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Spin-induced autoionization and radiative transition rates
for the (1s2s 2p) PJ states in lithiumlike ions
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The saddle-point complex-rotation method in the intermediate LSJ-coupling scheme is used with
the Breit-Pauli spin-dependent perturbation operators to compute the spin-induced autoionization
rates of the lithiumlike 1s2s2p PJ states from Z =3 to 18. The radiative transition rates of the
J = —' and —levels are also calculated in the intermediate LSJ-coupling scheme. The combined re-
sult yields lifetimes for these levels which are compared with the existing experimental and theoreti-
cal data in the literature.

I. INTRODUCTION

Many aspects of the lithiumlike 1s2s2p states have
been studied both theoretically and experimentally. For
instance, the 1s2s 2p configuration forms two distinct
doublet terms in the LS coupling scheme,
[ls, (2s2p) P]'P' and [ls, (2s2p)'P] P' These .core-
excited doublet states couple to the continuum through
the nonrelativistic Coulomb interaction and consequently
deexcite by rapid autoionization. For small Z, nonrela-
tivistic calculations of these systems yield Auger energies
and widths or lifetimes which compare well with observa-
tions in both Auger and optical spectra. ' In addition
to the two doublets, the 1s252p configuration also forms a
quartet term in the LS coupling scheme, 1s2s 2p P',
which in the non relativistic approximation is spin-
forbidden from decaying by either dipole optical emission
to the lower doublet bound states or by autoionization to
the [(lsls)'S, el] L' continuum. The fine structure of
this multiplet has been observed in radiative transitions
from higher quartet levels. Calculations of this fine struc-
ture via the spin-dependent relativistic perturbations with
zeroth-order wave functions formed in the LSJ coupling
scheme compare weil with the high-precision experi-
ments on low-Z systems. These zeroth-order wave func-
tions of well-defined total J, MJ, L, S, and parity are con-
structed from the pure LS-coupled wave functions by
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The spin-dependent part of the Breit-Pauli interaction,
0 p, is given by the sum of the operators for the spin-
orbit (H,„), spin-other-orbit (H,„,), and spin-spin (H„).
interactions, where

Relativistic coupling effects, however, become essential
for an understanding of the deexcitation of this metasta-
ble (1 s2s p2) P' system. Diff'erential metastability has
been observed for the decay of the various J levels of this
system, i.e., the J =

—,', —', , and —,
' levels all have different

lifetimes, with the lifetime of the J =
—,
' level being the

longest. In order to obtain this differential metastability
theoretically, the wave function to the first order with
respect to the manifold of states formed from the 1s2s2p
configuration along with the energy degenerate continu-
um must be constructed. Starting from zeroth order, we
first construct the LS-coupled wave functions represent-
ing the (1 2ss2p) P', [ls, (2s2p) P] P', and
[ls, (2s2p)'P) P' states using the Rayleigh-Ritz method
for the quartet state and the saddle-point method for the
Coulomb autoionizing doublet states. Then we add to
this three-state basis a square-integrable basis set to
represent the continuum, [(lsls)'S, el] L', and diagonal-
ize the relativistic spin-dependent part of the Breit-Pauli
interaction via the complex-rotation method. For exam-
ple, the nonrelativistic Hamiltonian H„„ is

where the (LSMLMsl JMJ ) are Clebsch-Gordan coeffi-
cients. These wave functions are adequate due to the fact
that the energy separation of the ( ls2s2p) P' states from
( ls2s2p) P' is much greater than the fine-structure split-
ting. The spin-independent part of the relativistic correc-
tions may be obtained by first-order perturbation theory
with the LS-coupled wave functions. When these contri-
butions are added to the energy, the resulting transition
wavelengths are found to be in excellent agreement with
the high-precision measurements.
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Utilizing the notation
I 1(o(J) ), I f, (J) ), I g2( J) ), and

Ig, (J)) to refer to the basis states (ls2s2p) PJ,
[ls, (2s2p) P] PJ, [ls, (2s2p)'P] PJ, and [( ls ls)'S, el]2',
respectively, the total Hamiltonian of interest,

H H +H
p

H +H +H o +H

has a matrix in this basis of the following form:

HQQ HQ 1 HQ2 HQ,

10 11 H12 H1c
[H) =

H20 H21 H22 H2c

HQ H
1 H2 H„

The off-diagonal matrix elements HQ, , H02, HQ, are equal
to (OIH, ~;„Ii ) (i =1,2, c) since (OIH„„Ii ) =0 due to the
orthogonality of the quartet and doublet spin functions.
The interaction between the two 1s2s2p P doublet
states is determined by the relativistic interactions

H12=(1IH 2) =(1IH,P;, 12)

since these states are orthogonal within the nonrela-
tivistic approximation. The diagonal elements
(iIHIi )(i =0, 1,2, c) are approximated by (i IH„, Ii ) due
to the smallness of H, ;„relative to H„„. The off-diagonal
elements (1IHIc ) and (2IHIc ) are also approximated
with H replaced by H„„ for the same reason.

The off-diagonal matrix elements (which correspond to
the coupling strengths between the various zeroth-order
states) are J dependent, and as a result the imaginary part
of the complex eigenvalue which corresponds to half the
autoionization width (proportional to the autoionization
transition probability) is also J dependent. Hence
differential metastability results from this intermediate
LSJ coupling. For small Z, autoionization is the major
decay mode of the (ls2s2p) PJ systems; however, radia-
tive decay to the (lsls2s) S ground state becomes the
dominant decay rnechanisrn for large Z. This occurs in-
directly for the J =

—,
' and =,

' levels as a result of the rela-
tivistic coupling to the ( ls2s2p) P' states.

The analysis is not so complex for the J =
—,
' states.

This is because the ( ls2s2p) P' states can only couple to
form J =

—,
' and —', states, so the corresponding off-

diagonal matrix elements of the Hamiltonian (Ho~ and

HO2) are zero. The coupling to the continuum is generat-
ed by the spin-spin interaction only for the J =—', fine-

structure level. As a result the matrix element
Ho, =(OIH, ~;„Ic) becomes simply (OIH„Ic). Since the
1s2s 2p P' states are not coupled to the quartet for this
value of J, electric dipole transitions to the ground state
are not possible, and radiation to this level can only occur
through the much less rapid magnetic quadrupole
branch. For these reasons, the J =

—,
' level is the longest

lived; more experimenta1 measurements have been made
for this J level also. In a previous paper we investigated
the practical feasibility of incorporating spin-dependent
interactions into the "saddle-point complex-rotation
method" by applying it to this well-studied J =

—,
' fine-

structure level. It is the purpose of this paper to extend

the study to the more complex J =
—,
' and —,

' fine-structure
levels. This work is also motivated by the lack of accu-
rate theoretical predictions for these lifetimes for cases of
small Z. The most extensive previous calculation is
perhaps that of Chen et al. , who calculated the lifetimes
of all the J levels for selected values of Z in the range
13 &Z &92. In that work, Dirac-Hartree-Slater wave
functions were used, and the autoionization transition
rate was computed using perturbation theory assuming
frozen orbitals. The "go1den rule No. 2" was used em-
ploying the Moiler operator as the transition operator.
A subsequent paper by Chen et al. added results for the
lighter ions with 6&Z &10. In that work the authors
point out the important role that low-Z, highly stripped
atoms play in astrophysical and plasma environments,
and that light Li-like ions are more easily produced ig the
laboratory than heavy ones. The latter fact coupled with
more theoretical predictions may provide an incentive for
additions to the exceedingly scant experimental literature
on the subject. Chen et al. , however, do not consider
the ions lighter than Z =6 "because for these systems
electron-electron correlations may become so important
as to make the present treatment inadequate. " The re-
sults presented here are obtained with large
configuration-interaction wave functions which do not
suffer from this deficiency. Also of importance is that in
the present method the interactions between the closed
and open channels as manifested in the Hamiltonian ma-
trix are able to affect the resulting final form of the open-
channel component Ic ) through the complex matrix di-
agonalization process. In methods where a golden rule
formula is used, the correlations between the initial and
final states cannot be included.

The remainder of this paper is divided into the follow-

ing four sections. Section II discusses the computation of
the spin-induced autoionization width. Section III deals
with the calculation of the spin-induced radiative transi-
tion rate to the lithiumlike ground state. Section IV corn-
bines the results of the previous sections for the decay
rates for electron and photon emission to yield theoretical
lifetimes for the J =

—,
' and =,

' fine-structure levels of
(ls2s2p) PJ. These results are compared with the exist-

ing theoretical and experimental results in the literature.
In this section we also analyze the explicit source of the
various contributions to the spin-induced Auger rate in
order to understand the corresponding interference
effects in this transition rate. Section V is a brief con-
clusion.

II. SPIN-INDUCED AUTOIONIZATION WIDTH

In this section we begin by detailing the basis which is
used to construct the Hamiltonian matrix for the 1s2s2p
configuration and associated continuum. Diagonaliza-
tion of this matrix as required by the variational
principle's requirement of a stationary solution yields
complex eigenvalues whose imaginary parts are the half-
widths due to autoionization by the theory of complex ro-
tation.

The major component of the resonant wave function is
the zeroth-order ( ls s22)pPJ state, Igo(J) ). This state of
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well-defined total angular momentum J and z component
MJ is formed from the pure LS-coupled state ( 1s2s2p) P'
by Eq. (1). The (ls2s2p) P' state is a multiconfiguration-
interaction wave function similar to that of Chung and
Davis. For the various values of nuclear charge, Z, it is
composed of either 12 or 13 partial waves with a total of
from 80 to 97 Slater-like orbital terms. The linear
coeKcients in these wave functions were determined by
the standard Rayleigh-Ritz variational method. This

wave function appears as a single basis state in the Ham-
iltonian matrix of Eq. (1). The nonrelativistic energy of
this state is given in the first column of Table I. The fol-
lowing three columns of this Table give first-order pertur-
bation theory results for the relativistic perturbations:
relativistic correction to the kinetic energy plus Darwin
term and the orbit-orbit interaction resulting from the re-
tardation of the Coulomb potential; and the nonrelativis-
tic mass polarization effect. The following column of this

TABLE I. Energy and spin-induced autoionization width of the (1s2s2p) PJ' states of lithiumlike ions (in atomic units).
(H~ +Hp ) (H4 ) and (,H, ) are the expectation values of the relativistic operators corresponding to kinetic energy correction plus
Darwin term, orbit-orbit or retardation, and the nonrelativistic mass polarization effect, respectively. E total is the sum of the nonre-
lativistic energy plus the aforementioned corrections. The shift 6 and the width I result from the interaction of this inner-shell va-
cancy state with the degenerate PJ continuum directly via the relativistic spin-dependent operators, and indirectly via the coupling
to the [(ls(2s2p)'P] PJ' and [( ls(2s2p)'P]~PJ states by the same spin-dependent operators. (The number in square brackets is the
power of 10 to which the number is raised. The shift and width results are given in this order: J =

—,', —,', —,'.)

10

12

13

E
Nonrelativistic

—5.367 870

—10.066 480

—16.267 410

—23.969 335

—33 ~ 171 779

—43.874 525

—56.077 431

—69.780 524

—84.983 682

—101.686 905

—119.890 179

—139.593 492

(H, +H, )
(10 )

—6.05

—20.07

—50.82

—108.15

—204.27

—353.58

—573.53

—882.64

—1302.75

—1857.85

—2573.80

—3479.58

(H, )
(10 ')

0.09

0.35

0.85

1.69

2.95

4.72

7.07

10.10

13.88

18.50

24.05

30.60

(H, )
(10 )

—0.154

—0.323

—0.508

—0.761

—0.966

—1.173

—1.308

—1.590

—1.721

—2.010

—2.138

—2.431

E
Total

—5.368 481

—10.068 484

—16.272 457

—23.980 057

—33.192 008

—43.909 529

—56.134 207

—69.867 937

—85.112742

—101.871 041

—120.145 369

—139.938 633

Shift
(10 ')

0.000
0.000
0.000

0.000
—0.001

0.000

—0.001
—0.003

0.000

—0.005
—0.013

0.000

—0.016
—0.045

0.000

—0.044
—0.124

0.000

—0.106
—0.302

0.000
—0.233
—0.664

0.000

—0.471
—1.349

0.00
—0.90
—2.57

0.00
—1.62
—4.56

0.00
—2.78
—8.01

0.00

r
%'idth

1.865[ —10]
9.542[ —11]
3.411[—12]

1.116[—9]
4.934[ —10]
2.285[ —11]

3.486[ —9]
1.326[ —9]
8.146[—11]

8.008[ —9]
2.554[ —9]
2. 122[ —10]

1.532[ —8]
3.952[ —9]
4.587[ —10]

2.572[ —8]
5.070[ —9]
8.741[—10]

3.943[—8]
5.458[ —9]
1.521[ —9]
5.636[ —8]
4.783[ —9]
2.475[ —9]
7.582[ —8]
2.939[—9]
3.816[—9]
9.744[ —8]
7.788[ —10]
5.641 [ —9]
1.203[ —7]
1.468[ —10]
8.053[ —9]
1.434[ —7]
4.618[—9]
1.117[—8]
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TABLE I. (Continued. )

15

E
Nonrelati vistic

—160.796 835

—183.500 204

(H2+H, )
(10 ")

—4605.98

—5985.90

&H, )
(10-' )

38.25

47.08

(0, )
(10 j

—2.557

—2.853

Total

—161.253 864

—184.094 371

Shift
(1o ')
—4.60

—13.28
0.00

—7.33
—21.30

0.00

r
Width

1.659[—7]
2.006[ —8]
1.510[—8]

1.867[ —7]
5.552[ —8]
2.000[ —8]

—207.703 592

—233.406 998

—7655.23

—9651.43

57.17

68.60

—2.977

—2.948

—208.463 697

—234.365 575

—11~ 34
—33.20

0.00
—17.05
—50.38

0.00

2.049[ —7]
1.241[—7]
2.600[ —8]

2.201[—7]
2.441[—7]
3.325[—8]

table, labeled "ETotal, " is the sum of the nonrelativistic
energy and the preceding spin-independent perturbations.
These first-order perturbation energies, which have been
computed separately for each value of Z, have been tabu-
lated here for their interest with respect to trends along
the isoelectronic sequence.

The two linearly independent ( Is 2s 2p ) P ' states,
[ls, (2s2p) P] P' and [ls, (2s2p)'P] P', designated 1)
and ~2 ), play a critical role in the decay of the
( 1s 2s 2p ) PJ states. Their first-order coupling to the
( ls2s2p) P' through the spin-dependent interactions
(H„, H„„and H„are all of order a where a is the
fine-structure constant) allows them to act as intermedi-
ate states for the "quartet to continuum" deexcitation.
The ( ls2s2p) P' states couple directly to the continuum,
[( ls 1s ) 'S, ep] P', through the Coulomb interaction
(zeroth-order with respect to a) and therefore rapidly
deexcite by autoionization. Consequently, autoionization
by this indirect process via the intermediate states is of
the same order in a as the direct autoionization of
(ls2s2p) P' by virtue of its direct coupling to the same
continuum through the spin-dependent interactions.

The variational calculation of (ls2s2p) P' is straight-
forward since it is a bound state in the nonrelativistic ap-
proximation. On the other hand, there are an infinite
number of states with lower energy but with the same an-
gular and spin symmetry as the two (ls2s2p) P' states.
For this reason, a variational method which attempts to
accurately compute the energy and wave function of the
(ls2s2p) P' states must be based upon a well-defined
mathematical principle which allows a large multi-
configuration-interaction wave function to be built up
without a variational breakdown. The saddle-point tech-
nique is such a variational method. ' '" This method
generates the "correct" vacancy orbitals, and as a conse-
quence the continuum is effectively projected out of the
P' trial function. Tables II and III give the nonrela-

tivistic energies obtained by this saddle-point method for
the [ls, (2s2p) P] P' and [ls, (2s2p)'P] P' states, respec-
tively. The corresponding wave functions all have 15 an-
gular and spin partial waves with a total of 110 Slater-

type orbital terms. These orbitals were obtained by
selecting those which give the lowest energy for the case
of the neon ion, Z = 10; the nonlinear parameters in these
basis functions were optimized for each particular value
of Z. Details of this calculation can be found in Refs. 1

and 12. It should be mentioned that the nonrelativistic
energies given in Table II for Z =3 and 4 and in Table
III for Z =4 are slightly higher than results which we
have previously published; this is because in Ref. 2 the
orbitals were chosen specifically for the ions of interest,
hence the energy given in Ref. 2 is slightly better. The
saddle-point method builds parametrized 1s vacancies
directly into the trial wave function and then determines
the optimal vacancy by a well-defined optimization pro-
cedure. The result of this procedure for the hydrogenic
vacancies used here is the optimized value of q, which
physically corresponds to the effective nuclear charge ex-
perienced by the vacancy state. ' This q value comprises
the second columns of Tables II and III. For all the ions
q is approximately equal to Z —

—,
' (in atomic units), indi-

cating that the 1s-vacancy orbital is approximately half
screened by the presence of the 1s electron. In addition
to the spin-independent relativistic perturbations con-
sidered for the (ls2s2p) P' state we also quote the first-
order perturbation theory result for the Fermi contact
term between the electrons for these doublet states in
which there is a nonzero probability to find the electrons
at the same spacial point. "E Total" once again
represents the sum of the nonrelativistic energy plus the
contributions from the spin-independent perturbations.

When the Hamiltonian matrix of the 1s 2s 2p
configuration plus 1s lsd P' continuum subspace is con-
structed as in the Introduction, the two (ls2s2p) P'
states each appear as single basis elements. The 110
linear coe5cients predetermined by the saddle-point cal-
culations for each doublet are held fixed in order to main-
tain the integrity of the zeroth-order basis, and also to
keep the size of the complex matrix small for diagonaliza-
tion.

Finally, the continuum [( isis)'S, ep] P', ~g, ), is con-
structed as follows:
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TABLE II. Energy and nonrelativistic autoionization width of the [Is{2s2p) P] P' state of lithiumlike ions {in atomic units).

(Hi+H2 ), (H, ), (H, ), and (H, ) are the expectation values of the relativistic operators corresponding to kinetic energy correc-
tion plus Darwin term, Fermi contact, orbit-orbit or retardation, and the nonrelativistic mass polarization effect, respectively. E To-
tal is the sum of the nonrelativistic energy plus the aforementioned corrections. The shift 5 and the width I result from the interac-
tion of this inner-shell vacancy state with the degenerate 'P' continuum via the nonrelativistic Coulomb interaction.

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18

E
Nonrelati vistic

—5.312 591
—9.959 724

—16.106 497
—23.753 069
—32.899 365
—43.545 479
—55.691 546
—69.337 562
—84.483 588

—101.129 562
—119.275 522
—138.921 467
—160.067 395
—182.713 323
—206.859 253
—232.505 173

2.469
3.464
4.464
5.462
6.461
7.460
8.459
9.458

10.458
11.458
12.458
13.457
14.457
15.457
16.457
17.457

(H, +H, )
(10 ')

—5.88
—19.46
—49.38

—105.38
—199.59
—346.08
—562.05
—865.78

—1278.61
—1825.06
—2531.13
—3671.66
—4537.58
—5901.44
—7551.25
—9528.45

(H, )
(10 )

0.06
0.25
0.61
1.24
2.20
3.55
5.36
7.70

10.64
14.25
18.59
23.74
29.75
36.71
44.67
53.70

(H, )
(10 4)

—0.05
—0.21
—0.54
—1.10
—1.95
—3.14
—4.73
—6.78
—9.34

—12.47
—16.23
—20.67
—25.85
—31.83
—38.67
—46.41

(H, )
(10 )

0.101
0.236
0.390
0.596
0.766
0.937
1.049
1.278
1.386
1.620
1.725
1.962
2.064
2.304
2.404
2.381

E
Total

—5.313 168
—9.961 643

—16.111389
—23.763 533
—32.919222
—43 ~ 579 953
—55.747 583
—69.423 919
—84.611 180

—101.311727
—119.528 227
—139.263 534
—160.520 556
—183.302 749
—207.613 537
—233.457 051

Shift
(10 )

2.76
3 ~ 73
4. 17
4.41
4.57
4.67
4.73
4.78
4.80
4.82
4.84
4.86
4.87
4.88
4.89
4.90

r
Width
(10 )

1.38
1.55
1.54
1.54
1.54
1.53
1.52
1.52
1.50
1.49
1.49
1.48
1.48
1.47
1.47
1.46

t(, ([(ls ls)'S, eL] LJ)=
Hag g di,. Uk (r) .

k

Ui, (r)=r e'"YL(r), '

(8)

Here A is an antisymmetrization operator. f is the
wave function of the two-electron target state, (lsls) S.
It is a three-partial-wave eight-term wave function. The
details of this function have been given in Ref. 8. The Uk
represent a one-dimensional complete set for the outgo-
ing electron. We choose

where y is a nonlinear variational parameter. FL
represents the appropriate angular wave function. The
azimuthal quantum number is suppressed, as is the spin
part. It is understood that the proper angular and spin
symmetry will be built into the LJ wave function. In
this work for L =1, we use 15 Uk's where k runs from

TABLE III. Energy and nonrelativistic autoionization width of the [Is{2s2p)'P]'P' state of lithiumlike ions (in atomic units).
( H, +H, ), (H, ), ( H~ ), and ( H, ) are the expectation values of the relativistic operators corresponding to kinetic energy correc-
tion plus Darwin term, Fermi contact, orbit-orbit or retardation, and the nonrelativistic mass polarization effect, respectively. E To-
tal is the sum of the nonrelativistic energy plus the aforementioned corrections. The shift 5 and the width I result from the interac-
tion of this inner-shell vacancy state with the degenerate 'P' continuum via the nonrelativistic Coulomb interaction.

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

E
Nonrelati vistic

—5.257 407
—9.878 027

—16.001 086
—23.624 863
—32.748 945
—43.373 185
—55.497 517
—69.121 896
—84.246 328

—100.870 781
—118.995 253
—138.619 738
—159.744 231
—182.368 735
—206.493 246
—232. 117760

2.525
3.535
4.541
5.544
6.546
7.548
8.550
9.551

10.552
11.552
12.554
13.554
14.554
15.554
16.556
17.556

(H, +H, )
(10 )

—5.82
—19.35
—49.17

—104.95
—198.81
—345.14
—560.70
—864.43

—1278 ~ 19
—1825.40
—2532. 14
—3427.19
—4539.87
—5904.58
—7556.18
—9532.99

(H, )
(10 )

0.04
0.15
0.38
0.77
1.39
2.26
3.45
4.98
6.92
9.31

12.19
15.61
19.62
24.27
29.58
35.63

(H, )
(10 ')

0.07
0.26
0.63
1.24
2.14
3.38
5.03
7.15
9.78

12.99
16.83
21.36
26.64
32.72
39.65
47.51

(H, )
(10 ')

—0.0848
—0.233
—0.388
—0.593
—0.762
—0.930
—1.041
—1.268
—1.375
—1.608
—1.712
—1.947
—2.049
—2.288
—2.387
—2.364

E
Total

—5.257 987
—9.879 945

—16.005 940
—23.635 217
—32.768 550
—43.407 228
—55.552 843
—69.207 253
—84.372 614

—101.051 252
—119.245 736
—138.958 954
—160.193 797
—182.953 724
—207.242 179
—233.062 982

Shift
(10 ')
—0.25
—0.56
—0.65
—0.68
—0.67
—0.65
—0.62
—0.59
—0.57
—0.54
—0.53
—0.51
—0.49
—0.48
—0.46
—0.45

r
Width
(10 ")

3.42
7.68

10.9
13.4
15.3
16.7
17.9
18.9
19.7
20.3
20.9
21.4
21.8
22.2
22.5
22.8
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k =1 to 15. The values of the linear parameters dI,. are
left as variable to be later determined by the complex-
rotation computation. The Hamiltonian matrix of the
1s2s2p configuration plus associated continuum is there-
fore an 18 X 18 matrix in this approximation. In this
work the complex-rotation is achieved by scaling,
r ~re ', in the argument of Eq. (8). The coordinates in
the Hamiltonian operator as well as the other parts of the
basis set are not scaled. Diagonalization of the resulting
complex Hamiltonian matrix where the basis states are
coupled to form either J =

—,
' or =,

' yields 18 eigenfunctions
of this subspace which correspond to certain linear com-
binations of the basis states

lip, ( J) & =co(s)
l go( J) & +c, (s) i&i(J) &

+c,(s)ly, (J)&+ ll(;(J) & (9)

and satisfying

(10)

in the diagonal elements & go(J) lHl go(J) &, then EJ would

be the full fine-structure perturbation energy. Table I
gives the shift and autoionization widths of the
(ls2s2p) PJ states. We have included the results for
J =

—,
' in this table for completeness and because our ear-

lier paper dealing with this state did not consider
Z =11—15. The width results in this table are quoted in
atomic units; the autoionization transition probabilities,
which are proportional to the widths by a factor of A, can
be obtained in units of sec ' by multiplying by
1/(2. 419X 10 ' sec).

It is worth mentioning that the J-dependent autoioni-
zation widths of the two (ls2s2p) PJ' states become in-

creasingly different from the nonrelativistic results of
Tables II and III with increasing Z. These nonrelativistic

These eigenfunctions correspond to the states with well-
defined J, MJ, and parity which may be labeled
( ls2s2p) PJ', [ls, (2s2p) P] PJ, and [ls, (2s2p)'P] PJ
along with 15 other states, which include approximations
to bound states, [( Isis)'S, np] PJ', and nonresonant
scattering states of the form [(lsls)'S, ep] Pg which lie

along the rotated branch cut

E =E [( ls ls)'S]+ee

in the complex energy plane (see Refs. quoted in Ref. 13).
The complex resonance eigenvalues, E, i (I /2), —yield
the shifted resonant energy E„and width I of the state.
The J-dependent coupling shift is defined by

AJ =E„[ls2s2p PJ ] E, —

where E =
& itolH„, lito& is the nonrelativistic eigenvalue.

It should be stressed that AJ is not the full perturbation
energy associated with the spin-dependent interactions; it
is only due to the interaction with the continuum and the
two ( 1s2s2p) P' states. If we had included the small con-
tribution

results were obtained by diagonalizing the Hamiltonian
matrix that results when the spin-dependent terms in the
Hamiltonian operator are neglected, i.e., the only ele-
ments in the Hamiltonian matrix are those pertaining to
the particular (ls2s2p) P' resonance of interest along
with the continuum. For large Z these widths appear to
converge to a result independent of Z, which should be
expected from an analysis based on hydrogenic orbitals
and the golden rule formula which employs the transition
matrix element of the Coulomb interaction between the
core-excited initial state and the continuum. The relativ-
istic width results for these 1s2s2p PJ states along with
their corresponding radiative transition rates will be re-
ported in a future paper which will give our results for
their J-dependent lifetimes.

III. RADIATIVE TRANSITION RATES

The 1s2s2p P' state is stable against dipole radiative
transitions in the nonrelativistic approximation. The
1s2s2p P' states, on the other hand, do make electric di-
pole transitions to lower doublets, predominantly to the
ground state, ( lsls2s) S. Therefore the relativistic cou-
pling of ( ls2s2p) P' to the two ( ls2s2p) P' states is once
again critical for an understanding of the differential me-
tastability of the ( ls2s2p) PJ states.

The dipole matrix element between the first-order wave
function for a particular ( ls2s2p) PJ state, liI', (J) &, and
the (lsls2s) SJ,&z ground state (symbolized by l~I'G &),

1s

& ~I', (J) lrl~pG & =c~ &

gati(J)

lrl pG &+c~& it~(J) lrl~I'G &,

(12)

where the term & ito( J) lrl'PG & has been dropped since it is
identically zero by the mutual orthogonality of the dou-
blet and quartet spin eigenfunctions. &$,(J)lrl+G & has
been neglected since lg, (J)& is a small component of
lf, (J) & to begin with and also because the integral
& g, (J) l rl fG & has a small overlap in spatial coordinates.

The ground-state wave functions used to calculate
these dipole matrix elements are 13-partial-wave multi-
configuration-interaction wave functions with 110 Slater-
type orbital terms. They were computed by the
Rayleigh-Ritz variation method in a manner similar to
that of Davis and Chung. ' Some measure of their accu-
racy can be obtained by comparing the nonrelativistic en-
ergy eigenvalue for the ground state of lithium, where the
correlation effects are strongest along the isoelectronic se-
quence, with the most precise theoretical result in the
literature. King and Shoup' used a 352-term Hylleraas-
type expansion to obtain the lowest theoretical result in
the literature, —7.478 058 a.u. Compared with the
present configuration-interaction (CI) result of —7.477 16
a.u. it is only —0.000 898 a.u. lower. The nonrelativistic
energy eigenvalues, relativistic corrections, mass polar-
ization eFect (for Li), and total relativistic energy for the
1s ls 25 S ground state is given in Table IV for Z = 3 —18.

In this calculation we take the c s from first-order per-
turbation theory,
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TABLE IV. Energy and relativistic etfect of the (Isls2s)'S state of lithiumlike ions (in atomic units). (H, +H~), (H, ), (H4),
and (,H~ ) are the expectation values of the relativistic operators corresponding to kinetic energy correction plus Darwin term, Fermi

contact, orbit-orbit or retardation, and the nonrelativistic mass polarization effect, respectively. E Total is the sum of the nonrela-

tivistic energy plus the aforementioned corrections.

Z

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

E
Nonrelativistic

—7.477 160
—14.323 726
—23.423 481
—34,774 325
—48.375 668
—64.227 273
—82.329 039

—102.680 905
—125.282 846
—150.134 837
—177.236 862
—206.588 916
—238.190989
—272.043 081
—308.145 187
—346.497 301

(H, +H, )
(10 )

—7.14
—25.51
—67.47

—147.90
—285.43
—502.30
—824.52

—1281.71
—1907.40
—2738.54
—3815.75
—5183.85
—6890.75
—8988.35

—11 531.89
—14 581.17

(H, )
(10 )

0.99
2.81
6.10

11.30
18.85
29.20
42.77
60.02
81.36

107.24
138.10
174.38
216.53
264.97
336.62
382.52

(H, )
(10 )

—0.24
—0.49
—0.84
—1.28
—1.81
—2.44
—3.16
—3.97
—4.88
—5.88
—6.98
—8.17
—9.45

—10.83
—12.30
—13.86

(H, )
(10 )

0.235
0.273
0.299
0.344
0.354
0.362
0.349
0.374
0.362
0.382
0.371
0.388
0.377
0.392
0.382
0.356

E
Total

—7.477 775
—14.326 017
—23.429 672
—34.788 078
—48.402 471
—64.274 791
—82.407 494

—102.803 433
—125.465 902
—150.398 518
—177.605 288
—207.090 642
—238.859 318
—272.916462
—309.267 552
—347.918 517

Ci

& 1(,(J)IH,„;.Into(J) )

E —E. (13)
The radiative transition rate which has been summed

over all possible final states and averaged over the initial
magnetic substates is given by'

c12

which is related to the matrix element H&2 in the autoion-
ization complex-rotation computation.

Due to the importance of these coupling constants with
respect to the spin-induced processes we tabulate their
values for the various ions in Table V. We also give the
following coupling constant:

& q2( I) IH„,.I q)(J) &

(14)
1 2

W( P' S)= g co I(%,(J) rI+ & I, (15)2J+1 J 3c

where n is the fine-structure constant and

coJ=E( PJ ) E( S, ~2) . — (16)

The results for these transition rates are given in Tables

TABLE V. First-order perturbation theory coupling constants for the states ( Is2s2p)'PJ', [ls (2s2p)'P)'PJ, and [ ls (2s2p)'P] PJ of
lithiumlike systems. For notation, see text Eqs. (13) and (14). (The number in square brackets is the power of 10 to which the number
is raised. )

z
J ]

2

C2 C[,2 C] C2

3
2

C1, 2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

—1.9681 [ —4]
4.5511[—4)

—8.6968[ —4]—1.4750[ —3]—2.3072[ —3]—3.4033[ —3]—4.8006[ —3)—6.5308[ —3]—8.6367[ —3]—1.1151[—2]—1.4109[—2]—1.7549[ —2]—2.1506[—2]—2.6015[—2]—3.1119[—2]—3.6843[ —2]

—4.2043[ —5]
2.0491[—5]
7.1162[—5]
2.6262[ —4]
5.8348[ —4]
1.0653[ —3]
1.7345[ —3]
2.6226[ —3]
3.7590[ —3]
5.1730[—3]
6.8968[ —3]
8.9575[—3]
1.1382[—2]
1.4207[ —2]
1.7459[ —2]
2. 1166[—2]

+ 1.9923[—4]
7.5155[—4]
1.8785[ —3]
3.7812[—3]
6.6713[—3]
1.0753[ —2]
1.6243[ —2]
2.3334[—2]
3.2247[ —2]
4.3182[ —2]
5.6327[ —2]
7.1918[—2]
9.0158[—2]
1.1124[—1]
1.3536[ —1]
1.6274[ —1]

—2.4665[ —4]
6.0937[—4]—1.2094[ —3]—2.0996[—3]—3.3375[—3]—4.9819[—3]—7.0904[ —3 ]—9.7140[—3]—1.2921[—2]—1.6762[ —2]—2.1293[—2]—2.6575[ —2]—3.2662[ —2]—3.9613[—2]—4.7491[—2]—5.6339[—2]

+5.5145[ —5]
—2.2623[ —4]

5.4691[—4]
1.0662[ —3]
1.8311[—3]
2.8913[—3]
4.2892[ —3]
6.0741[ —3]
8.2929[ —3]
1.0992[ —2]
1.4221[ —2]
1.8025[ —2)
2.2446[ —2]
2.7540[ —2]
3.3350[—2]
3.9922[ —2]

—9.9616[—5]
—3.7578[ —4]—9.3924[ —4]—1.8906[ —3 ]—3.3357[ —3]—5.3767[ —3]—8.1215[—3]
—1.1667[—2]—1.6123[—2]—2. 1591[—2]—2.8164[ —2]—3.5959[ —2]—4.5079[ —2]—5.5621[ —2]—6.7679[ —2]—8.1369[—2]
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VI and VII for the J =
—,
' and —,

' states, respectively. In
these calculation we have approximated coj with the non-
relativistic center of gravity energy difference, E( P')
—E( S), i.e. we have used our nonrelativistic energy ei-
genvalues to compute the energy difference. The error
introduced in this approximation is small. For example,
in the case of the argon ion, Z = 18, where the relativistic
corrections are the largest, using the relativistic corrected
energies with the spin-dependent perturbations included
changes the result by only about 1%. The spin-
dependent perturbation energies for Z = 18 are
+0.042 341 3, —0.030 771 8, and —0.065 480 3 a.u. , re-

spectively, for the J =
—,', —,', and —,

' levels.
Note that quantum interference effects are present in

these radiative rates. This interference results from the
two alternate pathways for the photon emission to
proceed, i.e., via the coupling to either of the two doublet
ls2s2p P' states. The transition amplitudes (dipole ma-
trix elements) via the two doublets must first be added
and then the amplitude squared is taken to obtain the
transition rate. This can be seen more clearly after sim-
plifying Eq. (15) by writing it in terms of the reduced di-
pole matrix elements, ' (g, ~~r ~~4G ), between the ground
state and the two doublet 1s2s2p P' states:

TABLE VI. Radiative, autoionization, and total transition rates and lifetimes of the 1s2s2p PJ=, ~2 levels of lithiumlike ions.
Transition rates are given in sec, and lifetimes are given in sec. (The number in square brackets is the power of 10 to which the
number is raised. )

Z W(rad)
This work

W(Aug) W(total)

3 4.58[ +2] 7.71[+6] 7.71[+6]

4 1.56[ +4] 4.61[+7] 4.61[+7]

2.05[+5]

1.57[+6]

1.44[+8]

3.31[+8]

1.44[+8]

3.33[+8]

7 8.49[+6] 6.33[+8] 6.42[+8]

8 3.60[ +7] 1.06[ +9] 1.10[+9]

9 1.27[ +8] 1.63[+9] 1.76[ +9]

10 3.87[ +8] 2.33[+9] 2.72[ +9]

Lifetime

1.30[—7]

2.17[—8]

6.94[—9]
3.01[—9]
1.56[ —9]

9.10[—10]

5.69[ —10]

3.68[ —10]

W(rad)

1.73[+6]d

9.30[+6]
5.10[+6]'

3.86[+7]'
2.32[+7]'

1.34[+8]
1.37[ +8]s

4.07[+8]
2.86[+8]'
4.10[+8]s

Other theory
W(Aug)

2.69[+8]

5.21[+8]
2.44[+7]'

8.81[+8]
7.55[+7]'

1.36[+9]
7.02[+8]s

1.98[+9]d
3.64[+8)'
1.32[+9]s

Lifetime

) 100.0[—7]'
24.0[ —7]'

3.69[—9]
1.89[ —9]

1.09[—9]'

6.69[—10]

4.19[—10]

Experiment
Lifetime

1.4+0.7[ —7]'

1.87+0. 1 [ —9]'

4.0+ 1.9[ —10]"

11 1.06[+9] 3.13[+9] 4.19[+9] 2.39[—10] 1.10[+9]' 2.34[+9]
12 2.64[+9] 4.03[+9] 6.66[+9] 1.50[ —10] 2.69[+9]' 3.92[+9]s

13 6.09[+9) 4.97[+9] 1.11[+10] 9.04[ —11] 6.33[+9]'
6.09[+9]s

4.22[+9]'
6.28[+9]s

9.52[ —11]'

14 1.32[+10] 5.93[+9] 1.91[+10] 5.24[ —11] 1.29[+10]s 9.66[+9]s
15 2.69[+10] 6.86[+9] 3.38[+10] 2.96[—11] 2.58[+10]s 1.43[+10]s
16 5.25[+ 10] 7.72[+9] 6.03[+10] 1.66[ —11] 3.88[ + 10]'

4.91[+10]s
1.16[+10]'
2.07[+ 10]s

17 9.83[+ 10] 8.47[+9] 1.07[+11] 9.36[—12] 8.96[+10) 2.90[+10]

18 1.77[ + 11] 9.10[+9] 1.86[ + 11] 5.37[—12] 1.67[+ 11]'
1.56[+ 11]s

9.96[+9]'
3.97[+10]s

5.65[ —12]'

'Mason, Ref. 20.
Levitt et al. , Ref. 18.

'Balashov et al. , Ref. 19.
Chen et al. , Ref. 7.

'Bhalla and gabriel, Ref. 24.
'Richard et al. , Ref. 21; preliminary result from Charalambidis, Koulen, and Brenn is 1.6+0.4[ —9] (Ref. 21).
Vainshtein and Safronova, Ref. 25.

"Schumann et al. , Ref. 23.
'Chen et al. , Ref. 6.
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3 t

(
—1)' """[(2J+1)(»'+1)]'"' J g J (& &illr II+G &ci+ & &zllrll+G &ca)2J+1 3,

2

(17)

In this expression, the primed quantities correspond to
the ground state, J' =

—,', L' =0; and the unprimed quanti-
ties correspond to the intermediate 1s2s2p P' states,
L = 1, S = —„'. The factors

L 1 L'
(
—1) '[(2J+1)(2J'+1)]' J' S J

I

are equal to ( —1)(2)(0.408 248 29) and
(
—1)(&8)(—0.40824829) for J = —,

' and =,', respectively.
The reduced dipole matrix elements are given in Table
VIII and the coupling constants have already been
presented in Table V. From these quantities and Eq. (17)
it can be seen that the transition amplitudes via the two
intermediate 1s2s 2p P' states always add together with

TABLE VII. Radiative, autoionization, and total transition rates and lifetimes of the 1s2s2p PJ' &~2 levels of 1inthiumlike ions.

Transition rates are given in sec ', and lifetimes are given in sec. (The number in square brackets is the power of 10 to which the

number is raised. )

z W(rad)
This work

W(Aug) W(total)

3 8.42[ +2] 3.94[ +6] 3.9S[+6]

4 3.49[ +4] 2.04[ +7] 2.04[ +7]

5 4.87[ +5] 5.48[ +7] S.52[ +7]

3.83[+6]
7 2.10[+7]

1.06[+8]

1.63[+8]

1.09[+8]

1.84[+8]

8 94[+7] 2.10[+8] 2.99[+8]

9 3.16[+8] 2.26[+8] 5.42[+8]

10 9.69[+ 8] 1.98[ +8] 1.17[+9]

Lifetime

2.53[—7]

4.89[—8]

1.81[—8]

9.14[ —9]

5.42[ —9]

3.34[ —9]

1.84[ —9]

8.57[ —10]

W(rad)

4.30[+6]

2.30[+7]"
1.28[+7]'

9.63[+7]d
9.70[+7]g
5.85[+7]"

3.38[+8]"
3.35[+8]'
1.03[+9]
1.01[+9]'
7.30[ +8]'

Other theory
W(AUR)

7.15[+7]'

1.07[+8]'
6.18[+8]'

1.31[+8]
2.82[+ 8]g
1.93[+8]'

1.27[+8]'
6.79[+8]'
8.89[+7]d
1.45[+9]g
9.51[+8]'

Lifetime

3.0[ —7]'
8.5[ —7]"

Experiment
Lifetime

4.6+ 1.0[ —7]"

1.32[—8]'

7.69[—9]"

4.40[ —9]" 3.48+0.08[ —9]"

2. 15[—9]' 2.000+0.025[ —9]"

8.94[ —10]" 16.0+2.4[ —10]'

12

2.65[+9]
6.62[+9]

1.21[+8]
3.22[+7]

2.77[ +9]
6.65[+9]

3.60[ —10]

1.50[ —10]

2.74[+9]'
6.77[ +9]'

2.86[+9]t

5.26[+9]s

13 1 53[+10] 6.07[+6] 1.53[+ 10] 6.54[ —11] 1.63[ + 10]'
1.5S[+10]'

1.18[+8]'
9.13[+9]'

6.06[ —11]'

14 3.31[+10] 1.91[+8] 3.33[+10] 3.01[—11] 3.33[+10]' 1.51[+10]'

15 6.77[+ 10] 8.29[+8] 6.8S[+10] 1.46[ —11] 6.76[+ 10]s 2.41[+10]g

16 1.32[+ 11] 2.30[+9] 1.34[+ 11] 7.44[ —12]

17 2.47[+ 11] 5.13[+9] 2.52[+ 11] 3.96[—12]

18 4.46[+ 11] 1.01[+10] 4.56[+ 11] 2. 19[—12]

1.30[+ 11]s
1.07[+11]'
2.42[+ 11js

4.59[+ 11]"
4.32[+ 11]'

3.71[+10]s
3.37[+10]'
5.55[+10]'

1.12[+10]"
8.08[+ 10]'

2.12[—12 j'

'Mason, Ref. 20.
Levitt et al. , Ref. 18.

'Balashov et al. , Ref. 19.
"Chen et al. , Ref. 7.
'Bhalla and gabriel, Ref. 24.
Moore et al , quoted in Richa. rd et a/. , Ref. 21; preliminary result from Charalambidis, Koulen, and Brenn is 4.3+-0.2[ —9] (Ref.
21).
gVainshtein and Safronova, Ref. 25.
"Richard et al. , Ref. 22.
'Schumann et al. , Ref. 23.
"Chen et al. , Ref. 6.
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TABLE VIII. Reduced dipole matrix elements for radiative
transitions from the [ ls, (2s2p)'P]'P' and [ ls, (2s 2p) 'P]'P'
states to the [( ls ls)'S, 2s]'S ground state for lithiumlike ious (in
atomic units; for notation, see text). (The number in square
brackets is the power of 10 to which the number is raised. )

Z

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18

4.3709[—1]
3.7434[ —1]
3.1411[—1]
2.6834[ —1]
2.3358[—1]
2.0651[—1]
l.8491 [ —1]
1.6733[—1]
1.5275[ —1]
1.4048[ —1]
1.3002[ —1]
1.2100[—1]
1.1314[—1]
1.0624[ —1]
1.0012[—I ]
9.4661[—2]

& W~llrll+G &

—7.8662[ —2]—1.0369[—1]—9.4460[ —2]—8.3236[ —2]—7.3575[ —2]—6.5773[ —2]—5.9259[ —2]—5.3862[ —2]—4.9346[ —2)—4.5468[ —2]—4.2219[—2]—3.9355[—2]—3.6835[—2]—3.4639[ —2]—3.2701[—2]—3.0946[ —2]

IV. RESULTS AND DISCUSSION

The I-dependent lifetimes rJ of the ( ls2s2p) PJ states
are given by

1/rJ = WJ(auto)+ WJ(rad) . (18)

These results appear in Tables VI and VII for the J =
—,
'

and —, states, respectively. The transition rate is dominat-
ed for low Z by autoionization, while for high Z the radi-

the same relative phase for both J levels; hence there is
overall constructive interference. A closer examination
of the transition amplitudes via the individual interac-
tions spin-orbit, spin-other-orbit, and spin-spin does re-
veal, however, that there is destructive interference
among these different interactions for a given total J.
More explicitly, if the coupling constants c, are examined
in the form

c; =c;(so}+c,(soo)+c;(ss),

then we find the following: for J=—,', the spin-other-
orbit and spin-spin transition amplitudes via the
[ls, (2s2p)'P] P' state add with opposite sign as com-
pared to all other amplitudes; for J=—,', the spin-spin
transition amplitude via the [ls, (2s2p) P] P' state and
the spin-other-orbit transition amplitude via the
[ls, (2s2p)'P] P' state add with opposite sign as com-
pared to all other amplitudes.

This interference, while obvious from the formulas we
have written down here, is not as obvious in the case of
the autoionization transition rate where it occurs also.
This is because we have not taken a golden-rule-type ap-
proach to the calculation of the autoionization transition
rate. Nevertheless, interference effects do result from the
various ways in which the coupling to the continuum is
affected; these points will be examined in Sec. IV.

with B„,~=100—BA„g„. These quantities are given in
Table IX. For an accurate theoretical determination of
the Auger branching ratio as a function of Z, the destruc-
tive interference mentioned above becomes very impor-
tant. This is because small errors in the various ampli-
tudes for autoionization may magnify into large errors
for the combined total autoionization transition rate, as is
the case for the ions with Z = 13 where the net amplitude
nearly vanishes. This can be seen in Tables VI and VII
where the present results for the various transition rates
are compared with those of Chen et al. ' The radiative
rates are generally in good agreement; for low Z (Z =6),
they differ by about 10%, and for high Z (Z =18), they
differ by only S%%uo. This is expected since correlation
effects are more important for low-Z systems. The J =

—,
'

autoionization rates are also in general agreement, the
difference being predictably larger (about 20%) for low-Z
ions as compared to high-Z ions (about 10%). Once
again, the correlation effects are most likely accounting

TABLE IX. Autoionization and radiation branching ratios
for the (1s2s2p) PJ' states of lithiumlike ions. See Eq. (19).

Z

3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18

Auger

99.99
99.97
99.86
99.53
98.68
96.73
92.79
85.75
74.76
60.45
44.97
31.05
20.30
12.81
7.93
4.88

1

2

Radiation

0.01
0.03
0.14
0.47
1.32
3.27
7.21

14.25
25.24
39.55
55.03
68.95
79.70
87.19
92.07
95.12

Auger

99.98
99.83
99.12
96.50
88.62
70.09
41.62
16.94
4.38
0.48
0.04
0.57
1.21
1.71
2.03
2.21

3
2

Radiation

0.02
0.17
0.88
3.50

11.38
29.91
58.38
83.06
95.62
99.52
99.96
99.43
98.79
98.29
97.97
97.79

ative transitions dominate. The autoionization rate
grows monotonically with Z for the J=—,

' state, while this
rate has a dip at Z = 13 for the J =

—,
' state. More precise-

ly, the J =
—,
' rate increases with Z until Z =9, then it be-

gins to decrease at Z =10 until it reaches a minimum at
Z = 13. This minimum occurs because there are distinct
amplitudes for the different mechanisms that the initial
1s2s2p PJ' state takes to reach the same final continuum
state, [( ls ls) 'S, ep] PJ. The relative phases for these
various processes are different for the two J levels, result-
ing in different degrees of constructive and destructive in-
terference for the net amplitude squared or total autoion-
ization transition rate.

The relative contributions of autoionization and radia-
tion to the total transition rate are most easily seen in the
Auger and radiative branching ratios defined by

BA„„=100
8 (auto)

W(auto)+ W'(rad)
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for the low-Z difference. The J =—', autoionization rates
are, however, in more serious disagreement. The 30%
difference between the two results for Z =6 grows to a
difference of almost two orders of magnitude for Z = 13.

In order to understand this destructive interference
more thoroughly we consider the following expression for
the autoionization transition rate which is based on the
concept of a golden rule formula for the net transition
amplitude squared:

and carrying out the complex-rotation diagonalization
with the matrix elements

0„=& q, (J)IH...Iq, (J) &

and

Ho, =
& qo(J) IH„I q, (J)&,

2 2

D+ y I, k (20)r=
i =1

In this expression the quantities g represent generalized
transition amplitudes. More specifically, gJ, represents
the J-dependent amplitude resulting from "direct"
coupling to the continuum via the spin-dependent in-
teractions i =1 (spin-orbit), i =2 (spin-other-orbit), and
i =3 (spin-spin). With the same meaning ascribed to the
index i, gJ, , represents the J-dependent amplitude result-

ing from the "indirect" coupling to the continuum via
the intermediate [Is, (2s(2p) P) PI' (k =1) and

[ls, (2s2p)'P] PI' (k =2) states. This expression for the
autoionization rate can be generalized further by extract-
ing out the J dependence of the amplitudes via 6j symbols
as follows:

( C i ( 1 ) &
= —7.310 84 X 10

(C, (2) &
= -8.88691 x 1O-,

(C, (3) & =+1.853 83X10

(C, (1)& =+5.958 14x 1O-',

( C2(2) &
= —7.712 51 X 10L' K(i) L

D
( 1 )I S+' L+~ .aD

S J S' (21a) and

respectively.
To illustrate this procedure we choose to use Z =13 as

an example. The largest error should occur for this par-
ticular ion since the sum of the transition amplitudes
nearly cancels for the J ==,' level; however, the source of
the minimum in the J ==,' autoionization rate will be
clearly illustrated. We find for the reduced direct transi-
tion amplitudes (results are given in atomic units):
a2 =+1.963 17X10 and aq = —3.91046X10 . The
reduced coupling constants are

L' K(i) L
I, k

( 1) IS+' L+~ I, /c

S J S (21b)
( C2(3 ) &

= +6.055 47 X 10

The full J-dependent coupling constants of Table V can
be obtained by

where K(1)=K(2)=1 and K(3)=2. The unprimed and
primed quantities correspond to P' and P' symmetries,
respectively. The a; are to be interpreted as reduced
direct transition amplitudes of the form ( ltj, ~~H, ~~go &. In
the context of first-order perturbation theory the reduced
indirect amplitudes may be expressed as (23)

L' 1 L
c„=(

—1)+,'[( C„(1)&+ ( C,. (2) & ]

L' 2 L
+( —1)'+'+', (C (3) & .S JS'

,
' "=

& C,. ( ) &g(k),

where ( Ck(i) & is a reduced coupling constant for the ith
interaction and g (k) is the positive square root of the
corresponding J-independent nonrelativistic 1s2s2p P'
width of Tables II and III.

Equation (20) can be brought into reconciliation with
our (Is2s2p) PJ width from the saddle-point complex-
rotation method by deducing the values of a; by carrying
out selected diagonalizations of the Hamiltonian matrix
[Eq. (6)] with all but the interaction of interest "turned
off" by artificially setting the matrix elements dealing
with the other processes to zero. The spin-orbit operator
is a one-electron operator; and since two-electron orbitals
must be changed to directly couple the initial state
1s2s2p to the continuum 1slsep the value of a, is zero.
The values of az and a3 resulting from the direct cou-
pling of the two-electron operators, spin-other-orbit and
spin-spin, respectively, are obtained by setting the matrix
elements involving the (ls2s2p) P' states equal to zero

Here the primed quantities correspond once again to the
ls2s2p P' and the unprimed quantities correspond to
the Is2s2p P'. The results determined by Eq. (21) are
displayed in Table X. At this point it is important to
bring attention to the signs of the amplitudes given in this
table. Since we have deduced these amplitudes from par-
tial transition rates, phase information was lost when tak-
ing the square root. The amplitudes corresponding to the
indirect processes, gJ' and gz', , were constructed by
chosing the real positive square roots [g (1) and g(2)] of
the nonrelativistic widths of [ls, (2s2p) P] P' and
[ ls, (2s2p)'P] P', respectively. The amplitudes corre-
sponding to the direct processes, gJ, were obtained by
taking a positive square root for the spin-other-orbit in-
teraction (i.e., a& & 0) and a negative square root for the
spin-spin interaction (i.e., a3 (0). These choices were
necessary for a meaningful final result. The results of
Table X, based on the analysis of Eq. (20), shows that the
indirect spin-orbit amplitude gJ'& destructively combines
(negative amplitude) with the other amplitudes for both J
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TABLE X. Analysis of the various autoionization transition amplitudes for Al xr (1s2s2p) Pz, based
on the golden-rule-type formula, Eq. (20). The table shows the sources of the near complete destructive
interference for the J =

—, width which is given by the net amplitude squared. For notation and discus-
sion see text. Results are in atomic units. (The number in square brackets is the power of 10 to which
the number is raised. )

Amplitude J —3
2

D
RZ, 2

D
gs, 3

Sum

2.8023[ —4]
1.9775[ —4]

4.7798[ —4]

4.4308[ —4]
—6.2534[ —5]

3.8054[ —4]

I, l

I, I

gZ, '2

/, 1

Sum

1.4862[ —4]
1.6948[ —5]
6.5275[ —6]

1.7210[—4]

2.3499[—4]
2.6797[—5]

—2.0642[ —6]
2.5972[ —4]

g1, 2

1, 2

Sum

—4.5405[ —4]
5.8775[ —5]
7.9929[—5]

—3.1535[—4]

—7.1792[—4]
9.2931[—5]

—2.5276[ —5]
—6.5026[ —4]

Total
sum 3.3472[ —4] —9.9956[—6]

1.1204[—7] 9.9911[—11]

levels, while all the spin-spin amplitudes (negative ampli-
tudes for J ==,') destructively combine with the rest only
for the case of J =

—,'. The source of the minimum in the
autoionization width at Z =13 for J =

—,
' is for the most

part due to the growth rate with Z of the indirect spin-
orbit amplitude gz', . It becomes the largest decay ampli-
tude at Z =9 and remains the largest for both the J =

—,
'

and —states through Z =18. For the J ==,' level, the des-
tructive interference effect from this amplitude along
with the spin-spin amplitudes causes the net transition
amplitude to pass through zero between Z =12 and 13,
hence the minimum in the Auger rate at Z = 13. It is in-
teresting to note that prior to Z =9, the largest ampli-
tude is due to the direct coupling to the continuum via
the spin-other-orbit interaction, gz 2. It is also of interest
to note that the indirect amplitudes via the
[ls, (2s2p)'P] P' state, g~, , are all larger than those via
the [ls, (2s2p) P] P' state, g~", . This is because the non-
relativistic Coulomb autoionization width of the former
is larger. The relative magnitudes of these amplitudes for
the case of Z =13 are such that there is almost complete
destructive interference for the J =—', level. The error of
the results given by Eq. (20) as compared to the rigorous
results of Table I from the saddle-point complex-rotation
method for this case for Z =13 are 6.8% and 32%%uo for
the J =

—,
' and —,

' levels, respectively. The large error for
the J=—,'level might be expected due to the near cancel-
lation of the various transition amplitudes. If we carry
out the same analysis for Z =10 where there is a smaller
degree of destructive interference these two errors are

3.0% and 3.6%, respectively. More explicitly this
analysis yields an error that increases monotonically for
the J =

—,
' state, from 1.5% for Z =3 to 28% for Z =18;

for the J ==,' state the error is 2.9% for Z =3, reaches a
maximum at Z =13, and decreases to 14% for Z =18.
The larger errors that occur for high Z are for the most
part due to second-order wave-function effects. If the
analysis of the indirect amplitudes aI, , is considered in
the context of second-order perturbation theory, then the
errors for Z = 18 are reduced to about 5% for both the
J =

—,
' and —,'states.

The near cancellation of the net autoionization transi-
tion amplitude for the case of the J =

—,
' level for Z =13

raises the question of the stability of the width coming
from the saddle-point complex-rotation method. We in-
vestigate this question by examining the stability of this
width with respect to changes in the open-channel basis
functions. These functions depend on the nonlinear pa-
rameter y as shown in Eq. (8), and they are "rotated" by
the angle 8 as explained earlier. In Table XI the width is
given as a function of these parameters for both the J =

—,
'

and —,
' states. This table clearly shows that for the case of

the J =
—,
' level, where there is a small degree of destruc-

tive interference, the width is extremely stable; the varia-
tion is at the fifth or sixth digit for a range of 0 from 0.3
to 0.7 and for y from 7.25 to 12.25. On the other hand,
while the J =

—,
' width is not as stable it still appears to be

stationary with a variation of about 20%%uo over this same
range of parameters.

The lifetimes from this work are compared to other
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TABLE XI. Stability of the autoionization width (in atomic units) of Al xr (1s2s2p) PJ' as a function of rotation angle 0 (in radi-
ans), and nonlinear parameter y using the saddle-point complex-rotation method. (The J = —' and —' widths are the first and second
entries, respectively. ) {The number in square brackets is the power of 10 to which the number is raised. )

0.30 0.40
0

0.50 0.60 0.70

7.250

8.1250

9.000

9.7500

10.5000

11.3750

12.2500

1.477 74[ —10]
1.202 63[—7]

1.481 85[ —10]
1.202 61[—7]
1.478 54[ —10]
1.202 61[—7]
1.475 12[ —10]
1.202 61[—7)

1.699 59[—10]
1.202 72[ —7]
1.541 27[ —10]
1.202 61[—7]
1.462 10[—10]
1.202 60[ —7)
1.467 69[—10]
1.202 60[ —7]
1.476 18[—10]
1.202 60[ —7]
1.474 59[—10]
1.202 61[—7]
1.476 29[—10)
1.202 62[ —7]

1.388 31[—10]
1.202 58[ —7]
1.483 59[—10]
1.202 61[—7]
1.487 36[ —10]
1.202 61[—7]

1.646 72[ —10]
1.202 65 [ —7]

theoretical calculations and experimental measurements
in Tables VI and VII. Experimental results which see
differential metastability, to our knowledge, exist for only
Z =3, 8, 9, and 10. Levitt et al'. ' have measured the
lifetimes for the lithium atom. The experimental deter-
mination of these lifetimes was complicated by the mix-
ing of the fine-structure levels by the nuclear hyperfine in-
teraction. ' Their result for the J =

—,
' level, 0. 14+0.07

ps, agrees with the result of this work, 0.13 ps, ~hereas
the other theoretical results are considerably longer, 2.40
p, s (Ref. 19) and 10.0 p,s. The measured lifetime of the
J =—„' level, 0.46+0. 10 ps, is longer than the present re-
sult of 0 25 ps and the 0 30 ps result of Manson.
Richard et al. ' have measured a short-lived level in the
oxygen ion, 1.87+0. 1 ns, and Moore et al. ' have ob-
served a longer-lived level for this system, 3 ~ 48+0.08 ns.
The 3.48+0.08 ns result is very close to our result for the
J ==,' level, 3.34 ns. If we assume that the 1.87+0. 1 ns
result corresponds to the J =

—,
' level, then this measure-

ment is longer than the result of this work, 0.910 ns, and
the result of Chen et al. 1.09 ns. Richard et al. have
observed a level with a lifetime of 2.000+0.025 ns in the
fluorine ion. The theoretical results indicate that this
measurement corresponds to the J = —', level. The present
result of 1.84 ns is shorter, while the result of Chen
et al. , 2.15 ns, is longer by the same amount.
Schumann et al. have measured the lifetimes of the
neon ion. Their measured lifetime of 0.40+0. 19 ns
agrees with the present result of 0.368 ns for the J =

—,
'

level and the result of Chen et al. , 0.419 ns. The mea-
sured lifetime 1.60+0.24 ns is considerably longer than
this calculation for the J =

—,
' level, 0.857 ns; however, our

theoretical result agrees with the calculation of Chen
et al. for this level, 0.894 ns. We also quote the theoret-
ical results for the radiative and autoionization transition
rates of Bhalla and Gabriel, and Vainshtein and Safro-
nova, in Tables VI and VII for comparison. Bhalla and
Gabriel did nonrelativistic Hartree-Slater calculations

in intermediate coupling with only spin-orbit mixing.
Their radiative and autoionization rates are both quite
different from this calculation and that of Chen et al. '

This confirms the importance of including all the spin-
dependent perturbations when computing the coupling to
the ( ls2s2p) P' states and the P' continuum. Vainsh-
tein and Safronova used Z-dependent perturbation
theory, with a closed-channel basis consisting of hydro-
genlike functions and an open channel constructed from
Coulomb wave functions without screening. While their
radiative rates agree with this work and that of Chen
et al. ,

' their autoionization rates are quite different,
which may indicate the inadequacy of their open-channel
wave function.

A general trend is revealed when comparing the transi-
tion rates of Chen et al. ' with those of this work. The
radiative rates of this work are smaller (the only excep-
tion is for Z =18), while the autoionization rates are
larger (the only exceptions are for Z =13 and 18). The
difference in the autoionization rates, however, is much
larger than the corresponding differences in radiative
rates on a percentage basis. These discrepancies of oppo-
site sign have a canceling effect when the net transition
rate and resulting lifetime are computed; however, these
same discrepancies will magnify the difference between
the calculated branching ratios.

V. CGNCI USIA%

In this work we have determined the lifetimes of the
lithiumlike ls2s2p PJ' levels for J = —,

' and —from Z =3
to 18. Both the autoionization and the radiative transi-
tion rates are computed in order to determine these life-
times. The autoionization widths were computed with
the saddle-point complex-rotation method by including
the full spin-dependent part of the relativistic Breit-Pauli
Hamiltonian. The radiative transition rates were com-
puted with first-order perturbation theory. All of these
calculations were carried out in the intermediate LSJ-
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coupling scheme due to the essential role played by the
1s2s2p PJ states in the deexitation of the metastable
1s2s2p PJ' systems. Comparison of the present results
with the few available experimental measurements reveals
discrepancies in about half of the cases; however, in the
cases where discrepancies with experiment occur, the re-
sults of this work appear to agree with other theoretical
calculations. More high-precision measurements for life-
times along with measurements to reveal the branching

ratios are needed to make a more critical comparison of
the different theoretical methods.

ACKNOWLEDGMENTS

This research was supported by a grant from Research
Corporation (B.F.D.} and by the National Science Foun-
dation, Grant No. PHY-87-15238.

'B. F. Davis and K. T. Chung, J. Phys. B 15, 3113 (1982).
2B. F. Davis and K. T. Chung, Phys. Rev. A 31, 3017 (1985).
Y. Baudinet-Robinet, H. P. Garnir, and P. D. Dumont, Phys.

Rev. A 34, 4722 (1986).
4K. T. Chung, Phys. Rev. A 29, 682 (1984).
5Brian F. Davis and Kwong T. Chung, Phys. Rev. A 36, 1948

(1987).
M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 24,

1852 (1981).
M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 27,

544 (1983).
8E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280

(1971); see also references in B. F. Davis and K. T. Chung,
Phys. Rev. A 29, 1878 (1984).

K. T. Chung and B.F. Davis, Phys. Rev. A 29, 1871 (1984).
' K. T. Chung, Phys. Rev. A 20, 1743 (1979).
'K. T. Chung and B.F. Davis, Phys. Rev. A 22, 835 (1980)~

' K. T. Chung and B. F. Davis, in Autoionization II, edited by
A. Temkin (Plenum, New York, 1985), p. 73.
K. T. Chung and B. F. Davis, Phys. Rev. A 26, 3278 (1982).

' B. F. Davis and K. T. Chung, Phys. Rev. A 29, 2586 (1984).
~5F. W. King and V. Shoup, Phys. Rev. A 33, 2940 (1986).

Brian F. Davis and Kwong T. Chung, Phys. Rev. A 37, 111
(1988}.

'~A. Messiah, Quantum Mechanics iWiley, New York, 1966},
Vol ~ II.

8M. Levitt, R. Novick, and P. D. Feldman, Phys. Rev. A 3, 130
(1971).

V. V. Balashov, V. S. Senashenko, and B. Tekou, Phys. Lett.
25A, 487 (1967).

2"S. T. Manson, Phys. Rev. A 3, 147 (1971).
'P. Richard, R. L. Kauffman, F. F. Hopkins, C. W. Woods,

and K. A. Jamison, Phys. Rev. A 8, 2187 (1973); D.
Charalambidis, K. Koulen, and R. Brenn, in Abstracts of the
Fifteenth International Conference on the Physics of Electronic
and Atomic Collisions, Brighton, 1987, edited by J. Geddes, H.
B. Gilbody, A. E. Kingston, and C. J. Latimer (Queens's Uni-
versity, Belfast, 1987).
P. Richard, R. L. Kauffman, F. F. Hopkins, C. W. Woods,
and K. A. Jamison, Phys. Rev. Lett. 30, 888 (1973).
S. Schumann, K. O. Groeneveld, G. Nolte, and B. Fricke, Z.
Phys. A 289, 245 (1979).

24C. P. Bhalla and A. H. Gabriel, in Beam-Foil Spectroscopy,
edited by I. A. Sellin and D. J. Pegg (Plenum, New York,
1976), p. 121.

~~L. A. Vainshtein and U. I. Safronova, At. Data Nucl. Data
Tables 21, 49 (1978).


