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Dynamics of laser buildup from quantum noise
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We measure the statistical distribution of buildup times for the field of a single-mode CO& laser
when cavity losses have rapidly changed from a large to a small value. The ratio between the aver-
age buildup time and its statistical spread is shown to be a sensitive test of the quantum Auctuations
in the off state. This method operates as a "statistical microscope, " permitting the accurate deter-
mination of a small mean photon number in the infrared region by optical amplification, and a
discrimination of the initial mean photon number from noise contributions along the amplification
process. Following the buildup, the laser pulse decays on two time scales. The faster one, due to the
radiation coupling, can be fitted by a Toda oscillator model; the slower one, due to the collisional
dynamics of the excited population, provides a quantitative evaluation of two distinct population
decay rates, one within the rotational manifold and the other one out of the vibrational band.

I. INTRODUCTION

The first observation of a statistical spread in the lead-
ing edge of a Q-switched laser pulse was associated with
the appearence of a large peak in the variance of the tran-
sient photon number distribution. ' This fact was ex-
plained in terms of an approximately deterministic decay
out of a macroscopic unstable state, to be averaged over
the statistical distribution of the initial states. ' Such be-
havior was later shown to be peculiar of quenching phe-
nomena in macroscopic systems, such as spinodal decom-
position in thermodynamic systems.

As stressed by Haake, this phenomenon is the tran-
sient counterpart of the stationary fluctuations at the
critical point of a thermodynamic phase transition (or
more generally at the bifurcation points in a nonlinear
dynamics which display the same formal features of a
second-order phase transition). Precisely, if we call N the
number of degrees of freedom of a macroscopic system
decaying out of an unstable state, the initial fluctuations
are of the order of 1/N [O(1/N)], however, in the linear
part of the decay they are amplified by O(N), hence the
relative fluctuations are of 0 (1).

The assumption of deterministic evolution out of a
spread initial state neglected the role of fluctuations along
the build up with respect to the initial ones. The relation
between the two types of noise were explored in a series
of papers by Suzuki, summarized at the XVII Solvay
Conference of Physics. In that conference, a remark by
P. Martin to Arecchi reopened the question of the na-
ture of these large fluctuations.

Upon Martin s remark a quest for a discrimination be-
tween fluctuations on the initial condition and those
along the path led to a new observation method, based on
the statistics of passage times at a given threshold. '

From this method it resulted clearly that, when a laser is
suddenly switched far above threshold, the fluctuations
are mainly due to the initial spread, as already guessed in
Refs. 1 and 2. This method of passage time provided an
important dift'erence between gas and dye lasers, since in

the latter case it permitted detection of the role of pump
fluctuations as "noise along the path. " '

Both the He-Ne and the dye laser have in common a
population decay rate large with respect to the photon
decay rate (so called class-3 lasers" ). Hence the popula-
tion adiabatica11y follows the intensity changes, with a
consequent reduction of inversion as the cavity losses are
lowered. This adiabatic following forbids any overshoot
in the laser intensity. Indeed, Q switching in class-A
lasers is characterized by an intensity monotonically in-
creasing up to an asymptotic value. In contrast, when
the population decay is slower than the photon decay
(class-B lasers" ) the initially large population storage
provides a large intensity pulse by stimulated emission,
and only later the population feels the slower depletion
channels (either spontaneous emission in ruby and semi-
conductors, or collisional deexcitations in C02). This ex-
plains why, after a sudden loss reduction, class-B lasers
release giant intensity pulses well above the asymptotic
value, whereas class-3 lasers do not.

We generate transient dynamics in a single-mode CO&
laser by switching an intracavity modulator from absorp-
tion to transparency in a time shorter than the build up
time of the giant pulse. We summarize below the main
results, to be discussed in this paper.

(i) With respect to the start pulse (zero time), the
modulator switching lasts for a time ( —1.0 ps) much
shorter than the average buildup time (around 3 ps). The
average spread ot of the leading front (jitter) is around 0.2
ps.

(ii) If we consider the time t, necessary to reach a pho-
ton number n, , still below the saturation value n,
(n, =0.5n, ), the laser dynamics up to t, can be taken as
linear. In this linear regime, a simplified version of pas-
sage time statistics' leads to a very powerful relation
which permits evaluation of the effective seeding photon
number at the onset of the dynamics in terms of the
threshold photon number n

~
and of the ratio of the aver-

age t, the spread 6t. Our method is self-calibrating, in
the sense that the second moment of the observed statis-
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ties provides the amplification gain without any previous
calibration, and the higher-order cumulants provide the
error bars of the experimental points.

(iii) We can detect a few initial photons in a laser cavity
by linear optical amplification. The reported
amplification factors are of the order of 10, but in princi-
ple they could be larger. The linearity of the
amplification process is preserved up to the saturation
photon number, which is over 11 decades in our case.

(iv) While in a class-A laser the photon population
reaches a maximum and remains clamped to that value,
in a class-B laser the photon-population interaction leads
to fast dynamics yielding a short pulse. During this
pulse, the population inversion is practically decoupled
from its thermal reservoir, and its evolution depends only
on the coupling with the radiation field. With this as-
sumption, the pulse shape can be fitted by a Toda oscilla-
tor model. '

(v) The long-time characteristics of the emitted radia-
tion are affected by the interaction of the population in-
version with its thermal reservoir. Among the class-8
lasers with long population decay times, we must intro-
duce a further distinction between B, , where radiators
are modeled as two-level atoms, and Bz, where the radia-
tive transition has a fast coupling with another manifold,
and this manifold on its turn has a slower coupling with
the thermal reservoir (four-level atoms). This latter mod-
el was introduced by Dupre et al. ' and extensively used
by Arimondo and co-workers in connection with satur-
able absorbers. ' ' ' Our experiments show that a class
B

&
model is inadequate for a CO& laser, which in fact is a

class-B2 laser. The corresponding model parameters are
accurately fitted by the long-time tail of our laser. Thus
our data provide a direct quantitative measurement of
the CO2 molecular parameters. A preliminary report of
cases (i) to (iii) was given in Ref. 17. In Sec. II we discuss
the experiment and present the data; Sec. III is devoted
to theory and data interpretation of the leading edge
[cases (i) to (iii)]; Sec. IV deals with the giant pulse forma-
tion [case (iv)]; finally Sec. V discusses the long-time be-
havior and the difference between class-B2 and -B, lasers
[case (v)].
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As we switch the EOM voltage from about 800 to 130
V, the cavity loss rate k decreases from ko to k, with a
time constant of 0.79 ps as shown in Fig. 2. A laser pulse
builds from a low photon number no (laser below thresh-
old for loss ko) up to a peak value at t —3 ps. The pulse
develops over a time much shorter than the fastest decay
rate of the population, ' thus the population change dur-
ing the pulse is mainly due to the radiative interaction.
We notice from Fig. 2 that the time jitter already present
in the first part of the leading edge is preserved along the
whole pulse. This means that the various trajectories are
shifted versions of the same deterministic curve, and the
noise plays a role only in spreading the initial condition.

FIG. 1, Experimental setup with a CO, laser. M represents
the total reflecting mirror mounted on a piezo translator, G
represents the grating {100 lines/mm), BS represents the ZnSe
beam splitter, EOM represents the electro-optic modulator, D
represents the Hg Cd[. Te detector, 3 represents the
amplifier, FG represents the function generator (square wave),
DO represents the digital oscilloscope, TC represents the
threshold circuit, TAC represents the time to amplitude con-
verter, MA represents the multichannel analyzer, and C
represents the computer.

II. EXPERIMENTAL RESULTS

The experimental set up Fig. 1 consists of a single-
mode CO2 laser with an intracavity electro-optic modula-
tor (EOM). Details on the dynamics of the CO, laser and
on our laboratory system can be found in a review pa-
per. ' The cavity consists of a grating blazed for 10.6 pm
(P20 line) and a fully reflecting spherical mirror. Light
output is obtained via an intracavity beam splitter with
5% reflectance.

The gas cell is terminated by Brewster windows. When
voltage is applied to the EOM, this rotates the polariza-
tion plane thus increasing the intracavity losses. The gas
mixture (CO2. N2. He= 1:1:7) is at a total pressure of 20
torr. Since the collisional broadening is around 7
MHz/torr, the collisional width is about larger by 100
MHz than the Doppler line (50 MHz). Thus the gain line
is homogeneously broadened.
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FIG. 2. Oscilloscope plots of the EOM voltage driven from
VO=710 V to Vl =130 V and of a set of transient intensity
traces starting from the off state. The time jitter is uniform
along the evolution. To avoid the role of nonlinearities, the
threshold n, for the time distribution p(t, ) (see Fig. 2) is adjust-
ed below the saturation photon number, that is, rather close to
the oA state (at just 10% of the peak intensity). The discharge
current is 3.377 mA.
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We will see indeed that all fluctuations can be attributed
to an equivalent noise.

In order to remain in the linear regime we consider the
evolution up to t, when the photon number n

&
is smaller

than the saturation value' n„precisely

n& =0.5n, .

Up to t&, we can take the population inversion as fixed at
the prepulse value zo.

As can be seen qualitatively in Fig. 2, superposition of
many successive pulses shows a spread in the buildup
time, with an average spread St much smaller than r&.

Indeed, by setting a threshold circuit on the photodetec-
tor output at n =n& and then using a time-to-amplitude
converter, we can measure the statistical distribution of
times of arrival to the photon number n &. An example is
shown in Fig. 3. From this we can evaluate first and
second moment and measure accurately t&

= (t, ) and
Ft = ( t ) ' . A set of experimental data, including skew-
ness and kurtosis of the statistical time distributions, is
reported in Table I.

As discussed in Sec. III, the aim of these observations
of transient statistics is the discrimination between the in-
itial photon number (no) before the Q switch and the
"noise along the path" n, that is, the equivalent photon
number corresponding to spontaneous emission fluctua-
tions during the amplifying process. To evaluate these
parameters we need, besides the measurement of the cu-
mulants of p (t, ), an accurate calibration of loss rate k (t),
in order to assign initial (ko) and final (k1) cavity loss
rates, and power output I, in order to assign the thresh-
old photon number n &.

The EOM relation is

V(r) V—
k (t)=k 1+a sin

K, ( X10' ps')
Kl (ps) K, ( X10 ps') expt. theor.

K (X10 ps )

expt. theor.

2.44 1.21 1.29 1.52 0.26 0.35

most accurate value resulting from loss calibration. An
independent criterion which gives the same k value is dis-
cussed in Sec. III.

The proportionality between laser power output and
discharge current is shown in the experimental plot of
Fig. 4. This permits a precise localization of the thresh-
old point.

Figure 5 gives the pulse evolution when the laser starts
from an above-threshold state. In such a case the evolu-
tion is practically deterministic (no jitter) as shown by the
superposition of 10 successive transients. Figure 6 is the
evolution of a single transient over long times. Besides
the giant pulse, already visible in Fig. 2 and 5, we report
here the trailing edge ending in a steady state.

From the point of view of power assignment, the verti-
cal axis of Fig. 4 is calibrated in values of the steady-state
power. Indeed, the pulse area is so small that it practical-
ly gives no contribution to the power measurement. The
peak power is then inferred from the ratios of peak to
plateau height. The threshold value of n, =1.70X 10" is
accurate within 1%.

A key point of our approach is that, by use of our sta-

TABLE I. First four cumulants of p(t, ) (see Fig. 2). Ac-
quisition time 300 s. Since we collect 150 data per second the
total number of counts is 4. 5X 10 . Kl, K„K3 (expt. ), and K4
(expt. ) are measured values; K, (theor. ) and K4 (theor. ) are ob-
tained from Eq. (1) where W is expressed only in terms of
t~ =K, and Ft =Kz, without any other knowledge of model-

dependent parameters.

where V&&2 =4240 V is the A. /2 voltage (maximum rota-
tion of the polarization plane across the EOM crystal). a
and V [dephasing at V(t)=0] are fitted with a 30-point
calibration of the EOM transmission giving values
u =4.62 and V=206 V. Finally, k =2 X 10 s ' is the
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FIG. 3. Statistical distribution p(t, ) of the passage times
through the threshold photon number n, =0.5n, This distribu-
tion corresponds to the same parameter values of Fig. 2.
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FIG. 4. Laser power vs discharge current in the operating re-

gime.
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linear amplification regime), and k (t) is the cavity loss

rate, decreasing from kp to k &. G is given by'

p
y~kc. pV

' (4)

tistical method we will obtain (Sec. III) rather good deter-
minations of photon numbers around 10 starting from a
direct measurement of the much larger n ~, which is easily
accessible to standard photodetectors in the 10-pm re-
gion.

III. TRANSIENT STATISTICS

A. Theory

Since photon counting measurements deal with normal
ordered averages, by exploiting the quantum-classical
correspondence, ' we deal directly with a classical field
amplitude e and its corresponding probability density
P(a).

Having limited the evolution to the linear regime (no
population depletion) the field dynamics is ruled by a
linear Langevin equation

a= —,'aa+g(t) .

Here the rate coefficient —,'a is the net field gain, and the
factor —,

' accounts for the difference between field and

photon rate, that is,

a (t) =Gz, —k (t), (3)

where G is the stimulated emission coefficient for the P20
transition at 10.6 pm, zp is the population inversion im-

posed by the pump (and kept unperturbed during the

Vo

IMI- (

FIG. 5. Time development of laser pulses from low to high
coherent emission (above-threshold switch). The exposure cor-
responds to 10 successive transients and it shows no jitter. The
discharge current is 3.913 mA.

where p /fico (p, being the dipole matrix element) is eval-

uated from the spontaneous emission rate y, for the
transition

y, = " =03s-'8m p

Taking into account that the cavity volume, for a cavity
length L =200 cm and for a near confocal configuration,
is given by V=L A. =40 cm, and that, since we have a
total gas pressure of 20 torr and a collisional broaden-
ing of 7 MHz/torr,

y =140m=4. 4X10 s

it follows G =3.8 X 10 s
Let us now consider a sudden switch at t =0 from

ko) Gzo to k~ (Gzo. The noise source g(t) is a zero-
average, 6-correlated Gaussian process

( j(t)g(&') & =D5(& —&'),

where the diffusion constant D is due to the spontaneous
photon generation into the cavity mode. In the far-
infrared region we should also account for a thermal
(blackbody) contribution. However, for A, =10 pm this
becomes important only for an initial photon number

np & —,', and we show that we never reach such a limit in

these experiments.
For t ~0 the laser is at equilibrium below threshold

with a photon number

(n, & =( ~a, ~'& = +n,„,
Qo

where ap=kp Gzp, and n, h is the blackbody contribu-
tion given by Planck equation,

ficulkT
1 )

—i
nth —e

Here, T coincides practically with the discharge tempera-
ture, since the cavity is almost completely filled by the
discharge tube.

Calling %2 the total population of the upper laser level
and g an angular coupling efficiency, we have

D =y, Xqg,

where

10
4n 4~L

The time-dependent probability density is given by

(9)

20 p, s

~IME ( ws)

fa —a,e""/'
aO—(e"—1)

a

exp
1P(a)=

rr (e" 1)——
(10)

FICi. 6. Time development of a single transient over long
times. Time scale 20 ps/div.

where the average has to be performed over the initial
Gaussian field distribution
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P( ao)=
( )

exp —
( )

1P(a) =e " exp
D
a

at/2/2

aO
at

a

(12)

If now we introduce the auxiliary variable a' such that
o."=we ", then

'=e "d 2o (13)

and Eq. (10) can be formally written as

P(a)= f5'(a —a'e" )

1
X exp

D
a

a d a (14)

and a = Gzp k] is the field rate for t & 0.
In the linear case, we can account for both the initial

uncertainty given by (11), as well as the noise
amplification along the path given by Eq. (10), in a simple
way. ' Indeed, for e"))1, we can approximate Eq. (10)
as

ing from kp to k, with a time constant ~, as shown in Fig.
2. The evolution rate of the Langevin equation becomes
then

a(t)=ao+(ko —k, )(1—e ' ') . (18)

n =a(t)n, (19)

whose integration yields the time t, at which the photon
number reaches the value n, ,

ln = a tdt=ati kp k& 7 1 —e
0

where a = Gzp k] is the final value of the net gain.
For simplicity, we introduce the auxiliary variable

b,k
a

(20)

(21)

which depends weakly on t, . Since in all experimental
situations considered t, ))r (t& is the average of t&), the

—t
I

/~ —t
1

/7.
small correction e ' will be replaced by e ' . This
way, t, no longer depends on t, , and we can invert the re-
lation no=no(t, ) as follows:

The deterministic part of Eq. (2) yields a simple equation
for the photon number n =

~
a ~,

This is the deterministic evolution, noise free, of the ini-
tial distribution P(a ) given by the brackets, which on its
turn is a convolution of two Gaussians

ni1
t, (no)=t, + —ln

0
(22)

P(a') = J exp
1

D

/a' —a, /2
'

1

m&n, )

The passage time t, , as a function of the equivalent initial
photon number no [equivalent, because it accounts also
for noise along the path, ruled out in the deterministic
solution Eq. (20)], has a statistics given by

X exp

—+&n )
D
a

. exp —+(n )
D
a

(15)

p(tt )=f 5(t~ —t&(no))p(no)dno,

where

—no /Xop(no)= e
0

(23)

(24)

Thus the equivalent initial distribution which then
evolves deterministica11y is a Gaussian one, with a total
equivalent photon number given by W'(t{.)=f e 'p(t, )dt, . (25)

the average No being given by Eq. (16). It is now con-
venient to introduce a moment-generating function'

No= —+(no) =n +(no)D
(16)

As discussed in correspondence of Eqs. (5) and (6), D
contains both the spontaneous and the blackbody contri-
butions. Separting as in Eq. (6) we can rewrite No as

From Eqs. (22)—(24) it follows that
X/a

W(k)=e ' f
n&

—k/a

n /x dnp

No

N =—+ +2nD D
(17)

=e
Np

From this we have

I (t(, /a+1) . (26)

where D is given by Eq. (8). No further consideration
will be payed to n, „ in this paper, and we skip it from Eq.
(6) and (17), in view of the negligible contribution of the
n, „ to (no). The situation is drastically different in the
far-infrared region, and we plan to extend these investiga-
tions in that spectral region.

Now we give up with the ideal case of step like switch,
and consider the real situation of a loss rate k (t) decreas-

t, = (t, ) = — 1n W = — ln —tIt(1) +t, ,
d n&

d A.
& 0 a Np

1(6t )
2= ( b t') =,ln W =, It'(1),

p a

(27)

(28)
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and in general the K„cumulant is given by

K„=(—1)" P" '(1),a"

where 1(t" '(1) is the polygamma function.

B. Interpretation of data

Notice that Eq. (27), written as

Xo= n, e xp I
—[a ( t, —t, ) +4 ( 1 ) ] I

(29)

(30)

0.3

0.2

O. I

bto

V(

3
2E—

2

Ow

3
( 7

is the formal integral of Eq. (19) where, apart from the
constant corrections t, and qt(1), the average equivalent
initial condition Xp is expressed in terms of the measured
threshold value n, and the average time t, . Further-
more, Eq. (28) provides a model-independent way of
evaluating the gain a =[4'(I )]' /ot. Once this evalua-
tion is introduced into Eq. (29) for n ) 2, the correspond-
ing theoretical cumulants can be compared with the mea-
sured values. This is shown in Table I with reference to
the distribution of Fig. 3.

In Table II and Figs. 7 and 8 we give data for three ex-
perimental situations, corresponding to the same initial
photon number (no ) =D/~ a~o, that is (see inset in Fig.
7), same discharge current and initial EOM voltage
Vp =778 V ~ The three situations are characterized by
different final EOM voltages V„as listed in Table II, first
row.

By measuring the first two cumulants K, and K2 of the
time statistics, we retrieve the values of the t and Ft, re-
spectively. Thus by use of the "statistical microscope, "
Eq. (30), we evaluate No (fifth row of Table II). By
knowledge of ao and hence of (no ), we isolate the "noise
along the path" n =No —(no ), as given in part (b) of
Fig. 8. The associated error bars are discussed below [see
Eqs. (31)—(35)].

The diffusion coefficient D (last row of Table II) is
eventually calculated from Eq. (17). In fact Eq. (17) was
deduced in the instant sweep limit, that is, for t, ~0,
however, a finite t, contributes a rigid translation in Eq.
(30), but it does not affect D, as was shown in a recent
theory of a finite sweep and as can be easily proved by a
straightforward numerical integration of the transient
equations, without any approximation. More precisely,
Eq. (3.12) of Ref. 23 yields the equivalent initial photon

0.0
0

p, /'p

FIG. 7. Plot of the average time spread Ft vs the reciprocal
of the output power P. P is evaluated for long times after the
transient has died out, the normalization P, is the saturation
power. The error bars are smaller than the dots (the circles
around the dots are just indicators). The intercept 6to is the
asymptotic uncertainty for large powers. The inset shows the
relative EOM voltage settings in the three experiments ( Vo and
V, represent the initial and final voltages, respectively, V,h

represents the threshold voltage).

number for a finite sweep time, under two assumptions:
(i) the sweep is linear in time a (t)=ao+A, t and (ii) the
small-noise limit, that is, D &&&A. (we call here X the
linear slope which in our case would be A, =b,kit, ). In
fact neither (i) nor (ii) hold in our experiment and that re-
sult is not fully applicable. However, to check the sensi-
tivity of Xp to the duration t, of the sweep time, we have
inserted our experimental data (from column 1 of Table
II) into Eq. (3.12) of Ref. 23. We then calculate

3 ~ 10

TABLE II. Numerical values for the three experiments of
Figs. 7 and 8. Values of Vo, V,„, ~ao~, and r are kept constant
for the three experiments and equal to 778 V, 746 V, 1 .6 ( 10'
s '), and 0.6 ps, respectively.

Experiment
2

VI (&)
t, (ps)
Ft (ps)

( 10
—6 —

1)

N0
n

D (10 s ')

420
2.39
0.1 15

1 1.13
1 533

194
2.15

520
2.79
0.140
9.14

1 504
225

2.05

595
3.48
0.185
6.92

1735
327

2.26

1/o ( its)

FIG. 8. Total photon number No (a) and equivalent photon
number n~ corresponding to noise along the path (b) vs the re-
ciprocal of the gain rate a. The vertical intercept of No for
1/a =0 is the initial photon number ( no &.
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0.6:

Vo = l)O

0,4-

1

2
3
4

V, = 130V

4

0.2 &

D =2X10 s ' against our tabular value D =2. 15X10
s '. Thus D seems not affected by a finite rise time. To
prove this experimentally, we have increased the time
constant of the EOM pulse from ~=0.6 ps up to
z =2 p s. Whenever we perform measurements at t, 27
we do not measure any substantial change in 6t, that is,
the finite sweep, provided it is shorter than the lethargy
time, affects only the first cumulant, as accounted for in
Eq. (30).

In Fig. 7, the average spreads 5t are reported versus
the reciprocal of the output power P. Since Eq. (28)
yielded the simple relation 5t =1.28/a and in the linear
regime P grows as a, 5t versus 1/P is a straight line, as
shown by the data. For 1/P~O, that is, a~ ~, the
noise along the path disappears [see Eq. (16)], hence the
intercept with the vertical axis gives the residual width
5to due only to the intial photon number (which is equal
in all these cases).

In Fig. 9 we give data for an experimental situation
where the initial voltage Vo and final voltage V& applied
to the EOM are fixed and the discharge is changed. Also
in this situation, the average spread 5t versus 1/P is a
straight line.

Such a different experimental technique does not allow
a direct evaluation of (n„), since the dift'usion constant
D is now changing from point to point with the discharge
current. However, it permits us to reach points much
closer to threshold and to show the linear dependence of
Ft versus 1/P even for P, /P as large as 20.

The statistical time distributions have been collected
over 300 s at a rate of 150 counts/s for a total of
Mo =4.5 X 10 counts. Each channel is affected by a rela-
tive counting error of the order of the reciprocal square
root of the count number. This error will affect each mo-
ment by an amount evaluated in Ref. 24. Off course, in-
creasing the measurement time would reduce the count-
ing error, however, it would also introduce long-time
drifts in some experimental parameters. Hence the

5(5r ) =
25t

(32)

where e~ is easily evaluated in terms of all four cumu-
2

lants K, to K~,

M4 M2 K4 +4K3K] +4K/K ] K

The error bar 5t = (M2 —M
&

) '~ is given by

eM +2t(5r )/QMO
5(5r ) =

26t

(33)

(34)

For instance, for the first of the three points in Fig. 7 we
have

M4 —M2 =1.64X 10 ps

(1.64 X 10 )'i =0.65X10 ' ps
102

Replacing in Eq. (34) we evaluate 5(5r )=1.55 X10
(ps) which corresponds to a relative error
5(Ft)/5r =1.4X 10 . Thus in all the reported measure-
ments the relative error bars are of the order of 1—2%,
that is, smaller than the black denotation marks in Figs. 7
and 9.

Experiments on time jitter in semiconductor laser
turn-on have been performed. No direct comparison
with our approach is possible for two reasons: (i) the
transient in Ref. 25 develops over a picosecond range,
hence the error bars are consistently larger than in our
case; (ii) a fixed zero time reference is not easily accessi-
ble, hence there is no data for the average time. As a re-
sult, a model-independent approach like ours, based only
on the knowledge of the first two cumulants, is not possi-
ble in that case. Furthermore, a preliminary observation
of switching times in far ir laser was reported by Lefebvre
et al."

From Eq. (30) we can evaluate the relative error bar in

No, that is,

chosen counting time is a compromise between the two
conAicting requirements. The counting error for the kth
moment MI,. is given by

M2~ —M~
2

= (5M„') =— (31)
0

It is a straightforward matter to express the moments in
terms of the cumulants. The error bar in
5t =—(M2 —M, ) ' is then given by

e'~ + 2t (5t ) /QMO

0 10
I

15 20

6NO =t5a+a5(t)+
No Qn,

(35)

Pq/P

FIG. 9. Plot of St vs 1/P for constant
Ak =k0 —k, =12.0X10 s ' and variable gain Gz0 (see inset).
Error bars smaller than the dots as in Fig. 7. The gain at the
four points are axed by the following discharge currents:
i, = 3.377 mA, i, =3.009 ma, i &

=2. 800 mA, and i 4
=2.599 mA.

The threshold current corresponding to k l
= k ( Vl ) is

(2.480+0.005) mA.

where 5a =1.28 X5(5r )/5t . By replacing the numerical
values, the second and third term contribute only as 10
and 10, respectively, whereas the first one yields a 30%
error bar (see Fig. 8). Since 5N„/No varies as 1/+M„,
to reduce this error to 3% we should increase the total
number of counts by a factor 100. Once the relative error
in No has been calculated from the experimental data, use
of Eq. (17) with the values of a and ao inferred from the
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EOM voltages allows to establish the error in the
diffusion coeScient and hence in the noise along the path
n . It is easily proved that 6n /n =6D/D=6No/No.
The corresponding data are collected in Table II and Fig.
7.

From Table II, the k& values associated with the three
voltages V&, summed up to the a values of the fourth line,
yield by Eq. (3) a common value Gzo=34. 3X 106 s
Since the value of G was calculated after Eq. (4), we can
establish the following population inversion for the ex-
periments of Fig. 3 and 4:

z0=0.9 X 10

Furthermore, using the (practically uniform) D value
of the last line and making use of Eqs. (8) and (9), we find
for the total population of the upper level

N2 = =6.7 X 10'D

VSP9

The error bar to be associated with this value is the sum
of the error in D (about 30%) and the error in q (estimat-
ed to be around 20%). Hence this value of molecular
population is highly accurate for the present standards.

IV. DEVELOPMENT OF THK PHOTON PULSE
AT INTERMEDIATE TIMES:

THE TODA OSCILLATOR MODEL

As shown in the Sec. III, for photon numbers below
the saturation value (t « t~ ) the population inversion is
constant and the dynamics is linear. Beyond t, the de-
tailed interplay between photon number and population
inversion must be taken into account.

A simple-minded approach in terms of a single mode
field interacting with resonant two-level atoms with a
large homogeneous broadening leads to the following
equations

Aox
x = —kx+ 1+x (39)

s'=DO —1 —e' . (40)

This is a lossless Toda oscillator, and its validity is limit-
ed to the time range where the giant spike develops. The
heuristic argument here used to derive Eq. (40) is symbol-
ized in Fig. 11(a), where it is shown that the chosen time
interval corresponds to a decoupling from the atomic
reservoir. A more general approach, developed by Oppo
and Politi (Ref. 13) would also include damping terms,
which, however, play no role in the considered time
range.

The main qualitative difference is that it is impossible
to approximate a class-8 laser by a first order differential
equation. The second-order character of Eq. (40) implies
the development of a large peak (overshoot). This is the
giant pulse usually associated with Q switching and
which is absent in class- 3 lasers.

As discussed in Sec. II, up to t, there is no difference
between class 3 and B, since the linear approximation
yields z =DO and

x =k(bo —1)x =ax, (41)

which yields no overshoots, as sketched in Fig. 10(a), and
observed in Ref. 1 and 2. In the latter case and for an in-
termediate time range k «t «y, we can assume
that the Eq. (36) has reached equilibrium, which imposes
z = l. If we now put x =e', s =x lx, Eq. (36) yields s =kz
and by use of the right-hand side of Eq. (37), already
simplified with z =1, we obtain

x = —kx(1 —z),
z = —y(z +xz —Ao),

(36)

(37)

xo-0
x) =0.5

Zo
(

Here k and y are, respectively, the loss rate of the cavi-
ty and the decay rate of the population inversion, and G
is the coupling constant between photon and population
number. The saturation photon number is given by

)

t=a t,

A

t3

8

Z
1 k I /G

x

n
2G

(38)

and the population inversion at threshold is given by
k/G. Here x is the photon number n normalized to the
saturation value, and z is the inversion number AN nor-
malized to the threshold value, that is, x = n /n„
z =Gb.N!k. Similarly b, o is the equilibrium value of z
for x =0.

We have to distinguish between two limit cases: y))k
(so-called class-A lasers'') and k ») (class-8 lasers). In
the former case, we can neglect the time derivative in Eq.
(36), which amounts to taking z (t) adiabatically following
the rather slow changes of x(t). Thus z =bol(1+x).
Replacing this into the photon equation the evolution is
ruled by the single equation

Zp

t3

Zp

z,
z(t)

,

I z,

x(tl i
j t3

/

t) j~t~
l

2

FIG. 10. Schematic diagram of asymptotic (short-time and
long-time) behavior, and main differences between class-A and
class-B transients at intermediate times (region II).
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PUMP 13, and our experimental values for Ao k =k] and y, we
obtain for the rise time T2 [time interval between t, and
the peak position tz as shown in the scheme of Fig. (10)]

T2 12 ps

PU MP
I

R

(b) &'R

FIG. 11. (a) Conceptual scheme of the population (z) interac-
tion with intensity (x) in a class-B l laser. The wavy lines denote
the coupling with the thermal reservoirs (shadowed areas).
Since y «k we can neglect the atomic (collisional) reservoir
during the pulse formation (dashed line), so that the correspond-
ing dynamics is purely radiative; (b) same for a class-B2 laser.
Here, z has a fast coupling with the vibrational manifold (tL)),

which can be decoupled from its reservoir during the spike
(y «k). However, the coupling between z and w is effective
during the pulse.

which is wrong by a factor of 10 with respect to the ex-
perimental value Tz —1 ps. To provide a quantitative
agreement, we modify our B, (or two-level) model into a
B2 (four-level) model, which accounts for the coupling of
the active transition having population inversion z with a
large rotational manifold, described by an overall popula-
tion difference w. The detailed equations will be given in
Sec. V. Here it is sufficient to say [see Fig. 11(b)] that
since the relaxation rates yz and y& from z to co and
from w to z are of the same order as k, during the time
range over which z =1, also w is clamped rigidly to the
ratio yz /y~, that is, w =16.

Such a drastic assumption corresponds to a temporary
freezing of the molecular population during the rise time
of the radiation pulse. Precisely for t, &t &tz the total
manifold w +z has equilibrated within itself (this equili-
bration requires a time yR (t, ) and it is still decoupled
from the thermal bath (the thermal relaxation would take
the much longer time y ').

Redoing the same steps as for Fig. 11(a) we easily ar-
rive at the equation

=ho —e'= 1 —e' (44)

r=+(b p 1)kyt— (42)

as the single evolution equation used in Sec. II. Beyond
t, , the nonlinear coupling between z and x plays a full
role, and we can no longer use this linear approximation.
While the class 3 Eq. (39) yields a monotonic increase of
x and z, the class B Eq. (40) yields a large spike in the in-
tensity. At the peak time t2 the population has a value
z (tz ) =zI, followed by an undershoot below the asympot-
ic value z, [Fig. 10(b)].

The Toda oscillator model Eq. (40) is in qualitative

agreement with the experimental spikes reported on
different time scales in Figs. 2, 5, and 6. In Ref. 13 there
is a plot (Fig. 2) which displays in adimensional form the
time T, that the Toda oscillator needs to go from a very
small photon number to a photon number corresponding
to lnx = —ln(hp —1)=1.6 (since in our case hp=1. 2),
that is, to x =0.2, which is near our threshold point
n, =0.5n, . We do not need to make use of T, , since our
treatment of Sec. III is more extensive, insofar as it ac-
counts for the essential role of statistical fluctuations.
More interesting is to make use of the T2 value also plot-
ted in Fig. 2 of Ref. 13. T2 is the time that the pulse
takes to develop from x =0.2 to its peak. In order to
perform a quantitative comparison we must introduce the
same scaling as in Ref. 13. Thus we introduce a logarith-
mic translation q =s —ln(ko —1). In the new time scale

Here, p =Zy, where Z = 16 is the effective number of ro-
tational levels. Notice that Eq. (44) looks like Eq. (43),
thus we must use the same value T2 =2 of Ref. 13, how-

fh

C

2

o p t6 (b}

0.080

o.oo
CL

the equation of motion becomes simply
10 20

TIME ( u s)
30 40

q=1 —e~ . (43)

Once we use the value T2=2 coming from Fig. 2, Ref.
FICs. 12. Numerical solutions for class-8& laser transient. (a)

Photon number, (b) population inversion.
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V. LONG TIME BEHAVIOR:
CLASS B~ VERSUS CLASS B
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LASERS

ever, with a new time scale ~' =v'k pt. "e obtain

4013

z= —1. 1 Ius,
kp
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full use of the laser equations must be made in order to
trace the role of the population decay to its thermal reser-
voir.

While Eqs. (36) and (37) are accurate for ruby or Nd
lasers (class B, ) they are inadequate for the CO2 laser
(class Bz). The radiative transition is just one among the
many of the rotational manifold. This transition, besides
the long-time collisional decay out of the vibrational
band, has a much faster coupling with the other levels of
the same band. To describe this compound molecular de-
cay we must resort to a four-level scheme' ' which im-
plies the following rate equations:

x = —kx(l —z),
z = —

( yz +y )z+ yz w —pxz +gyho,
w= —(yz+y)w+yzz+(Z —1)gyro .

(45)

(46)

V=y(yR+yR+y)&(y~+y), (4&)

and

g=(y~+yR+y)/(yR +y), (49)

Here we have used a modified set of equations with
respect to those of Ref. 15, in order to have the correct
asymptotic values for long times.

Notice that the two intraband coupling rates are relat-
ed as

pg =Z~R (50)

where Z is of the number of effective rotational levels. It
depends on the discharge pressure and current. In our
case we fit our data with Z =16.

Equations (45)—(47) show that the saturation photon
number is given by

Here, x and z are the photon and radiative populations,
normalized as before, m is the overall population inver-
sion between upper and lower vibrational bands dimin-
ished by z (w+z is the total population inversion, of
which only z is radiatively active), yz is the decay rate
from z to u, y R is the decay rate from m to z,

p
2G

(51)
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instead of Eq. (38). The numerical difference is relevant
(p, jy =Z), and it was the basis of the correction to the
spike position in time (Sec. IV).

Figure 12 shows the evolution of x and z for the class
Bz laser. A best fit with our experimental data of Fig. 6
gives the following decay rates (in s '):

yR —0.5 X107 yR —0.6X106 7 104

If we try to approximate the time development by class-
8, equations with y = 10, we obtain numerical data
rather different from the experimental ones. Increasing y
to 10 we reach a fair agreement on the giant pulse, but
we have also a damped oscillation (Fig. 13) absent in the
experiment. The multipeaked structure of Q switching
obtained numerically for y=10 or 10 was indeed ob-
served in Q-switched class B, lasers. Notice that, for
long times, the depletion of the rotational manifold may
induce relevant perturbation in long-time instabilities,
thus requiring a still different model. However, in the
time range interesting for our experimental investigation
the model we have used seems to be in satisfactory agree-
ment with our laboratory data.

The question whether a global model might cover all
possible ranges and describe all the relevant physics of
the CO2 laser remains still open. We observe, however,
that more sophisticated modeling should account also for
plasma phenomena in the discharge, thus reaching a
complexity which would strongly limit its usefulness.
Hence it is still more useful to apply "local" models
which explain a well defined range of phenomena, as we
did here.
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