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We carry out numerical simulations of the evolution and steady-state properties of a dye laser

operating near resonance. The model we use is fully two dimensional (i.e., it includes the intensity

and the phase of the radiation) and does not involve the usual low-intensity expansions commonly

used in the literature. The equation for the complex electric field is driven by white additive noise

(quantum fluctuations due to spontaneous emission) and by colored multiplicative noise (Auctua-

tions of the gain parameter). %'e note that the simulations agree with the experimental results of
Zhu, Yu, and Roy [Phys. Rev. A 34, 4333 (1986)] for parameter values used in their experiments.
%'e compare the simulation results with predictions of the "best Fokker-Planck equation" (BFPE)
for the steady-state distribution of the laser intensity and find remarkable quantitative agreement for

large ranges of parameters values, even for values that are in principle beyond the range of validity

of this equation. We conclude that the BFPE can be safely invoked to make predictions for this sys-

tem.

I. INTRODUCTION

The single-mode dye laser operating near resonance
serves as a generic system for the study of the effects of
noise on physical systems. ' This system has been par-
ticularly useful for a number of reasons. First, the equa-
tion describing it is su%ciently simple to be amenable to
analysis and/or numerical simulations. Second, experi-
mental measurements on dye lasers provide practical re-
sults against which to measure the success of the models
and of the calculations based on these models. Third,
the noises driving the dye laser include many of the
features that are currently of great interest in theoretical
studies: the complex field amplitude is driven by white
additive noise (spontaneous quantum fluctuations) and by
multiplicative colored noise (correlated fluctuations of
the gain parameter).

A number of theoretical models have been used to de-
scribe the single-mode dye laser near threshold. '

Most of these treatments have made one or another of
three approximations or assumptions: they have expand-
ed the equations in a power series in the complex electric
field, retaining contributions up to cubic order; they have
only included one or the other of the noise sources; they
have approximated the two-dimensional problem (intensi-

ty and phase) by a one-dimensional problem (intensity).
These approximations have been made in part for histori-
cal reasons and in part for analytic tractability.

Our purpose in this paper is twofold: to analyze the
behavior of the two-component dye laser near resonance

using the full unexpanded equation for the complex elec-
tric field' ' via numerical simulations, and to test the va-

lidity and success of the "best Fokker-Plane k equa-
tion"' ' (BFPE) in predicting the behavior of the dye
laser. We find that variation of the intensity or of the
correlation time of the colored noise may induce similar
effects in the distribution of the laser intensity in the
steady state. We also find that the BFPE reproduces the
numerical simulations with extreme accuracy over wide

ranges of parameter values, even in regimes where one
might expect it to fail.

In Sec. II we present the Langevin equation for the
complex field amplitude that forms the basis of our fur-
ther analysis. In Sec. III we obtain the BFPE and present
explicit solutions of it in the steady state for certain
ranges of parameter values. Section IV presents our nu-

merical simulations and the comparison of these simula-
tions with the results of the BFPE treatment. A sum-

mary of conclusions is presented in Sec. V.

II. I.ANGEUIN EQUATION

The dimensionless equation of motion for the complex
field amplitude F (t) of a single-mode dye laser operating
near resonance is currently thought to be of the
form' ' '
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where A and aI are the gain and loss parameters, respec-
tively. The functions p(t) and q(t) represent the fluctua-
tions of the gain parameter and fluctuations due to spon-
taneous emission. These fluctuations are assumed to be
complex zero-centered Gaussian processes. The additive
fluctuations q(t)=q, (t)+iqz(t) are 5 correlated in time
(i.e., white), with

(q, (t)q,.(t')) =2D 5,,5(t t')— (2.2)

~2D5„5(t t')—as r~0 . (2.3)

The relation between the dimensionless equations
(2.1)—(2.3) and a corresponding dimensional form is dis-
cussed in Appendix A.

The change of variables to polar coordinates according
to

with i,j=1, 2, and D the intensity of the additive
fluctuations. The multiplicative fluctuations p ( t ) =p, ( t )

+ ipse( t) are colored and are assumed to have an exponen-
tial correlation function,

(p;(t)p, (t') ) =5 J(D/&)e

x=G(x)+g'(x)p(t)+g (x)q(t) . (2.10)

The superscripts c and w denote, respectively, the func-
tional coefficients of the colored and white fluctuations.

Lo = —V„G(x),

L, (t) = —V„.g'(x)p(t),

L (t) = —V„g (x)q(t),

(3.1)

(3.2)

(3.3)

where V„—:(a/as, a/ap). We have shown elsewhere that
the BFPE is given by' '
a—W, = —V„G(x)W, +D [V„g (x)] [V g (x)] W,

III. BEST FOKKER-PLANCK EQUATION

In this section we obtain the BFPE associated with the
two-dimensional Langevin equation (2.10}.' ' The
Liouville operator Lo associated with the systematic por-
tion of (2.10) and the corresponding operators L, and L
associated with the stochastic portions of (2.10) are

Z(t) = ~E(t) ~e'~'"

and introduction of the intensity

(2.4)
+ dt' L, te 'L, t —t'e

X W, [1+O(Dr)], (3.4)

I(t)= iE(t) i'

allows us to rewrite (2. 1) as

(2.5)
where W;

—= W(x, t~xo) is the conditional probability den-
sity. Written out explicitly, the first and second terms on
the right-hand side of (3.4) are

dl Ag 2I=2 —a, + I + p, (t)
a—V .G(x) W = —2X aI

A—a+ I IS' (3.5)

+2v'I [q, (t)cosp+ qz(t)sing],

d 1

dt &+Ipz(t)+&I [q2(t)cosg —q, (t)sing] .

(2.6a)

(2.6b)

D [V„g (x)] [V„g (x)] W,

a2=D 4 &I &I —2 + — W, .
as ar ar

(3.6)

Notjce that (2.6) is the full two-dimensional Langevin
equation for the dye laser. This equation includes satura-
tion which is kept only to leading order in I in Lamb' s
equation. One can rewrite (2.6) in matrix form as follows:

2I [—a&+ 3 /(1+I)]I
dt

2I 0
1+I (2.8)

2I 0
+ ]+I 0 1 P2

2I cosP 2I sing
+ —sing cosP qz

(2.7}

By introducing the vectors x =(I,P), p
=(p, ,p2), q =(q, ,qz), and G (x)=[(2[—a&+ A [1/(1
+I)]I )I,O], where T denotes the transpose, and the ma-
trices

The last term in (3.4) is evaluated in Appendix B using
the cumulant resummation technique to yield

f dt'(L, (t)e ' L, (t —t')e ' ) W,

4a I a I
D (I)+ 22' a'

W
ar r+r ar 1+r

(3.7)

where D»(I) and D2z(I) are related to the generating
function for the infinite series in ~ that arises in the
resummation technique. Using Eqs. (B9a) and (B9b), one
shows that the diffusion function turns out to be indepen-
dent of P, a result difficult to anticipate. In Appendix B
we show that Dzz(I)=D The function D».(I)=D (I), on
the other hand, is more complicated and can only be
given in closed form in special cases. When A =0 we
find the positive-definite diffusion function

2I cosP 2I sing
—sin~}} cosPg (x)=

one can rewrite (2.7) as

(2.9)

D(I)= 2F, 1, 1;2+
& +2aI & 2aI & I +I (3.8)

where F is a hypergeometric function. For A )&aI we
obtain
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D (I)=D,:—D/( I +2a( r), (3.9) I—3 2—3 I—2A —3 I+ 2D, —3
+1

which is independent of the intensity.
The three contributions (3.5), (3.6), and (3.7) determine

the two-dimensional BFPE. It is noteworthy that due to
the phase independence of the diffusion functions D,;(I)
one can eliminate the angle variable P by integrating the
equation. This property is well known in the white-noise
limit and has been assumed (but never before shown to be
true) in the presence of colored fluctuations. We thus
define a reduced probability density

al al a,

(3.14)

The additive noise (through D„) has no influence on the
extrema of P„(I). If we now assume that Ag & 3ttt
[which is consistent with the condition Ag »at necessary
for the applicability of the BFPE with D(I) given by
(3.9)], it is easy to see that there is a critical value for the
diffusion coefficient, given by

P, =P(I, t~Io):— f dP f dgoR'(I, g, t~IO, Po) W —a,Dcr
C (3.15)

(3.10)

which then satisfies the evolution equation

—P, = —2
(3t

' BI
—a + I+D1+I W

+4D &I &IP,aI

aI 1+I aI 1+I (3.1 1)

We wish to stress that (3.11) is a consequence of the full
bidimensional dye-laser equation (with saturation), in
contrast with the phenomenological extension of the
white-noise equation used by Aguado and San Miguel.

Equation (3.11) reduces to the appropriate equation in
the white-noise limit when D (I)~D. When A &&a& the
state independence of the diffusion function implies that
the BFPE (3.11) has the white-noise-limit form but with
the renormalized diffusion coefficient (3.9). In this case
the steady-state solution of (3.11) is given by the expres-
sion

P„(I)=X( 1+I)(I + pi ) (I +y2)~exp( a&I /2D ), —

(3.12)

where N is the normalization constant and we have
defined the following parameter combinations:

D, D,
g, 2=1+ + (1+4D„/D, )'

l.L'

(3.13a)

a =S/2D —t3 —1, (3.13b)

with

As+2D —Sy, —1

2D, (1+4D. /D, )'" (3.13c)

S = 3 +2D„+a&D, /D (3.13d)

and D, given in (3.9). Note that P„(I) is well defined for
all positive values of the intensity and that P„(0)
=&XiXz&0

It is a simple matter to find the number and location of
the extrema of the stationary distribution. I=O is always
an extremum, and the others are given by the solutions of
the equation

D, =( I+2atr)( 2 —
a& )/2 . (3.16)

(ii) If we fix D„ then a change in distribution shape with

changing ~ is only possible if D, &D,". In this latter case
the change of shape occurs at the value

r = [2D,. —( 3 —a( )]/[2a, ( 3 —a, ) ] . (3.17)

Thus, although in some parameter regimes similar
changes in the steady-state distribution can be accom-
plished by changing either the renormalized noise intensi-

ty or its correlation time, in general the role of these two
parameters, D, and ~, may be quite different.

In closing this section we note that the BFPE for this
system does not suffer from the problem of negative
diffusion functions and the consequent sustained proba-
bility densities that have elicited criticism of the
method. ' ' Such problems would have arisen had we
used the expanded version (A5) of the model (2.1); since
the intensity in this system is not bounded, such an ex-
pansion is not appropriate over the entire phase space
and should be avoided in any case.

IV. NUMERICAL SIMULATIONS

We have carried out direct numerical simulations of
Eq. (2. 1) and in this section we compare the results of
these simulations with those of the BFPE. In some of our
simulations we used the sets of parameters reported by
Roy et al. ' in their dye-laser experiments at 6% and at
20% above threshold. ' In the 6% case the dimension-
less parameter values are a& =116.7, A =123.7, D=0.05,
x=0.05, D =1.84X10 ', with T*=10 (see Appen-
dix A: this implies that our dimensional time unit is 10
sec). For operation at 20% above threshold, the parame-

If D, D," then the stationary distribution has only one
extremum (a maximum) aside from I=O (which is a
minimum). On the other hand, if D, & D;" then, in addi-
tion to the maximum at I=O, the distribution either has
two extrema (a maximum and a minimum) or none at all.
It is interesting to note how the shape of the stationary
distribution is modified when the parameters characteriz-
ing the multiplicative noise are changed. From (3.9) and
(3.15) two interesting possibilities are apparent. (i) If we
fix ~, then it is always possible to change the shape of the
distribution by increasing the noise intensity D. The
change of shape occurs at the renormalized value
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ter values are a1=108, A =129.6 D=0.15, ~=0.042,
D„=4a38X10 '.

In Figs. 1(a) and 1(c) we depict the transient behavior
obtained from the simulations, which agrees very well
with the experimental results reported by Zhu, Wu, and
Roy. In particular, the simulations reproduce the ob-
served time at which the intensity begins to increase
sharply, and they also reproduce the time that it takes for
the intensity to reach the steady-state level of operation.
With our scaling the steady state values 0.06 and 0.2 of
the intensity are related, respectively, to the 6% and 20%
operation levels of the laser. In Figs. 1(b) and 1(d) we
show the corresponding steady-state probability distribu-
tion obtained from the simulations. Note that with these
parameter values we cannot apply the BFPE with the
effective diffusion coefficient (3.9) since the condition

))ai is not satisfied.
In Fig. 2 we simultaneously explore the behavior of the

dye-laser steady-state intensity distribution as we vary
various system parameters in order to find the conditions
that lead to a "noise-induced phase transition, "' and we
also test the validity of the BFPE (3.11) with (3.9). Here

we have taken Ag =5, a& =1, D =1 and we have varied
the parameters D and ~ of the multiplicative noise. No-
tice the transition occurring both vertically (changing D)
and horizontally (changing r): the absolute maximum
and the number of relative maxima of the distribution
change when one changes D or ~. This confirms the re-
cent results of Aguado et al. for a one-dimensional ver-
sion of the unexpanded dye-laser model: they argue that
it is not necessary to invoke noise color in order to get
the noise-induced phase transition in which the max-
imum of the distribution jumps discontinuously from
I=O to finite I, and that this transition can be achieved
by changing the intensity of the white multiplicative
noise. ' We note that the agreement between the BFPE
and the simulations is remarkably good for all the param-
eter values considered in this figure. ' We thus conclude
that when the condition 3 &&a& is reasonably met the
BFPE with the effective diffusion coefficient (3.9) is an ex-
cellent approximation for (at least the steady-state behav-
ior of) the dye-laser equations (2.6a) and (2.6b).

Figure 3 shows the eA'ect of the additive noise on the
stationary distribution. These results should be com-
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FIG. 1. Simulation results based on the two-variable laser model (2.6), using parameter values corresponding to the experiments of
Zhu, Wu, and Roy. (a) and (c) show typical intensity trajectories as a function of time for operation at 6% above threshold (a) and
20% above threshold (c). (b) and (d) show the corresponding intensity distributions in the steady state.
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FIG. 2. Comparison of simulation results (dots forming jagged line) and the predictions of the BFPE for the intensity distribution
in the steady state calculated from the model (2.6). The values 2, = S, a~ = 1 and D„,= l are used throughout, and the values of D and
w are varied. The pair (D, ~) is indicated in each panel.
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pared with those of Figs. 2(d), 2(e), and 2(f) for the same
values of the other parameters but with a much stronger
additive noise. In particular, comparison of Fig. 3(b)
with Fig. 2(e) shows the dramatic effect of the additive
noise when the renormalized multiplicative noise intensi-
ty is close to the value (3.16). Note that even in these
cases the BFPE provides an excellent approximation and
captures the essential details of the process.

Figure 4 shows the eFect of the additive noise on the
transient behavior of the laser for the parameter values

=100, a&=1, D=0.5, r=0.5, and D =10 [Fig.
4(a)] or D = 1 [Fig. 4(b)]. As the intensity of the white
additive noise increases, the transient behavior of the in-
tensity becomes of shorter duration but the steady-state
output of the laser is more erratic.

V. CONCLUSIONS

We have simulated the two-dimensional model (2.1) or,
equivalently, (2.6), that describes a single-mode dye laser
operating near resonance. We have avoided small-
intensity expansions that may give rise to difficulties in
the application of approximate analytic methods for the
analysis of this problem. We have also obtained analytic
solutions for the problem within the framework of the
BFPE.

Our simulations agree well with experimental results
where the latter are available, thus providing a check for
the model and for our simulations. We are not able to
find explicit analytic results within the BFPE formalism
for these experimental parameter values, and so we
choose others where we are able to find analytic expres-
sions in order to compare the theoretical results with
those of the simulations. The agreement between the two
is remarkable, even in parameter regimes where the
BFPE ceases in principle to be valid. This agreement in-
cludes regimes where the number of extrema of the inten-
sity distribution in the steady-state changes from one to
three, and also to regimes of vanishing additive noise
where the distribution increases very sharply with inten-
sity as I~0.

Because of the limitations on our analytic results, our
analysis of the dye-laser system has been mostly limited
to the high-gain regime, A &)a& ~ The behavior of the in-
tensity distribution in this regime as the other parameters
of the system are varied may be unimodal or bimodal,
and in the unirnodal cases the peak may occur at I=O or
at a finite intensity. For a fixed white-noise intensity and
a fixed correlation time of the colored noise, increasing
the intensity of the colored noise enhances the zero-
intensity weight of the distribution. If we fix the intensity
of both the white and the colored noise, then increasing
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0..6 ~ I I I [ I I I I [ ~ I I I

T. = 0.05
the correlation time of the noise increases the finite-
intensity contribution to the distribution, Finally, for
fixed intensity and correlation time of the colored noise,
increasing the white noise intensity favors the finite-
intensity weight of the distribution.
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APPENDIX A

The equation of motion for the complex electric field
:-(T)=:-,( T)+i:-z( T) for a single-mode dye laser is given
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FIG. 3. Comparison of simulation results (dots forming
jagged line) and the predictions of the BFPE for the intensity
distribution in the steady state in the (near) absence of additive
noise. In these calculations Ag=5, a&=1, D=5, D =0 in the
BFPE and D =10 in the simulations (see Ref. 22 for reasons
for this small difference). The correlation time w is changed as
indicated on each panel.
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FIG. 4. Effect of additive noise on the transient behavior of
the laser from simulations of the model (2.6). The figures show
a typical intensity trajectory as a function of time for parameter
va/ues 3 = 100, ai = 1, D=0.5, x=0.5. In (a), D„,= 10; in (b),
D„,=1.
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g ex+ ex( T)
&ex+ g e —+ ex(T)

1+c'"I:-I' (Al)

with A", Qt", and cex the experimental gain, loss, and
scaling parameters, respectively. Here both:- and the
time T carry appropriate units. The additive complex
noise q,',"( T) =q &" ( T)+iq2" (T) is white, with correlation
functions

E =( ex)1/2 t = T/Te (A7)

T+AR Te ARc
ex (ASa)

The relevant times for the laser problem are of the order
T-10 @sec. If we wish the relevant dimensionless time t
to be of O(1), the scaling factor T* must be of the order
of 10 sec. %'ith this scaling we obtain Eq. (2.1) with
parameters related to those of Roy et QI. as follows:

( "(T)q,"(T') ) =2D„';6;,5( T —T'), (A2)

where D„"is the strength of the noise. The multiplicative
pump noise p,'"( T) =p i" ( T)+ ip 2" ( T) is colored, with
correlation functions

Q)=T Q

D=T D

r=H/T",

(A8b)

(ASc)

(ASd)
Dex

(p, (T)p (T')) = 5; e (A3)
ex

D = T*D
W W (ASe)

dF.
dT

g ex+p ex( T)—a("'+, E +q„, ( T),I+(c'"/c) IEI-
(A4)

where q„, =&cq'". In much of the literature it is as-
sumed that the dimensionless quantity c'"IEI /c « 1

(which cannot be true for all E), and Eq. (A4) is then ex-
panded as

where D" and ~" are the strength and correlation time
of the colored noise.

The electric field:-(T) and the time T are usually
scaled according to personal convenience. A common
scaling changes the electric field to dimensionless form
but leaves the time as a dimensioned quantit~. Thus we
define the dimensionless complex field E = &c =, where c
is a scaling factor of appropriate units. This yields the
equation

Es ( ex)i/2
A ex 1/2

Dex
tS—DexT

We use the superscript S to indicate that this is the scal-
ing that has been used by Aguado et QI. ' One obtains
the dimensionless equation

«' s
dts

—Q(+
+p, (t )

E +q„(t ),I+(I/A s)IEsl2
(A10)

whose parameters are related to our dimensionless ones
as follows:

Another widely used dimensionless form of the equa-
tion arises when the strength of the multiplicative Auc-
tuations is chosen to be unity and is obtained with the
scaling

ex

~;"IEI2 E+p,'"( T)E+q ( T) .

(A5)

This is the equation used by Roy et Ql. ,
' and the rela-

tion between their parameters (denoted by a superscript
R ) and those defined above is

/D,
QI =Q( /D

D =1

H=Dr,
D =(3 /D)D

(A 1 la)

(Al lb)

(A 1 lc)

(Al ld)

(A 1 le)

ex ex
AR Aex AR

c ' c
(A6a)

Yet another frequently used scaling to a dimensionless
equation arises when the strength of the additive Auctua-
tions is chosen to be unity, as done by Lett et ah. ,

R A ex exao — —
Q& (A6b) EL —

( exp ex / )i/2 tL T/ (A12)
DR DeX

ex

W W

(A6c)
where

(A6d)

(A6e) (D„ /I )
'/

1

( g RDR )
I/2 (A13)

Nate that in order to deduce the actual experimental
quantities from the parameter values reported by Roy
et QI. requires knowledge of their choice for the scaling
factors c'" and c (or use of the information contained in
Ref. 18).

Others in the literature prefer to use a completely di-
mensionless equation (as we do in our text), which re-
quires the scaling of both the complex field and the time.
We have chosen

whose parameters are related to our dimensionless ones
as follows:

A =uA /T (A15a)

This scaling yields

/I'+ (t )L+ g c EL+ (t ) (A14)
dtL 1+(I/3 L)IE
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a( =ua(/T*,

D =uD/T
r'= T*rlu,

(A15b)

(A15c)

(A15d)

(A15e)

BII„,BG,
(g');( '

Bt (, (. Bx(

—(g');( ' H„Gq
Bx(,.

BH„'
G(,.

(89a)

APPENDIX B with initial condition

To evaluate the integrand in Eq. (3.4) we apply the
Baker-Campbell-Hausdorff formula

H,, (x,0)=5,, (89b)

The solutions of this partial differential equation are

e Be "=B+[A,B]+—[A, [A,B]]

+—[A, [A, [A,B]]]+.1 (81)

H, , (x, t)=0 for i~j
Hzz(x, t) = 1,

(810a)

(810b)

where [, ] denotes the commutator. If we identify
with Lot' and B with L, (t —t'), then one can prove by
induction that the series (Bl) can be written as' '"

e " L, (t —t')e .
" = g F,,

" (x)p, (t t'), —
n=0 ' i

(82)

where the matrix elements F,'"' satisfy the recurrence re-
lations

and H, , (x, t) can only be written in general in terms of a
transcendental equation,

a [H))(I, t)] ' ' —(a —a&I )[H»(I, t)]
p2 —2al (810c)

where we have noted that H& &
turns out to be indepen-

dent of $ in x=(I,P) and where a—:A —a&. Explicit
solutions are only possible for particular parameter
values. If 3 =0, then we find

FI,O)(x) =g,'j(x),

, BG, BF,',
"-"

F;," (x)= g FI," " —G~
Bx,. Bx,.

(83)

(84)

H(I, t)=(1+I )l(1+I e ' );
if 3 ))a( then

H(I, t)=e

(811)

(812)

In these expressions G (x) and g'(x) are the elements of
the vector Cx(x) and of the matrix g'(x), respectivel'y.
Using these results we obtain D, (I, t)= j dt'H, (I, t') e— (813)

Associated with these H functions we define the
diffusion function

t, L, (t)e " L, (t t')e . " )—
= —e ' ' g g, ', (x) F~, (x, t'), (85)D, .„B

'7 (. Bx . Bx(

where we have defined

in terms of which

dt' I, te "L,, E
—E'e " P,

—g~(x) —
gf, , (x)D,~(x, t)P, . .(B14)

n

F„,(x, t) =—g, F),"'(x) .
ky

(86)

F& (x, t)= g g),'&(x)H& (x, t)
(

(87)

so that

We further introduce the decomposition (which consti-
tutes a definition of the functions H,, )

When the correlation time ~ is short, it is usually argued
that the upper limit in the integration in (814) can be set
to infinity, and the diffusion functions thus become in-
dependent of time. ' ' The off-diagonal diffusion func-
tions vanish because of (810a). The result (810b) im-

mediately yields Dz~(I) =D. The function D„(I)=D (I)
can be given explicitly only in the cases when H» can be
expressed explicitly, as in Eqs. (3.8) and (3.9). With these
results we finally have

j dt'(L, (t)e L, (t —t')e " )p,
0

= —e ' ' g g,'(x) — g&&(x)H& (x, t') .D, l, B

. . ~( Bx, " Bx(,.
(BS)

1

a I a
aI )+I aI &+I

The functions H, (x, t) satisfy the partial differential

equation which is used in Eq (3 7)

(B15)
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That the multiplicative Auctuations are indeed colored has
been confirmed via independent considerations in Refs. 3 —6.

'The agreement found here is in fact much better than that of
the corresponding one-dimensional model analyzed in Ref.
17.

We had completed our numerical simulations with D =10
when we noted that for the parameter values used in Fig. 3 it
is impossible to obtain numerically the normalization con-
stant of the steady-state distribution (3.12): the constant is

simply too large. We are able to find the normalization con-
stant analytically for D =0, and this is what we chose to do.
Since the additive noise intensity is so small in the simula-

tions, we did not repeat the latter for D„=O. The excellent

agreement between the simulation and BFPE results even

with this minute diA'erence in parameter values is clear.


