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Pressure-induced effects in two-level atoms: New approach and simple physical interpretation
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Pressure-induced effects in nonlinear optics and spectroscopy are studied using a nonstandard-
dressed-atom formalism for a set of two-level atoms. We consider a two-level atom interacting with
two radiation fields whose frequencies differ by 6 and undergoing dephasing collisions with a per-
turber bath. The atom-field detunings are large compared with all relaxation rates in the problem.
The system is described by a Hamiltonian of an atom dressed by a single-mode field with a coupling
constant slowly varying in time at frequency 5. We show that the collisionally aided excitation of
the initially unpopulated dressed states is modulated in time. All the characteristics of the
pressure-induced effects are deduced from the properties of this time-modulated excitation. Apart
from already known phenomena (pressure-induced extra resonances in four-wave mixing, pressure-
induced phase shifts, etc. ) that are reinterpreted using this approach, we present a new effect that
can be described as fluorescence beats. Finally, we show that this approach gives a firm basis for use
of a model involving collision-induced gratings and we interpret the pressure-induced effects in the
context of this model ~

Coherent effects induced by collisional damping are
among the most puzzling effects observed in nonlinear
optics and spectroscopy. These effects have been first
considered by Bloembergen and his co-workers' in the
framework of the theory of nonlinear susceptibilities.
The predictions of this approach have been successfully
verified in the case of the PIER 4 resonances (pressure-
induced extra resonances in four-wave mixing) both in
the case of three-level atoms and in the case of two-level
atoms. Several other phenomena have been predicted
using this approach (or, equivalently, using the optical
Bloch equations) and subsequently observed. Among
these phenomena are collision-induced gain in two-wave
mixing, collision-aided self-focusing and self-defocusing, '
and collision-induced phase shift. " However, in spite of
its success, it has proven difticult to give a completely
satisfactory physical picture of the pressure-induced reso-
nances using the optical Bloch equations alone.

Other approaches or pictures have been used to clarify
the underlying physics. For example, the connection
with optical pumping has been stressed and has permitted
one to give simple physical interpretations of several ex-
perimental results. This approach is especially useful in
the case where the Zeeman degeneracy of the levels has
to be considered. ' A dressed-atom method has also
proven to be very fruitful. More precisely, the dressed-
atom approach has permitted one to show how a PIER 4
coherence can be created by collisions in a three-level
atom. Also the manifestation of the conservation of en-
ergy' and the link with other processes such as collision
redistribution of radiation" or collision-aided excitation
of atomic levels' is particularly clear in this model.

In the case of a two-level atom having upper level b

and lower level a, several difficulties arise in treating the
problem of its interaction with two quantized fields. In
particular, the notion of mu1tiplets of dressed states' is
generally lost because a system in the atomic state b in
presence of n, photons of the first mode of the field and
nz photons of the second mode (state ~b, n, , nz)) is cou-
pled to

~ , an+ l, nz) and ~a, n~, n +z1), which are cou-
pled to b, n, + l, nz —1) and ~b, n, —l, n, +1), etc. One
can try to avoid this difficulty by quantizing only one field
and treating the second field as a classical light source.
However, in this situation one usually makes the secular
approximation to decouple the evolution of the popula-
tion of the dressed states from their coherences. ' Unfor-
tunately, this approximation leads to incorrect results
when one considers two fields whose frequency difference
is of the order of the natural width of the excited state. '

In particular, the pressure-induced effects tend to vanish
in this approximation. There are methods to overcome
this difticulty. One can avoid the secular approximation
or use complex dressed states. ' '" However, none of
these solutions is really simple.

We propose here a different approach. The theory is
applicable under the experimental conditions where the
pressure-induced effects are observed. Generally, the ex-
periments are done in a range of frequencies where the
frequency difference between the two electromagnetic
fields is much smaller than the frequency detuning from
resonance. In this limit, one can describe the electromag-
netic field as a field oscillating at the mean frequency of
the two beams and slowly modulated in time. If this
average field is quantized, the coupling constant between
the two-level atom and the field is slowly modulated in
time. In the framework of the usual dressed-atom mod-
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el, ' the collision-aided excitation of the "upper dressed
state" is accompanied by a temporal modulation of the
population of this state. All the characteristics of the
pressure-induced effects can then be easily interpreted us-

ing methods that have already been developed to describe
the interaction of an atomic system with a modulated ex-
citation beam. ' The main advantage of this approach is
that the very simple mathematics makes the physics ex-
tremely clear.

This paper is organized as follows. In the first part
(Sec. I), we recall the classical theory of the pressure-
induced effects using the optical Bloch equations. We
separate the pressure-induced terms from the collision-
free terms and we study the general characteristics of
each of these contributions. In the second part (Sec. II),
we present a semiclassical dressed-atom model and calcu-
late the dressed-state populations and the electric dipole
moment with this model. We show that the separation
between the pressure-induced and the collision-free terms
has a precise physical meaning in this approach. All the
pressure-induced terms are associated with a collisionally
aided excitation of a dressed-atom level, while the
collision-free terms are associated with the modification
of the dressed-state wave functions. Apart from the
characteristics of the already well-known pressure-
induced effects, such as PIER 4 resonances, two-wave
mixing gain, etc. , which are easily recovered and ex-
plained, we calculate a collision-induced resonance in the
fluorescence beats emitted by a two-level atom interact-
ing with two fields. We also show that a rigorous basis
can be given to the interpretation of the pressure-induced
effects in nonlinear optics in terms of collision-induced
gratings.

I. PRESSURE-INDUCED EFFECTS
IN THE OPTICAL BLOCH EQUATION APPROACH

i6 (( ci)i MD

The frequency detuning from resonance 6 is thus al-
most the same for the two fields,

+—
COl COO~ C02 COO . (4)

(5)

for i =1,2.
Relaxation of the upper level b results only from spon-

taneous emission and occurs at rate I . Relaxation of the
a bcohe-rence results from spontaneous emission (with
rate I /2) and from dephasing collisions between the ac-
tive atoms and a buffer gas. ' In the impact limit, the
coherence relaxation rate is (I /2)+y where y =y'+iy"
is a (complex) collisional rate parameter (y varies linearly
with the buffer gas pressure p).

B. Calculation of the atomic density matrix to second order
in the input fields

In this section, we wish to calculate the upper-state
population pbb to second order in the field amplitudes.

The calculation is carried out in terms of atomic densi-
ty matrix elements p,- which evolve as

d 1 d
Pig .~ t &P]ij d Pig

relax

(6)

where H is the sum of the free Hamiltonian Ho and of the
electric dipole interaction Vbetween the atom and the in-

put fields E, and E2. The relaxation terms in the optical
Bloch equations (6) are

The matrix element of the electric dipole moment be-
tween states a and b is called d (which is assumed to be
real). We consider here the case where the fields are
su%ciently weak, such that

A. Notations and assumptions

We consider a set of two-level atoms (ground state a,
excited state b, energy difference Eb E, =A'coo) inte—ract-
ing with two nonresonant electric fields of same polariza-
tion

d
Pbb Pbhdt relax

d
~ P ~Pbbdt relax

(7a)

(7b)

E, (t) = P~, cos(co, t+p, ),
E2(t) = Azcos(cu2t+ rp~) .

(la)

(lb)

d
dt Pb.

relax

r—+X Pb. . (7c)

We denote by 5 the difference between the frequencies
of the two fields

To second order in the input fields, the solution of (6)
in the limit I, ~y ~

(( I b,
~

is

6 —63 l 63~

and always assume that

(2) (fr) + (coll )

Pbb Pbb Pbb

with

(8a)

(fr) d
p&&

—
2 ~ [o, + 6'z+ 26', 6'2cos( ot +y) ],

4A 6
(8b)

d (8, +6, ) d D, 6', rn
PAA + cos(6t +p)+ sin(it+ a)I'+~' r'+6'
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where 6=m] —
cu2 and cp=cp[ —

cp2. We have separated in

the expression for pbb the collision-free term given in (8b)
from the part proportional to y' which is collision depen-
dent. This term (8c) gives the pressure-induced contribu-
tion to the population of the upper state. We see that a
resonance centered at 6=0 can be observed in the
pressure-induced term. We discuss this resonance below.

with

(f )(d(cu) ) )")=, , (6, +2@z)6)cos(r(z)t+(p(),
2A'6

4

( d(cuz) ) '""=
( 5z+26, )6'zcos(ozzt +(Pz),

2A 6

(13a)

(13b)

C. The electric dipole moment to third order in the input fields

We now consider the coherence p„„and more precisely
the mean value of the electric dipole moment

d(P b+Pb ) . ( d ( 26)z cc) I ) )

, ( Iu'zcos[(2') —coz)t+2(P) —cPz], (13c)

To third order in the input fields, we find

( d ) —( d ) (lio ) + ( d ) (fr)+ ( d ) (coll) (10)

d"
I (~z@)cos[(2frzz crI) )t+2(pz —

(P) ] .2' 6' (13d)

where (d )' '"' is associated with the linear response of
the medium given by

(d ) "" = — [ "c)cos( oz)t+ (P)) +~czc os( oizt +'(Pz)]( ]ill )

AA

[6)sin(fo)t+cp) )

+ (c Zslii( C1rzZ+ (PZ ) ]

The first term of (11) corresponds to the linear dispersion
of the medium and the second one to the linear absorp-
tion. The quantities (d )'"" and (d ) '""' are terms in the
expansion of (d ) which are of third order in the field
amplitudes, representing the collision-free and pressure-
induced terms, respectively. Starting from (8b), we calcu-
late (d )'""' to be

&d &"")=&d(co))& '" +&d(~ )&'""

In the expressions (13), we have kept only the dom-
inant terms. The term (13a) corresponds to the non-
linear modification of the susceptibility of the field F,
Similarly, (13b) is associated to the nonlinear
modification of the susceptibility of the field F, . The
terms (13c) and (13d) are related to the possible genera-
tion of new frequencies (2') —cu, ) and (2coz —oI) ) as a re-
sult of the nonlinear interaction between the atoms and
the incident fields.

We now consider the pressure-induced terms which are
calculated starting from (8c). Using the same decomposi-
tion as in (12),

(d )(coll) (d( )
)(coll)+ (d( )

)(coll)

+ &d(2') —~z) ) '"" +(d(2toz —
fu) )

)"""'

(14)

+ ( d ( 2oI
I (dz ) ) + ( d ( 2')z ct) I ) ) (12) We find

d 4@~2

(d(co())"""=—,-[(6,+Dz)(')cos(oI)t+(P)))+. . . [I co)(aorsst+)P )(+)6 s(i )(cunt+)P )(]), (15a)

(d(oiz) )"""'= —;[(6)+6', )C7zcos(oIzt+c(()z)]+, , —-[I ( zcos(~zt+(Pz) —6hzsin(cozt+(Pz)], (15b)

(d(2oz) —fez) ) '""'=—, —;—, I I cos[(2'( —coz)t+2()f)) —()()z)+csin[(2c(z( coz)t+2c—PI
—

(Pz] I (15c)

(d (2coz —
cu) )

)"""'=, —,—
1 I I cos[(2cuz —

cri) )t+2(Pz —(P)] —csin[(2cuz —tc)) )t+2(Pz —(P)]] (15d)

All these terms are proportional to y' and thus in-
crease linearly with the buA'er gas pressure. They are as-
sociated with the pressure-induced contributions to the
nonlinear susceptibility of beam EI [Eq. (15a)], of beam
Ez [Eq. (15b)], and with the generation of new frequen-
cies 2~] —

co& and 2co2 —co, .

D. Discussion

In all the quantities considered above (population of
the upper level, nonlinear contribution to the electric di-
pole moment, etc. ) we have separated the collision-free
terms from the pressure-induced ones. It can be seen that
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some common features are always exhibited. First, the
variation with 5 exhibits a resonance behavior (around
5=0) only for the pressure-induced terms. The
collision-free terms are insensitive to a small variation of
5. Second, the collision-free components of the electric
dipole moment are in phase with the incident fields, while
a dephasing depending on the ratio 6 /I always exists for
the pressure-induced terms. All these features will be
physically interpreted in Sec. II using a new dressed-atom
approach. We will also show that the separation between
the collision-free and the pressure-induced terms is not
only mathematically convenient but can equally well be
associated with a diAerent atomic excitation mechanism.

Finally, we note that several effects studied during the
recent years are described by formulas (13) and (15). If
we set (p] = k& r and cp2= —k, r, then E, and E~ are as-
sociated with two beams propagating in directions k, and
kz, respectively. Formulas (15c) and (15d), together with
(13c) and (13d), describe four-wave mixing generation in
the directions 2k~ k2 and 2k' k& ~ The PIER 4 reso-
nance centered at 5=0 is apparent in expressions (15c)
and (15d). Formulas (13c) and (13d) are associated with
the background terms observed when I5I » I or when
collisions can be neglected (y' =0).

Formula (13a) is associated with the collision-free com-
ponent of the nonlinear susceptibility g]=g']+iy']' of
beam E, . Since ( d (co, ) &'"' is in phase with E, , this term
only describes a modification of the real part of the sus-
ceptibility g', . We note that this term induces a phase
shift for the field E, proportional to P~]+2@&, which is
not a symmetric function of 6i and 82 (independent of
the value of 5). On the other hand, in the pressure-
induced term (15a), we can separate a dispersive part
which contributes to g', and an absorptive part which
contributes to g' [this is the sin(co, t+y, ) term]. Let us
first discuss the pressure-induced contribution to g', . We
note that, contrary to the collision-free term (13a), the
pressure-induced phase shift for field E, is proportional
to 6, + 6'~ when I5I &&I, and is then a symmetric func-
tion of 6, and Dz. On the other hand, the asymmetry
still exists when I5I & I . It has been shown that these re-
sults explain the nonreciprocity in the output of a four-
wave mixing ring oscillator pumped by two asymmetric
pump beams. Formula (15a) also shows that the
pressure-induced contribution to g" can be either posi-
tive or negative depending on the sign of 5. A pressure-
induced amplification has thus been predicted and ob-
served. The corresponding process has been called
pressure-induced two-wave mixing or pressure-induced
Rayleigh gain, since y" attains its extrema when I5I —I .

II. NONSTANDARD DRESSED-ATOM APPROACH

E (t) = 8 cos(cot+4),

with

6 = [6,+ 6, +26', @,cos(5t +p)]'

CO
—( 67 i + 672 ) /2

N= —,'(y, +y2)+a,

(17)

(18a)

(18b)

(18c)

(18d)

+=tan z 6t V'[ V'z
(18e)

If the amplitude 6' and the phase 4 of the field (17)
were fixed quantities, it would be straightforward to
quantize the field and to consider the eigenstates of the
atom dressed by this field. ' Actually, the Hamiltonian of
the dressed atom is

H'=Ha+ V',

with

(19)

Ha=irtcoDIb &(b I+irtcoa a,
V'=g(S ae ' +S a e' ),

(20a)

(20b)

where S+ and S are the operators Ib &(aI and Ia &(bI
and g is a coupling constant between the atom and the
field that is equal to irtO, /2i/(N &, where (N & is the
mean number of photons in the mode co and A] is the res-
onant Rabi frequency, equal to

(21)

For constant 6, the eigenstates of H' are

I2(N)&=(cosg)Ia, N+1& —e ' (sing)Ib, N&,

I
1(N) &=e' (sing)Ia, N+1&+(cosg)Ib, N &,

(22a)

(22b)

where Ia, N+1& and Ib, N& are eigenstates of H0 with
energies (N +1)fico and A'ai0+NAcu, and H is defined by
the relation

cotan(2H) =—,0 & 2H & tt .0]' (23)

In the perturbative limit ( dIo « AID I) considered here,
the eigenstates I2(N) & and l(N) & can be written as '

lating at a mean frequency [=(co,+a~&)/2], with a modu-
lation at frequency =5=(ai, —coi). We thus transform

E ( t) —6 icos(co it + (pi ) + Dpcos(cdirt + +2)

into

A. Description of the model

We again consider a two-level atom interacting with
two fields E, (t) and Ez(t) given by the expressions (la)
and (lb). As shown above, the frequency diff'erence be-
tween the two beams 5 is an important quantity for the
experimental observations. It is thus interesting to de-
scribe the total field E(t)=E, (t)+E2(t) as a field oscil-

n, e
12(N) &

= la, N+1&+ Ib, N &,
2A

(24a)

Q[e'
Il(N) &

= Ib, N &
— Ia, N+1& .

2A
(24b)

In fact, in our system, 6 and N are not constants but vary
very slowly with time [according to Eqs. (18a) and (18d)].



4020 G. GRYNBERG AND P. R. HERMAN 39

However, as long as the assumption of our study
(~6~ —I, ~b,

~
&&1,db, /A, d@2/iii) is valid, we can still

quantize the field of frequency co by the procedure given
above. In this case, the amplitude and the phase of the
atom-field coupling vary very slowly and

~
1(N}) and

2(N) ) are adiabatic eigenstates of the system.
Since there is actually no field having frequency

(co, +co2)/2, but two fields at frequencies co, and co2, one
can consider this approach as a way to avoid the
mathematical difficulties found in the problem of a two-
level atom dressed by two electromagnetic fields. Anoth-
er possibility would have been to quantize only one field
and to treat the second field classically. However, this
method does not respect the symmetry between the two
fields. The approach presented here has the first obvi-
ous advantage to maintain the symmetry between the two
fields.

Another interest of the method is that ~1(N)) and
~2(N)) behave as quasistationary states of the system.
Provided that ~5/b,

~

(( I and secular approximation, the
only coupling between ~1(N) ) and ~2(N) ) is collisional in
nature. In the following we shall assume that these con-
ditions are fulfiled and consequently we shall use the for-
mulas established for the collisional relaxation of a two-
level atom dressed by a single-mode field.

B. Popu1ation of the upper level: Fluorescence beats emitted
by a two-level atom

(26)

w=y' [6,+82+26, 62cos(6t+cp)] .
2A 5

The nontransient solution of (26) is thus

(27)

In the absence of collisions, the only states that are
populated are the

~
2(N) ) states. Collisions induce a

transfer from ~2(N) ) to ~1(N) ) with a rate equal to

w —p
2A

(25)

Since w is proportional to both y' and 6„the transfer to
the ~1(N) ) state increases with the buffer gas pressure
and with the light intensity.

The state ~1(N)) decays toward the state ~2(N —1))
with a rate I (owing to spontaneous emission). The
population H& of the level ~1(N) ) is found by solving the
rate equation

d
d~

II = —re +w.
The Rabi frequency 0, given by Eqs. (21) and (18a) is

now a function of time, resulting in a time-dependent rate
w given by

d ( 6', + 6', ) O'6, e,
H, = +

2g2g2 g2g2

p2 racos(5t+y)+, sin(5t+(p)r'+6' r'+6' (28)

One recognizes in (28) the result (8b) found for p'b'b""'.

The pressure-induced term in the solution of the optical
Bloch equations just corresponds to the population of the
upper level of the dressed atom. We now can explain the
features of this term. First, we note that the population
II, is driven by an excitation modulated in time at the
frequency 5. We therefore understand the origin of the
modulation at frequency 6 and also of the resonance
occurring at 6=0. Secondly, since the upper state has a
lifetime equal to I ', it is natural to find a resonance
whose width is I and which does not exhibit any pressure
broadening. ' Finally, the fact that p'b'b""' (or H~) is not in

phase with the applied field just corresponds to the finite
response time of the population of the

~
1(N) ) level.

A system in the ~1(N)) state decays toward the
~2(N —1) ) state by emitting a photon at the atomic fre-
quency ~o (Fig. 1). The intensity of the light scattered at
this frequency coo is thus proportional to H, . We see on
formula (28) that the scattered intensity should exhibit an
oscillation at a frequency equal to 6. A new type of
fluorescence beats is thus predicted in the case of two-
level atoms interacting with two single-mode fields.
These fluorescence beats are pressure induced since they
depend on H, , which is proportional to the pressure
broadening y' of the atomic transition a ~b. Using Eq.
(28), we find that the modulation depth of the fluores-
cence beats is given by

d 6,D,
(H )

—(II ) =2
g2g2 ( I 2+g2)1/2 (29)

The modulation depth profile as a function of 6 exhib-
its a resonant behavior centered at 5=0, having width
(full width at half maximum) equal to 2&3I .

Also we note that these fluorescence beats are obtained
in a situation where the excitation is not resonant, the en-
ergy defect between the atomic energy and the photon
energy being supplied by the collisions. ' There is of
course a relationship between these pressure-induced
fluorescence beats and the pressure-induced optical
pumping considered in previous papers.

C. Mean value of the electric dipole moment

For a two-level atom dressed by a single-mode field, the
mean value of the electric dipole moment is given by'

(d ) =(II& —H2)d sin(28)cos(cot+/), (30)

where H, and II2 are the populations of the levels
~
1(N) )

and ~2(N) ) (normalized by H&+Hi= 1 ) and 0 is defined

by (23).
The mean value of the dipole moment is proportional

to the difference of population between the levels ~1(N) )
and ~2(N)). The factor d sin(20} comes from the matrix
element of the electric dipole moment between the states
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~i (N) ) and ~i (N —1) ) (where i = 1, 2) for which the Bohr
frequency is equal to co.

Using H, + Hz= 1, we transform (30) into

(d ) =(2H, —1)d sin(20)cos(cot+iti) .

(20) tan(20)
[1+tan (20)]'

= tan(20) 1—tan (20)
2

and using (23), we find

(32)

In the perturbative limit (~Q, ~/~b,
~
&&1), the terms of

third order in the input field can be obtained in two ways.
We can first multiply H, , which is a second-order term by
sin(20) —20, which is a first-order term. Since H, is pro-
portional to y', we thus obtain a pressure-induced term.
We can also consider the term —1 in (2Hi —1) and devel-

op sin(20) to third order in Qi. This contribution to the
dipole moment is obviously independent of the pressure
broadening and thus leads to the collision-free terms for
the electric dipole moment.

Let us first consider these collision-free terms. As
mentioned, we have to develop sin(20) as a function of
0 ] /A. We start from

sin(20) = — 1—
2S'

(33)

(tl )
& d )'""i= a'cos(~r +y) .

2A 6
Using (16), (17), and (18a) we transform 6 cos(cut +P)
into

n, n',
+ 2S'

We do not consider the term linear in II, (which leads to
the linear response), and using (21), (31), and (33) we cal-
culate the collision-free third-order component of the
electric dipole moment

[8i+Bp+2@ihpc so(5r+ip)][6 icos(crt ir+cpi)+62cos(cd2t+ipp)]

=(6', + 6', )[6,cos(co, t+y, )+ D,cos(co2t+(p~)]

+D, @&Icos(co2t+ipz)+cos[(2', co2)t—+2y, —p~]I+A', Eicos(cu, t+p, )+cos[(2coz co, )t+2—yz y, ]] . —(35)

Regrouping these terms in formula (34), we find an ex-
pression for (d )'""' which is exactly equal to the one ob-
tained in formulas (12) and (13).

It follows from this theory that the collision-free terms
in the third-order component of the electric dipole mo-
ment are associated with the modification of the wave
function of the ~2(N) ) state. Since the wave function fol-
lows instantaneously the variation of the applied fields,
we understand why the terms appearing in (1 )'""' are in
phase with the applied fields. Also, since this process is

basically nonresonant, we do not expect to find any reso-
nance when 5 is scanned. Finally, since the level ~1(N) )
is not involved in this process, it is reasonable that the de-
cay rate of this ~1(N) ) level does not appear in the final
result.

We now consider the pressure-induced terms in (d ).
These terms are obtained by replacing in (31) H, by its
value given in (28) and sin(20) by its first-order approxi-
mation (

—II, /b, ). This leads to

d (6, +8', ) d A, D2(~)-"= + p2 rscos(5t+cp)+ sin(5t +ip)r'+n' r'+s'
d 6 cos(cot+/) . (36)

Using (16) and (17), we write

6'cos(cot+/)=6', cos(co, t+p, )+6'2cos(co2t+yz) . (37)

Finally, we transform (36) using trigonometric relations.
For example,

cos(6r +g)cos(toit +pi )

=
—,
' Icos(cu, t+pz)+cos[(2', coz)t+2ip, —

cp2]]
—.

(38)

By regrouping the terms in (36), we find an expression for
(d )"""which exactly coincides with the one obtained in
formulas (14) and (15).

The dressed-atom approach presented here permits a
clear physical separation between the collision-free terms
and the pressure-induced ones. The former are associat-
ed with the modification of the wave functions and follow
instantaneously the applied fields, while the latter are as-
sociated with a collisionally aided excitation of an initial-
ly unpopulated level of the dressed atom. Because of the
finite lifetime I of this level, the pressure-induced corn-
ponent of the electric dipole moment exhibits a dephasing
with respect to the applied fields. Also, we find in
(d )'""' all the characteristics already discussed for the
pressure-induced population H, and which are related to
the fact that the excitation m is not static but is modulat-
ed at the frequency 6.



4022 G. GRYNBERG AND P. R. BERMAN 39
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FIG. 3. Spatial modulation of intensity (light grating) created
by the incident beams E, and E2. When these beams have
different frequencies the grating moves inside the medium. The
probability of collisionally aided excitation is maximum at a
light grating antinode. Because of the atomic lifetime I ', the
dressed-atom grating is retarded with respect to the light grat-
ing.

FIG. l. Effect of a dephasing collision in the bare-atom pic-
ture (a) and in the dressed-atom picture (b). Schematically, the
collision provides the energy necessary to reach the upper state
in (a) and induces transition inside a multiplet of the dressed-
state energy diagram in (b). Once the atom is the upper state, it
decays by emitting a spontaneous photon of frequency co„with a
rate I .

D. Physical interpretation of the PIER 4 resonances
and of the Rayleigh gain

As shown above, all the pressure-induced effects are as-
sociated with the collision-aided excitation of the

~
1(N) )

level. We are able to explain these pressure-induced
effects through this collisional excitation.

As noted above, the excitation of level
~
1(X)) is modu-

lated at a frequency 6=co, —co& equal to the beat frequen-

cy between the two applied fields. The population II& of
the level ~1(X)) has thus a static component and a com-
ponent oscillating at frequency 6. The interaction of the
atom with a third field of frequency co3 leads to a dipole
having components at co3 (because of the static com-
ponent of the population) and sidebands at co, +6 and

c03 6. In the case where co3 = co &, the frequencies of the
sidebands are 2~, —coz and cu2. The first component is as-
sociated with a four-wave mixing generation at 2', —

co&,

while the second is associated with the modification of
the propagation of beam Ez by beam E~. When ~5~ be-
comes very large compared to I, the modulation of the
excitation is too fast by comparison with the time
response of the excited state and the modulated com-
ponent becomes vanishingly small. It follows that the
pressure-induced component of the four-wave mixing
generation goes to 0. (However, the four-wave mixing
generation does not disappear because of the collision-
free background terms which are independent of 6.)

Let us now look more closely at (d(m, ))'""' and
(d(co~))'"" given by formulas (15a) and (15b). Because
of the finite response time I ' of the excited level,
( d (co, ) ) '""' is generally not in phase with
6,c so(co, t +y, ) and (d(cu2))"""' is not in phase with
62cos(co2t+y2). More precisely, if (d(co, ))"""'is in ad-
vance with respect to E~(t), then (d(~2) )'""' is retarded
with respect to Ez(t) (see Fig. 2). This shows that E, can
be amplified while E2 experiences an extra-absorption (or

d(~~)
2k;k,

FIG. 2. Relative positions of the fields and of the dipole com-
ponents in a phase diagram. Because of the pressure-induced
terms, d(col) and d(u2) are not in phase with the fields oscillat-
ing at frequencies cu, and cu2. One of the dipole components is
retarded (which leads to an extra-absorption), while the other is
advanced (which leads to an amplification).

2k, —k,

FIG. 4. Diffraction of the beams E, and E, on the atomic
grating created by these two beams.
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vice versa) and that energy is transfered from one beam
to the other. This is the origin of the pressure-induced
two-wave mixing.

E. Dressed-atom gratings

Additional insight can be found by examining the spa-
tial variation of the dipole moment. ' Let us consider
two beams E, and E2 propagating in the directions k,
and k2 implying values g, = —k, .r and cp2= —kz r. The
two beams E~ and Ez create a light grating (i.e. , a light
beam having spatial modulation) (Fig. 3). This grating
has a spatial period equal to 2'/~k, —

kz~ and moves with
a velocity proportional to co, —co&. Because of the spatial
modulation of the light intensity, the collisionally aided
process is also spatially dependent and a grating of atoms
excited in the ~1(N)) level is formed. The existence of
such a grating is manifest in formula (28), giving the pop-
ulation Il, of le~el ~1(N) ) when we replace y, and y2 in
that equation by —k, .r and —kz. r, respectively. Let us
now consider the behavior of this population grating for
three different values of ~, —cuz. When co, —co2=0, the
light spatial modulation is stationary. The collisionally
aided excitation is maximum at an antinode of the light
spatial modulation and minimum at a node. The popula-
tion grating, like the light grating, remains stationary and
the modulation depth of the population grating is max-
imum. When ~co,

—
co~ —I, the light grating and the pop-

ulation grating move together but they no longer coincide
[because of the finite lifetime I ' of the ~1(N) ) state, a
system in the

~
1(N) ) state does not return immediately to

a ~2(N —1) ) state]. The nodes and antinodes of the pop-
ulation grating are thus retarded with respect to those of
the light grating. Finally, when ~co,

—
co~~ &&I, the light

grating moves so rapidly inside the medium that the
atoms are almost uniformaly excited. In this case, the
modulation depth of the population grating becomes van-
ishingly small.

Let us consider the interaction of E, and E2 with this
population grating. The two beams E, and E2 can be
diffracted by this grating (Fig. 4). For example,
diffraction of beam E] in lowest order leads to three
diffracted beams, one propagating in direction k& (order
0), one propagating in direction k&+k& —kz=2kl —kz
(order 1), and one propagating in direction
k, —(k, —k2)=k2 (order —1). Because of the Doppler
shift of the moving grating, the beam diffracted in order 1

has a frequency 2', —
cu2 and the beam in order —1 a fre-

quency cu2. Let us first consider the beam generated in
the 2k, —k2 direction. Its amplitude is maximum when
the modulation depth of the population grating is max-
imum. This occurs when ~, —cuz=O. In contrast, when

~cubi
—

co&~ && I, the modulation depth goes to 0 and there
is no longer any pressure-induced contribution to the
four-wave mixing generation. This analysis shows that in
the presence of collisions, the four-wave mixing genera-
tion at 2k& k, exhibits a resonance around co, —co2=0, a
resonance whose width is of the order of I . These are
the well-known characteristics of the PIER 4 resonances
for a set of two-level atoms. 3

Let us now consider the beam propagating in the k2

direction which exits the interaction region. This beam
comes from the coherent superposition of the diffraction
of Ez at order 0 and of the diffraction of E, at order —1.
The sum of these two fields is generally not in phase with
E2. This is the origin of the pressure-induced phase shift
which has been shown to be of interest in four-wave mix-
ing gyros. Also the sum of the diffracted fields can be
larger than the incident field Ez and, in this case, a
pressure-induced amplification is obtained.

Finally, we want to comment on the collision-free
terms. As shown above, these terms do not depend on
the populations of the dressed states (II& is equal to 0
when y'=0), but on the variation of the dipole moment
with Sl, [see formulas (31) and (33)]. Apart from the col-
lisionally assisted grating, there is also a grating of dipole
moments that is associated with the dressed-atom wave
functions and that follows instantaneously the variation
of the applied field. It is the diffraction of E, and Ez on
this grating of dipole moments which is the origin of
emission at 2'& —

co2 and 2', —cu, when ~5~ &&I . Also,
since the grating of dipole moments is always in phase
with the applied fields, the diffraction of E, and E2 gives
terms which only contribute to the dispersion of the fields
[see formulas (13a) and (13b)].

III. CONCLUSION

We have presented a nonstandard dressed-atom ap-
proach to interpret pressure-induced effects for a set of
two-level atoms interacting with radiation fields and a
buffer gas. To third order in the input fields, this ap-
proach gives a physical basis to the separation between
the pressure-induced terms and the collision-free terms.
The former are associated with a collisionally aided exci-
tation of a dressed state, while the latter correspond to a
modification of the dressed-atom wave functions. All the
properties of the nonlinear effects (resonant behavior
versus 5, etc. ) can be easily interpreted from this model.

This model is also useful if one wants to predict what
occurs to fifth order in the input fields. It is well known
that, in this case, new extra resonances in multiwave mix-
ing can be found which are not collisionally assisted.
Actually, these resonances are also associated with a
relaxation-assisted population of the dressed states, but
now the radiative relaxation replaces the collisions. In
other words, the atom is now excited through a three-
photon hyper-Raman process involving the emission of a
spontaneous photon. -' In the absence of collisions, the
population II, of the dressed state ~1(N) ) results from
the spontaneous emission from ~2(N+1)). Using the
value of the matrix element of the electric dipole moment
between the states ~2(N+ I)) and ~1(N)), '' one finds
that (26) has to be replaced by

(39)

Using (18a), one finds the following stationary solution
for II
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d4 rz
H, = ( u, + 6 2+ 46', &'~) +4( o ', 6~+ 6', o', ) cos(6t +y)+, ;sin(6t +y)

I +6

+ 2C), 6, cos2(6t +(p!+, sin2(6t +y)z.z 2I 6
r'+46' rz+46' (40)

One sees that in the absence of collisions, fluorescence
beats from the "upper state" are still predicted, but now,
two Fourier components, one at frequency 6 and the oth-
er at frequency 26, should be observed. Also, two reso-
nances, one of width I and the other of width 2I, should
appear when 6 is scanned.

The terms oscillating at frequency 26 lead to the gen-

eration of a dipole moment oscillating at frequency
3' i 2')z. Consequently the resonant behavior occurring
for 6=0 also exists to fifth order in the field amplitude,
even in the absence of collisions for the generation of a

field at a frequency 3', —2cuz. Of course, in the presence
of collisional damping, there is a corresponding
pressure-induced component to fifth order in the field

which can be calculated by taking into account the next-

order term in the development of m as a function of 0&.
The important point is that all of these resonances are as-

sociated with the fact that the population of the
~
l(N) )

state is obtained through a relaxation-aided process and
that the relaxation aided process is modulated in time
when the fields have diAerent frequencies.
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