
&5) ]

QI, I3I4
g [ cos($3]+$4, —2/+26k, z)+ cos(P»+P42+P+2bk3z)]

1

d$3 QI2
g'(I3+2I~ cosP+2I2—cosP+2I4 cos3$) gI, cos($,3+—P, 2

—$ —Ak3z)
3

"t/ I, I2I~
[ cos($„+Pz~—P —25k, z)+ cos(P»+P, 4

—2P —2hk3z)],
3

VI,
g'(I4+2I, cos2$+2I2 c—osP+2I, cos3$) gI, cos(P„+/~4—+P —bk, z)

dz 4 I4

QI, I~I~
[ cos((513+424+(5 25k 3z) + Sin('(()13+ 424+ 2/ 25k 3z) ]

I4

where g'=(g 2/)& /ep.

(2O)

(21)

It is obvious that the preceding theory can be general-
ized to include higher-order difI'ractions, e.g. , as done in
Ref. 14 using the complex field amplitude approach.
However, the preceding four-wave interaction model is
sufficient to describe practically all the basic physics.

THEORETICAL DISCUSSIONS
AND NEW NUMERICAL RESULTS

In the form of the coupled real amplitude-and-phase
equations (8)—(15), the evolution of, and energy ex-
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dI, = —4g sin/I&I& —aI, , (22)

changes among the pump, the probe, and the diffracted
beam as a function of the interaction length, the intensi-
ty, and the various phase factors (phase shifts, phase
mismatches), etc. can be clearly tracked. As previously
noted, the terms on the right-hand side (r.h.s. ) of Eqs.
(8)—(15) consist basically of two types of terms. Terms of
the so-called two-wave-mixing type are grouped into the
first line on the r.h.s. These terms depend neither on the
phase shifts among the beams (p3„p», etc.), nor on the
phase mismatch. However, they are critically dependent
on the phase shift P (between the intensity and the index
gratings). Such phase shifts can occur naturally in pho-
torefractive materials, or in Kerr media subject to mov-
ing intensity grating. " If the phase mismatch (arising
from the integrated response of the terms containing
Ak3z) is large, which happens if the interaction length is
long or the pump-probe crossing angle is large, then I3
and I4 will be of diminishing amplitude, and we will re-
cover the usual equations describing two wave mixings

dI2 = —aI~ +2gI i QI&I3 sinN, +4gI & +I,I4 sin4&3
dz

+4g QI, I~I3I4 sin@3 (28)

and the equations for the phases (18)—(21) become

d4, = —g (I, +2I3+2I3+2I4) gIz+—I4/I, cos+3
dz

—2g QI~I3 cos4, —2g QI~I3I4/I, cos@3, (31)

d&2 = —g (Iz+2I, +2I3+2I4) gI, QI—3/I3 COSC
dz

dI3 = —aI3+ 2gI, +I&I, sin@, 4g—QI, I3I,I4 sin@3,
dz

(29)

dI4
aI4—2gI,—QI, I4 sinN~ 4g +—I,I,I,I4 sin@3

dz

(30)

dI2
=4g sin/I, Iz —aIz,

dz

d = —g ( I, +2I3 cosP ),
dz

d2=-= —g(Iz+2I, cosP) .
dz

(23)

(24)

(25)

d+3
dz

QIiIqI4
2g cos+3

3

(33)

2g QI,—I4 cosN~ 2g QI,—I3I4/I3 cos&P» (32)

= —g ( I3 +2I, +2I~ +2I4 ) gI3 —cos4,
I3

&0 ( ( x ) =$,3(z) +$,3(z) —Ak 3z,

@~(z)=P»(z) +$43(z) + b k 3z

3(z) —$3&(z) +((43(z) +2hk3Z

(26)

Note that W3 =N2 —N &.

Equations (14)—(17) for the intensity become

Obviously, if /=90, there is a maximum unidirectional
How of energy from beam 1 to beam 2, irrespective of
which beam is stronger. This two-wave-mixing process is
the basic mechanism for work on phase conjugation,
wave mixing, self-pumped oscillation s, image
amplification, etc. in photorefractive materials.

If the medium is thin, and/or the pump-probe crossing
angle is small, such that there is negligible phase
mismatch, then all the remaining terms on the r.h.s. of
(14)—(21) will contribute, and the interactions among the
beams become much more complicated and interesting.
Some aspects of this multiwave mixing were discussed in
a previous article. ' In the present formalism, in terms of
phase and amplitude, further interesting insights into this
seemingly untractable coupling among the beams can be
obtained. The situation becomes particularly clear if we
deal with a Kerr-like medium (/=0) with the following
redefinitions:

= —g (I4+2I&+2I&+2I3) gI3 cosC—&z

QI
&
I2I3

2g COS+3
I4

(34)

cos@z(0)=0,

The generation of the diffracted beams 3 and 4, the
amplification (or deamplification) of beam 2, and the evo-
lution of the phases, phase shifts, and intensity-dependent
phase shifts are shown to be described simply by the two
inputs I, (0) and Iz(0), and the phase shift combinations
&Pi, Nz, and N3. The initial values for Ii(0) and I3(0) are
the input pump and probe beam intensities to be chosen
in the experiment. The initial values for N„42, and N3
are N, (0)=m/2, 43(0)= —m. /2, and %3(0)=~ rad, re-
spectively. The setting of these phases is governed by
physical conditions at the Z =0 plane. Consider, for ex-
ample, Eq. (33) for N3. Multiplying both the r.h.s. and
the l.h.s. by I3 and noting that at Z =0, I3=I4=0, we

get

cosg, (0)=0 .

This means that @,(0)=+a/2. Similarly, multiplying
both the l.h.s. and r.h.s. of Eq. (28) N4 and noting that
I4 =0 and I3 =0 at Z =0, we get

dI, = —aI, 4gI, QI&I3 sin—N, —2gIz +Ii I4 sind&3
z

&.e. ,

4Z(0) =+a /2 .

+4g i/I, IzI3I4 sind&3 (27) If we further note that the wave-mixing contribution to
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I3 and I4 gives rise to positive dI3 /dZ and dI4 /dZ, then
C)i(0) must be chosen to be 7r/2 and N~(0)= —ir/2,
unambiguously.

Once these initial values for the N's and I's are known,
the subsequent growth and energy interchanges among
the beam can be seen by calculating the z dependence of
the 4 and I from Eqs. (27)—(34) above. Consider Figs. 2,
3, and 4, which are respective plots of N„N2, and N3 as a
function of the distance z into the nonlinear medium.
For this calculation we have used parameters close to
what may be realized in actual experiments. [The cross-
ing angle 0 between beam 1 and 2 is set at 0.001 rad,
A, =O. 5145 pm, Ii(0) =20 W/cm; I i (0)/I2(0), the beam
ratio, is 100; the linear loss a is 20 cm ' and the non-
linear coefficient n zl

=2. 26 X 10 cm /W. ]
For small 0, the phase mismatch Ak =kO /2, which,

though small, does contribute to a few degrees in phase
shift for film thickness exceeding 100 pm.

Figure 2 shows that for d =0—500 pm, N, starts from
90' and increases to 160' quite rapidly, then begins to
"saturate" for d ~ 200 pm. Since sin N, for this range of
N& is positive, the term in Eq. (28) 2gIi+I2I3 sin4&i will

be positive throughout, and contribute positively as a
gain channel for the probe (I&) gain.

On the other hand, Fig. 3 shows how Nz, which is ini-
tially —90', increases very rapidly to about 0 and begins
to saturate at this value for d ~200 pm. From d =0—500
pm, N2 therefore remains negative, and therefore the
term 4gIz "(/I, I4 sinC)2 in Eq. (28) for the probe beam will
be negative, contributing therefore a loss channel for the
probe beam.

Since N3=N2 —N, , from the results of Figs. 2 and 3,
N3 is not expected to change much. Figure 4 is a plot of
N, (z) with the vertical scale highly expands. It shows
that @,(0) rises from —180' to —160' very rapidly be-
tween d =0 and d =60 pm. It then drops to about 167'
(at d =300 pm) gradually and stays around there. There-
fore, sinN& practically stays small and negative.

') 0

() 100 ') 00 300 400
z()a m)

500

FIG. 3. Plot of the phase 4& (vertical axis in degrees) as a
function of the distance z (in micrometers) into the nonlinear
medium.

From these results, and from Eqs. (27) —(30), we would
expect that most of the "growth" of I3 and gain of I2 will

take place in the first 200 pm or so before losses (from a)
and these phase shifts begin to "stunt" the growth. Fig-
ure 5 shows the gain of the probe beam I~(d)/I2(0) and
clearly illustrates this point. The drop in the probe gain
for d & 300 pm is due to the medium loss, which may be
more clearly seen in Fig. 6, which plots out beam-
1 —beam-4 intensities as functions of the medium thick-
ness. For d ~ 200 pm the pump beam intensity has
dropped to =25% of input value. As a matter of fact,
for d ) 380 pm, I, is much less than I3 or I2 [due to a
combination of linear losses (a) and a diffraction (wave

mixing) loss to Iz and I3].
For the particular set of values used in getting these

plots, one may conclude, therefore, that 300 pm is the op-
timal thickness, and the maximal probe beam

156.5
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—160.0 -~-
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—16I. ;
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)00 '300 300 -I 00 500
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ZI (l 77) 't

300 400 ;&()0

FIG. 2. Plot of the phase Nl (vertical axis in degrees), as a
function of the distance z (in micrometers) into the nonlinear
medium.

FIG. 4. Plot of the phase N3 (vertical axis in degrees) as a
function of the distance z (in micrometers) into the nonlinear
medium.
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can translate the nonlinear medium along the
hK =K, —K2 direction to create the same nonlocal
response.

If /&0, then we have to go back to solving the set of
equations (14)—(21), rather than the simpler set of equa-
tions (27) —(34). Nevertheless, it is possible to get some
physical insights by considering and comparing (15) for
dIz /dZ (in the case of P&0) and Eq. (28) for dIz/dZ (for
/=0).

The major contributor of the growth of the probe in-
tensity I2 (for P =0) for Eq. (28) is the term

2gI~ QI&I3 sing& = To. On the other hand, from Eq.
(15), the major contributor is

4gI2I, sing +2gI
~ + I & I3 sin( P &

+P ) = T,

FIG. 5. Plot of the probe beam gain I2(z)/I&{0) as a function
of the distance z (in micrometers) into the nonlinear medium.

EFFECT OF NONLOCAL RESPONSE ($~0)

The preceding discussions on the erat'ect of the laser
phase apply to the so-called local nonlinear response case
(i.e., the phase shift P between the intensity grating and
the index grating is zero). This is true in a Kerr-like
medium if the frequencies of the pump and the probe
beam are the same. If there is a detuning between the
two beam frequencies, giving rise to a moving intensity
grating on the nonlinear medium, the resulting refractive
index grating will be relatively phase shifted (i.e. , /&0)
with respect to the intensity grating. Alternatively, one

20 ——

10 ——
I4

I:3

0 25 50 75
TT++t I Vl~

100 125 150

d {pm)

FICx. 6. Plots of all incident and generated beams as a func-
tion of the nonlinear-medium thickness (in micrometers).

amplification is about 13. Obviously, if a, n2, and/or
I, (0) and the ratio I(0) /Iz( 0) are changed, the results
are diff'erent. For the same a and n2, it is possible to get
a probe gain as high as 100 at a pump-probe ratio of
1000.

If /&0, the two-wave-mixing terms 4gI2I, sing in T, will
contribute positively (for P) 0) or negatively (for P &0)
to the probe-beam growth. On the other hand, (P&+P)
will increase from 7r/2 (if /=0) or decrease from ~/2 (if
P &0). The contribution of the four-wave-mixing term
2gI, QI2Ii sin(P, +P) in T, therefore, is still positive.
Consequently, if P &0, the probe beam will experience a
higher gain than if / =0. On the other hand, if P & 0, the
two-wave-mixing term 4gI2I, sing will contribute nega-
tively to the probe-beam intensity, although the four-
wave-mixing term 2gI, QI2I3 sin(P, +P) is still positive.
In this case, one would expect a decrease in the overall
probe again.

When higher-order diA'racted beams of substantial
magnitude are present, the interplay between these
phases and phase shifts becomes very complicated. Nev-
ertheless, both the numerical calculations and our experi-
mental results confirm the preceding qualitative observa-
tions.

EXPERIMENTS

The theory discussed in the preceding sections applies
generally to any nonlinear medium, and thus the choice
of performing beam (or image-bearing beam)
amplification is dictated by the intended application or
fundamental pursuit. In this section we will summarize
some of the experimental results obtained using nematic
liquid-crystal film as the nonlinear film. Observation of
probe-beam gain and comparison with theory that ac-
counts for other relevant physical parameters (e.g. ,
medium s intensity-dependent loss, diffusion, etc. ) have
also been done in other studies. '' In this paper we will
present hitherto unreported results based on the orienta-
tional nonlinearity of liquid crystals.

From previous studies, it is well known that as a re-
sult of laser induced reorientation of the nematic director
axis (a birefringent material), there is a large accompany-
ing intensity-dependent refractive index change. For a
100-pm thick sample, with the linearly polarized laser in-
cident at an external angle of 45 to the sample (i.e., at an
angle 0, =22' between k and n), the typical nonlinear
coefficient n2I =2X10 cm /W (c.f. , Ref. 8). [Actually
the nonlinear response of the liquid-crystal reorientation
is z dependent, which means the coupling constant g is
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also a function of z. This dependence can be easily incor-
porated in the numerical solution of Eqs. (14)—(21). We
found that the solutions using this more detailed depen-
dence of g and an average value of g are not appreciably
different. ]

The experiments are performed using a linearly polar-
ized argon-ion laser operating at the 5145-A line. The
laser is split into a pump and a probe beam (with the
pump-probe beam ratio an adjustable experimental pa-
rameter). To investigate thickness dependence, up to
nine layers of 100-pm nematic films are stacked together,
each film separated from the the other by a very thin
glass plate.

In all the experimental measurements, the liquid crys-
tal used is (PCB) (K15 from EM Chemicals pentylcyano-
biphenyl) at room temperature. Occassionally, we also
used E46 (from EM Chemicals) and obtained similar re-
sults. As a result of the large nonlinearity in combination
with the (Gaussian) beam size (about 1-mm diameter for
the probe and 2-mm diameter for the pump), self-
modulation and external self-focusing and the resulting
increased divergence and rings formation are experienced
by all the transmitted beams (mostly due to pump-
induced refraction-index change) for pump power & 100
mW. At the highest power used in these experiments,
there are two visible diffractions (beams 3 and 4) if the
probe beam is weak (pump-probe ratio &20). If equal
pump and probe beam powers are used, second-order
diffracted beams are clearly visible. The increased diver-
gence can exceed the crossing angle 0 and the output
beams can no longer be individually measured accurately.
Quantitative comparison with theory can therefore be
made only in the low-power —low-gain regime.

Figure 7 shows the experimentally observed probe gain
as a function of the pump-probe beam ratio obtained at a
pump-beam power of 33 mW. As expected, there is no
gain if the pump and the probe beams are of equal inten-
sity. As the pump-probe intensity ratio increases, the
probe gain increases, in very good agreement with theory
(dashed line). The gain saturates at about 30% above a

ratio of ) 35. Much higher gain can be obtained by in-
creasing the pump-beam intensity, and/or using a thicker
nematic liquid-crystal film as shown in Fig. 8, where a
pump-probe beam ratio of 208 is used. Gain as high as
250% can be achieved with a pump intensity on the order
of 15 W/cm in a 152-pm-thick nematic liquid-crystal
film. At these power levels, the diffracted beams 3 and 4
are clearly visible, but they are quite weak compared to
the probe (and of course, to the pump) to cause a de-
crease in the probe gain. This is shown by the excellent
agreement between the theory (solid line) and the experi-
mental results (circle). In the same figure we have also
plotted the effective gain (in triangles) defined as [I~(d)
with pump] /[Iz(d) without pump), and the correspond-
ing theory. The value of n z~ that fits these curves is
about 5X10 cm /W, which is expected of a 152-pm-
thick nematic liquid-crystal film.

Since the nonlinearity of nematic liquid-crystal film is a
function of the film thickness, it is not possible to study
the thickness dependence of the probe gain or the
diffraction efficiency by using samples of different thick-
ness. Experimentally, we have studied the thickness
dependence by using multiple (closely stacked) layered
nematic liquid-crystal films; each layer is about 100 pm
thick and is separated from one another by a thin
( & 100-pm) glass plate. Samples up to nine layered films
of good optical quality have been made. By studying
probe-beam gain or diffraction efficiency in diff'erent lay-
ered samples, a good insight into the role of absorption
loss may be gained. Figure 9 is the observed probe-beam
gain as a function of the number of liquid-crystal layers.
The experimental results (circles) show that as the num-
ber of layers increase, the probe-beam gain first increases
and then drops off' rather quickly. The drop in the
probe-beam gain is due priinarily to the loss (a), which
has been measured in a separate experiment to be on the
order of 20 cm '. This is evident if we plot the experi-
mentally observed effective gain as a function of the num-
ber N of layers used (Fig. 10). The efFective gain (i.e. ,
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FIG. 7. Experimentally observed probe gain as a function of
the pump-probe intensity ratio.

FIG. 8. Experimentally observed probe gain dependence on
the pump-beam intensity.
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FIG. 11. Observed diffraction (beam 3) efficiency as a func-
tion of number of nematic layers.

with the loss a removed) in general increases as X in-
creases. Both Figs. 9 and 10 can be fitted qualitatively
well with our theory using n&1=1.1X10 cm /W, and
the experimental parameters of p=20S, I& =10 W/cm
crossing angle 0=0.001 rad, and n =20 cm

At a large pump-probe beam ratio P, the diffracted
beam I3 is quite weak. By lowering P to about 5,
diffraction (I3) is easily visible, and can be accurately
measured. The results are depicted in Fig. 11, where the
diffraction efficiency is plotted as a function of the num-
ber of layers. In general, because of the larger signal
(compared to the background noise), the data in Fig. 11
shows less "scattering" than those in Fig. 9 and 10. The
theoretical curve using parameter quoted above with
I

&
/I2 5 fits the data very well. Again, we note that the

drop in the diffraction efficiency at higher X values is due
to the medium loss. In nematic liquid crystals, these

scattering losses are highly wavelength dependent (drop
off faster than A, ). We therefore expect that these probe
amplifications and other wave-mixing processes will be
very efficient in the infrared and far-infrared regime.
Indeed, using a CO2 laser and a totally different kind of
nonlinearity (diffusive thermal nonlinearity in liquid crys-
tals), we have observed probe gain as large as 20 or
more. ' '

Experimentally, we have also investigated the effect of
nonlocal response in the probe amplification using two
methods: (i) by imparting a frequency offset between the
pump and the probe beams, accomplished by translating
one of the mirror directing the probe beam to the sample,
and (ii) by translating the sample in the direction of the
grating wave vector k, —kz. Both methods yield the
same results. Figure 12 shows the observed probe gains
plotted as function of the wave mixings angle (which
affect the nonlinearity constant nial). In general, the gain
decreases with increasing value of the mixing angle, in ac-
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FIG. 10. Experimentally observed effective gain as a function
of the number of nonlinear nematic layers. Circle: experiment;
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FIG. 12. Plots of the experimentally observed probe-beam
gain as a function of the wave-mixing angles for probe beams
that are (a) circles: non-shifted; (b) triangles: Stokes-shifted;
and (c}squares: anti-Stokes-shifted.
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cordance with previously studied dependence of the re-
orientational nonlinearity on the wave-mixing angle.
The triangles are obtained for a probe beam that is Stokes
shifted (i.e., lower frequency compared to the pump);
equivalently, the sample is translated in the k, —k2 direc-
tion. In general, there is an increased probe gain com-
pared to the nonshifted case (data in circles) in agreement
with the theoretical expectation discussed earlier. On the
other hand, squares are data for the case of an anti-
Stokes-shifted probe beam, and generally the probe-beam
gain is diminished. The absolute values of the relative in-
crease or decrease in the probe-beam gain depend on the
magnitude of the frequency shift (which depends on the
velocity of the mirror directing the probe beam to the
sample), or the velocity of translation of the sample. Due
to the limitation in our instrumentation, the absolute
value of these speeds cannot be accurately measured.
The results obtained in Fig. 12 (for the Stokes- and anti-
Stokes-shifted probe beam) correspond to the maximal
observed increases or decreases in the nonshifted probe-
beam gain as these speeds are varied. In our numerical
computations, the value for P is varied from 0 to +m. /2,
and we have found that the maximal changes in the
probe gain (for P & 0 and (t (0 corresponding to Stokes
and anti-Stokes shiftings, respectively) are in good agree-
ment with these experimentally observed values.

CONCLUSION

A theory of multiwave mixing is developed to describe
some newly observed probe-beam amplification in a
Kerr-like medium. The coupled amplitude and phase
equations account for all relevant parameters such as in-
tensities, intensity-dependent phase shifts, phase
mismatches, and beam intensity ratios. They can also be
generalized to describe non-Kerr-like media where a
finite phase shift exists between the intensity and the in-
duced refractive index gratings. By further including the
intensity-dependent medium loss, the theory can also be
applied to processes where the laser-induced nonlinear
mechanism introduces new losses experienced by the
beam, as in the case of laser-induced electron-hole plasma
in semiconductors. ' ' Experiments have been
performed in nematic liquid-crystal films which possess
large orientational nonlinearity, and the observed probe-
beam gain dependence on the pump-probe ratio, on film
thickness, on the pump intensity, and nonlocal phase
shift, etc. are in good agreement with the theory.
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